Experimental Astrochemistry : from Ground-Based to Space-Borne Laboratories

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Astrochemistry : from Ground-Based to Space-Borne Laboratories Experimental astrochemistry : from ground-based to space-borne laboratories Liège, 2-3 July 2014 Abstract book Development and optimization of an analytical system for the identification of volatile organic compounds coming from the heating of cometary ice analogs N. Abou-Mrad, F. Duvernay, T. Chiavassa, G. Danger Aix-Marseille University, France The chemical evolution of the organic matter in the universe can be studied through laboratory experiments in which the conditions of formation and evolution of this matter are experimentally simulated. This approach consists in reproducing a “primitive” ice analog such as a cometary one at low temperature (10-20 K) and low pressure (10-9 mbar). This ice analog is then subjected to various physico-chemical processes, such as heating or UV irradiation, mimicking what comets would experience in astrophysical environments. Studying the volatile organic compounds sublimating from these ice analogs may be of a great interest in the understanding of the formation of refractory organic residue representing the organic matter that could be present in interplanetary objects. On the other hand, these experiments will help for interpreting data coming from space missions such as Rosetta, and determining the compounds potentially present in protostellar environments (hot corinos). In this context, an original analytical system has been implemented to identify the volatiles coming from the heating of cometary ice analogs. The study is based on the online transfer of volatiles from their “source” to the instrument for their analysis. Briefly, the system is constituted of a cryogenic and ultra-vacuum chamber in which ice analogs are formed and heated. This chamber is connected via an interface for compound pre-concetration to a gas chromatography apparatus (GC) for compound separation coupled to an ion trap mass spectrometer (MS) for molecular structure identification. Herein we present the results of calibration and optimization of the system to ensure the best sensitivity and ruggedness. The optimal system is then tested with an ice analog allowing the unambiguous identification of the target product (aminoacetonitrile). Swift heavy ions, ices and astrophysics H. Rothard, P. Boduch CIMAP, Caen, France The main objective of this research program is to simulate the effects of heavy ion irradiation on astrophysical ices. Heavy ions (C, O, S, Fe, Ni) are present in the solar wind, in cosmic rays and in the magnetosphere of giant planets. Ices, found e.g. on comets and dust grains (dense clouds) in space are mainly formed by simple molecules (like H2O, CO, CO2, NH3 ...). In the laboratory, the icy samples are deposited at low temperature (typically 15K-150K) and are irradiated with swift heavy ions delivered by GANIL (Grand Accélérateur National d’Ions Lourds, Caen, France). In situ infrared absorption spectroscopy allows to observe the disappearance of molecules (fragmentation or sputtering), and the appearance of new molecular species as a function of the projectile fluence. Two examples will be presented: - High energy ion irradiation of CO and CO2 ices. In this domain (simulation of cosmic rays), the projectile deposits a large amount of energy on the electrons of the icy target. This leads to the destruction of the mother molecule, to sputtering and to the production of newly formed (daughter) molecules. - At low energy (solar wind and magnetospheres), the incoming ion is implanted in the icy mantle. The aim of this study is to know if the contribution of the implantation process can explaine the abundance of e.g. sulphuric acid, or SO2 and CO2 molecules on the Jovian moons. Simulating Titan atmospheric chemistry: from ground based experiments to the space platform AMINO-EXPOSE N. Carrasco LATMOS, University Paris 6 & Versailles, UMR 8190 CNRS, Verrières le Buisson, France On Titan, the dissociation of N2 and CH4 by solar UV radiation and Saturn’s magnetosphere electron bombardment induces a complex organic chemistry that results in the production of solid aerosols responsible for the orange haze surrounding Titan. These aerosols are nitrogen-rich as shown by the in-situ pyrolysis-MS analysis of the Huygens space-probe. Their chemical production mechanisms, initiated in the gaseous phase, remain mostly unknown and provide a great challenge in astrobiology. Experimental setups are being developed in order to reproduce and study in the lab such a complex atmospherical system. In LATMOS, we developed both a photochemical and a plasma reactor to study the effect of the energetic source on the chemistry. During experiments, solid organic particles, so called 'tholins' are produced in the reactive gas mixture. These tholins are analogues to photochemical aerosols of Titan's atmosphere. First space experiments were moreover successfully boarded on the International Space Station to simulate Titan's atmospheric photochemistry: the Titan-like cells of the AMINO-EXPOSE project. We will compare the complementary results provided recently by these both ground-based and space-platform experiments. Experimental simulation in the laboratory: Chemical evolution of the organic matter from interstellar or cometary ice analogs T. Chiavassa, N. Abou-Mrad, F. Duvernay, F. Borget, P. Theulé, G. Danger Aix-Marseille University, France The different approaches that are developed in the laboratory to study the chemical evolution of organic matter in stellar or interplanetary environments will be addressed. In the first approach, starting from interstellar or cometary ice analogs subjected to different energy processes (thermal, photochemical), we look for explaining the mechanism of formation of key molecules (RING project : Reactivity in INterstellar ice Grains) such as HMT, POM or amino acid precursors that may be detected in future space missions. In a second approach, we are interested in the detection of volatile molecules from ice analogs (VAHIIA project: Volatile Analysis from the Heating of Interstellar Ice Analogs) to simulate the effects of warming of the material when a young star forms or when a comet becomes active. This project aims to make an inventory of molecules found in hot corinos or in the gas phase comets through an online experimental device coupling our simulation chamber where ices are formed to a GC-MS instrument (see poster Abou Mrad et al. for the development and calibration of VAHIIA’s analytical system). In a third approach, we analyze the organic matter contained in refractory residues that can be considered as cometary analogs (RAHIIA Project: Residue analysis from the heating of Interstellar Ice Analogs) using ultra high resolution mass spectrometry (orbitrap). The results of these analyses show a great diversity of molecules in the residues and the possibility to determine their elementary composition that can be compared with meteorite composition. These residues are the basic material to start in a planetary environment, a prebiotic chemistry. UVolution, PROCESS, AMINO, PSS: compared photochemistry in low Earth orbit and in the laboratory for prebiotic organic compounds related to small bodies, Titan and Mars H. Cottin 1, K. Saiagh1, P. Coll1, N. Fray1, F. Raulin1, F. Stalport1, D. Khalaf1, M. Cloix1, P. Ehrenfreund2, A. Elsaesser2, N. Carrasco3, C. Szopa3, D. Chaput4, M. Bertrand5, F. Westall5, A. Mattioda6, R. Quinn6, A. Ricco6, O. Santos6, G. Baratta7, G. Strazzulla7, M.E. Palumbo7, A. Le Postollec8, M. Dobrijevic8, G. Coussot9, F. Vigier9, O. Vandenabeele-Trambouze9, S. Incerti10, T. Berger11 1 LISA, University Paris Est-Créteil & Paris Diderot, UMR 7583 CNRS, Créteil, France, 2 Leiden Institute of Chemistry, Leiden, Netherlands, 3 LATMOS, University Paris 6 & Versailles, UMR 8190 CNRS, Verrières le Buisson, France, 4 CNES, Centre spatial de Toulouse, Toulouse France, 5 CBM, CNRS, Orléans, France 6 NASA AMES Research Center , Moffet Field, CA, USA, 7 Osservatorio Astrofisico di Catania , Catania, Italy, 8 LAB, UMR 5804 CNRS,Floirac, France, 9 IBMM, Universités de Montpellier 1 & 2, Université de Montpellier 2, UMR 5247 CNRS, Montpellier, France, 10 CENBG, UMR 5797 CNRS, Gradignan, France, 11 German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany. Photochemistry plays a leading role in the chemical evolution of organic matter in the Solar System and in the interstellar medium, specifically in the VUV domain (vacuum ultra violet- < 200nm). For this reason, laboratory studies of the photolysis of organic compounds related to astrophysical environments are common and different kinds of UV sources are used, e.g. monochromatic (e.g. H2/He (122 nm), Xe (147 nm), CH4/He (193 nm) (Cottin et al., 2000) or simulating a wider range of UV (e.g. H2 (122 nm and 160 nm) or deuterium discharge lamp (190 - 400 nm) (Ten Kate et al., 2005), high pressure xenon lamps (190 - 400 nm) (Stalport et al., 2009). However, it is not possible to simulate accurately the whole range of wavelengths corresponding to the most energetic part of solar radiation below 200 nm (Cottin et al., 2008), therefore results obtained in the laboratory are extremely difficult to extrapolate to space environments (Guan et al., 2010). UV light reaching low Earth orbit (at the altitude of the International Space Station) is unfiltered. Thus, many samples can be exposed simultaneously in space experiments where photolysis is direct across the real solar UV spectrum and where the measurements can be easily extrapolated to various astrophysical environments. Moreover, the simulation of cosmic particles in
Recommended publications
  • Second Annual NASA Ames Space Science and Astrobiology Jamboree
    Second Annual NASA Ames Space Science and Astrobiology Jamboree March 4, 2014 Welcome to the Second Annual Ames Space Sciences and Astrobiology Jamboree! The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-ops, post-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one’s fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We also wanted to continue a new tradition created last year within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. Jeff Cuzzi this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr.
    [Show full text]
  • 18Th EANA Conference European Astrobiology Network Association
    18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • NASA Astrobiology Institute 2018 Annual Science Report
    A National Aeronautics and Space Administration 2018 Annual Science Report Table of Contents 2018 at the NAI 1 NAI 2018 Teams 2 2018 Team Reports The Evolution of Prebiotic Chemical Complexity and the Organic Inventory 6 of Protoplanetary Disk and Primordial Planets Lead Institution: NASA Ames Research Center Reliving the Past: Experimental Evolution of Major Transitions 18 Lead Institution: Georgia Institute of Technology Origin and Evolution of Organics and Water in Planetary Systems 34 Lead Institution: NASA Goddard Space Flight Center Icy Worlds: Astrobiology at the Water-Rock Interface and Beyond 46 Lead Institution: NASA Jet Propulsion Laboratory Habitability of Hydrocarbon Worlds: Titan and Beyond 60 Lead Institution: NASA Jet Propulsion Laboratory The Origins of Molecules in Diverse Space and Planetary Environments 72 and Their Intramolecular Isotope Signatures Lead Institution: Pennsylvania State University ENIGMA: Evolution of Nanomachines in Geospheres and Microbial Ancestors 80 Lead Institution: Rutgers University Changing Planetary Environments and the Fingerprints of Life 88 Lead Institution: SETI Institute Alternative Earths 100 Lead Institution: University of California, Riverside Rock Powered Life 120 Lead Institution: University of Colorado Boulder NASA Astrobiology Institute iii Annual Report 2018 2018 at the NAI In 2018, the NASA Astrobiology Program announced a plan to transition to a new structure of Research Coordination Networks, RCNs, and simultaneously planned the termination of the NASA Astrobiology Institute
    [Show full text]
  • Revista Integral
    Sans titre-41 20/03/2014 14:21 Sociedade PortugueSa de FíSica / VOL. 37 - N.º 2 / 2014 / Publicação Trimestral / €5,00 A origem da vida na Terra: contribuiçãoendógena A origemdavidanaTerra: e exógenademoléculaspré-bióticas A nova astronomia comALMA A novaastronomia Para os físicos e amigos da física. da WWW.amigos e físicos os Para gazetadefisica.spf.pt TABELA DE PUBLICIDADE 2014 índice Para os físicos e amigos da física. V O L . 3 7 - n . 2 W W W. GA ZE TA D EFISICA.SPF. P T índice N. 0164 Gazeta de A) verso da capa B) destacável/folha VISITE A LOJA SPM EM WWW.SPM.PT atemática Para os físicos e amigos da física. Publicação quadrimestral da SOCIEDADE PORTUGUESA DE MATEMÁTICA Ano LXXII | Jul. 2011 | 4,20€ 8 8 8 (";&5"%&'*4*$"41'15 artigo geral crónicas 2 27 a nova astronomia com ALMA Nós e os extraterrestres 5,00 € José Afonso Carlos Fiolhais Publicação Trimestral Trimestral Publicação NOVIDADE! 2010 2010 artigo geral gazeta ao laboratório DBMMGPSQBQFST 7 28 VOL. 33 - Nº 3 3 Nº - 33 VOL. a origem da vida na terra: construção de recetores rádio contribuição endógena e exógena como introdução à Física das C) verso da contracapa D) contracapa 2010 de moléculas pré-bióticas Telecomunicações - parte II " (B[FUB EF 'TJDB DPOWJEB PT TFVT MFJUPSFT B TVCNFUFSFN QSPQPTUBT Zita Martins Alexandre Aibéo, Nuno André, Ricardo Gama BCTUSBDUT EFBSUJHPTOPTTFHVJOUFTUFNBT Para os físicos e amigos da física. SOCIEDADE PORTUGUESA DE FÍSICA DE PORTUGUESA SOCIEDADE Cirurgia Plástica 8 8 8 (";&5"%&'*4*$"41'15 'TJDBBQMJDBEB CJPMPHJBFNFEJDJOB FODFSSBEPBEF+VOIP
    [Show full text]
  • Photochemistry and Photoreactions of Organic Molecules in Space
    Chapter 10 Photochemistry and Photoreactions of Organic Molecules in Space Avinash Vicholous Dass, Hervé Cottin, and André Brack Abstract The primary aim of exobiology research is to recognize the routes leading to the initiation of life on Earth and its plausibility elsewhere in the universe. How would we recognize life if we encounter it or its remnants on an extraterrestrial body? This is the critical question of biosignature research to which astrochemical studies can contribute. Our understanding of preserved fossils and contemporary terrestrial life serves as a guide in the search for biosignatures in the universe. Of the various life-detection techniques available, carbon chemistry is particularly pertinent and perhaps the most significant biosignature (Summons et al., Astrobiology 11 (2):157–181; 2011). ‘Life’ as we know it is based on C, H, N, O, P, S chemistry and the organic matter derived from its remains is ubiquitous on Earth, constituting an extensive chemical and isotopic record of past life that surpasses by a huge margin what is recorded by visible (and microscopic) fossils. Biosignatures are highly subjective to the geological conditions in which they form and the subsequent diagenetic and metamorphic events that reprocess them (Sleep, Cold Spring Harb Perspect Biol. 2(6): a002527; 2010) and thus need careful assessing before coming to concrete conclusions concerning biogenicity. However, chemistry alone is inad- equate to detect life and collaborative efforts from all of the relevant investigations, combined with considerations of geological and environmental factors, will likely provide the best evidence for the presence or absence of life, in localities of interest.
    [Show full text]
  • Organics Exposure in Orbit (Oreocube): a Next-Generation Space Exposure Platform Andreas Elsaesser,*,† Richard C
    ¡ ¢ £ ¤ ¥ ¦ § ¤ ¡ Article pubs.acs.org/Langmuir Organics Exposure in Orbit (OREOcube): A Next-Generation Space Exposure Platform Andreas Elsaesser,*,† Richard C. Quinn, *,‡ Pascale Ehrenfreund, † Andrew L. Mattioda, § Antonio J. Ricco, *,§ Jason Alonzo,‡,∥ Alex Breitenbach, ‡,⊥ Yee Kim Chan, ‡,⊥ Aurelien Fresneau, † Farid Salama,§ and Orlando Santos§ †Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands ‡Carl Sagan Center, SETI Institute, NASA Ames Research Center, Mo ffett Field, California 94035, United States §NASA Ames Research Center, Mo ffett Field, California 94035, United States ∥Department of Physics and Astronomy, California State Polytechnic University, Pomona, California 91768, United States ⊥San Jose State University, San Jose, California 95112, United States ' © ABSTRACT: The OREOcube (ORganics Exposure in Orbit / & cube) experiment on the International Space Station (ISS) will investigate the effects of solar and cosmic radiation on organic %# fi % % thin lms supported on inorganic substrates. Probing the $ # − " kinetics of structural changes and photomodulated organic ! inorganic interactions with real-time in situ UV −visible $ ) spectroscopy, this experiment will investigate the role played © ! by solid mineral surfaces in the (photo)chemical evolution, . transport, and distribution of organics in our solar system and beyond. In preparation for the OREOcube ISS experiment, we report here laboratory measurements of the photostability of © fi fi - thin lms of the 9,10-anthraquinone derivative anthraru n (51 $ , fi nm thick) layered upon ultrathin lms of iron oxides magnetite + and hematite (4 nm thick), as well as supported directly on fused silica. During irradiation with UV and visible light simulating * the photon flux and spectral distribution on the surface of Mars, anthraru fin/iron oxide bilayer thin films were exposed to CO 2 ¨ (800 Pa), the main constituent (and pressure) of the martian atmosphere.
    [Show full text]
  • Oreocube: Organics Exposure in Orbit R
    Astrobiology Science Conference 2015 (2015) 7454.pdf OREOcube: ORganics Exposure in Orbit R. Quinn1, A. Elsaesser2, K. Bryson1, K. Bywaters3, P. Ehrenfreund2, A. Mattioda3, A. Ricco3, F. Salama3 and O. Santos3 1SETI Institute, Mountain View, CA USA (Rich- [email protected]), 2Leiden Institute of Chemistry, Leiden University, NL, 3NASA Ames Research Center, Moffett Field, CA USA Introduction: The ORganics Exposure in Orbit ported. In an OREOcube experiment, an adsorbate- (OREOcube) experiment is designed to measure substrate interface is defined by depositing organic chemical changes in organic samples in contact with samples as thin films onto solid substrates. Samples are inorganic substrates to investigate the role solid min- housed in hermetically sealed reaction cells containing eral surfaces may play in the (photo)chemical evolu- an internal test environment that allows control of tion and distribution of organics in the interstellar me- headspace gases including the partial pressure of water dium, comets, meteorites, and other bodies. Currently vapor (Fig. 2). This provides a controlled method to under development in preparation for a 12-month de- examine organic samples and inorganic surface inter- ployment on an International Space Station (ISS) ex- actions. ternal platform, OREOcube uses UV/visible/near-IR spectroscopy for in situ sample measurement. Based on technology developed by NASA Ames Research Center’s Small Spacecraft Payloads and Technologies Team, OREOcube is comprised of two 10-cm cubes each containing a highly capable spectrometer for the monitoring of samples held in a 24-sample cell carrier. Each cube is an autonomous stand-alone instrument package, requiring only a power and-data interface, with integrated electronics, a microcontroller, data storage, and optics to enable the use of the Sun for photochemical studies (124 to 2600 nm) and as a light source for spectroscopy (Fig.
    [Show full text]
  • User Requirements for Utilisation of LEO Post 2020
    Reference : LEO2020-4SPA-TN-D5 Version : 1.1.0 Date : 5-Dec-2013 European (and Partners) User Requirements for Utilisation of LEO post 2020 LEO2020 Title : European (and Partners) User Requirements for Utilisation of LEO post 2020 Abstract : This document describes the User Requirements for utilisation by humans of LEO infrastructures post 2020, as derived from the user enquiry performed by the Consortium. It also explains how the user representatives have been addressed. Hence the current document consitutes delivery D5 and D10. Contract N° : 4000107236 ESA CONTRACT REPORT The work described in the report was done under ESA contract. Responsibility for the contents resides with the author or organisation that prepared it. Technical officer : Mr. Bernhard Hufenbach Reference : LEO2020-4SPA-TN-D5 Version : 1.1.0 Date : 5-Dec-2013 Page : i European (and Partners) User Requirements for Utilisation of LEO post 2020 DISTRIBUTION LIST Name, Organisation e-mail Mr. B. Hufenbach, ESA [email protected] Mr. L. Steinicke, SA [email protected] Mr. J.-M. Wislez, SA [email protected] Mrs. S. Brantschen, SA [email protected] Mr. P. Clancy, 4SPACE [email protected] Mr. C. Gilbert, VeConsult [email protected] Reference : LEO2020-4SPA-TN-D5 Version : 1.1.0 Date : 5-Dec-2013 Page : iii European (and Partners) User Requirements for Utilisation of LEO post 2020 DOCUMENT CHANGE RECORD Version Date Author Changed Sections Reason for Change / RID No / Pages 1.0.0 3-Jun-2013 P. Clancy Sections 1.6, 5.2, Extended acronym list, slight corrections to 5.3 sections 5.2 and 5.3, and addition of Tables 15-21 to section 5.3.
    [Show full text]
  • Proceedings of 2Nd International Conference on Research, Technology and Education of Space
    Proceedings of 2nd International Conference on Research, Technology and Education of Space February 25-26, 2016, Budapest, Hungary at Budapest University of Technology and Economics Organized by Federated Innovation and Knowledge Centre of Budapest University of Technology and Economics and Hungarian Astronautical Society Editors László Bacsárdi and Kálmán Kovács MANT 2016 Conference proceedings H-SPACE 2016 2nd International Conference on Research, Technology and Education of Space February 25-26 2016, Budapest, Hungary BME building ’I’, Hall IB 026 Magyar tudósok krt. 2., Budapest, H-1117 Hungary Organizing and Editorial Board Chair: Dr. Kálmán Kovács Co-Chair: Dr. László Bacsárdi Members: Prof. József Ádám, Dr. Tibor Bálint, Prof. László Pap, Prof. Gábor Stépán, Dr. Fruzsina Tari Honorable Patrons: Prof. Iván Almár, Prof. János Józsa, Dr. László Vajta Készült a BME VIK és a BME EIT támogatásával Szerkesztők: Dr. Bacsárdi László és Dr. Kovács Kálmán Kiadja: a Magyar Asztronautikai Társaság 1044 Budapest, Ipari park u. 10. www.mant.hu Budapest, 2016 Felelős kiadó: Dr. Bacsárdi László főtitkár © Minden jog fenntartva. A kiadvány még részleteiben sem sokszorosítható, semmilyen mó- don nem tehető közzé elektronikus, mechanikai, fotómásolati ter- jesztéssel a kiadó előzetes írásos engedélye nélkül. ISBN 978-963-7367-10-6 WELCOME Prof. Iván Almár Honorary President of Hungarian Astronautical Society, member of International Academy of Astronautics „In the epoch of Fuze, Skype and other types of video conferences is such an international conference as H- SPACE still necessary and useful? I am convinced that the answer is yes. It is impossible to replace the personal contact with colleagues, who are working in the same field (space science and technology in our case) by anything else.
    [Show full text]
  • Implications for Life Detection on Mars
    Life 2014, 4, 535-565; doi:10.3390/life4040535 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Review Biota and Biomolecules in Extreme Environments on Earth: Implications for Life Detection on Mars Joost W. Aerts 1,*, Wilfred F.M. Röling 1, Andreas Elsaesser 2 and Pascale Ehrenfreund 2,3 1 Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; E-Mail: [email protected] 2 Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands; E-Mails: [email protected] (A.E.); [email protected] (P.E.) 3 Space Policy Institute, George Washington University, Washington, DC 20052, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +31-20-598-3583. External Editors: Dirk Schulze-Makuch and Alberto G. Fairen Received: 7 July 2014; in revised form: 8 September 2014 / Accepted: 16 September 2014 / Published: 13 October 2014 Abstract: The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids) occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the characterization of extant or extinct life. Due to their indispensability for life on Earth, these biomarkers are also prime targets in the search for life on Mars. Biomarkers degrade over time; in situ environmental conditions influence the preservation of those molecules. Nonetheless, upon shielding (e.g., by mineral surfaces), particular biomarkers can persist for billions of years, making them of vital importance in answering questions about the origins and limits of life on early Earth and Mars.
    [Show full text]
  • Curriculum Vitae
    Prof. Dr. Pascale Ehrenfreund German Aerospace Center DLR Space Policy Institute Linder Höhe Elliott School of International Affairs 51147 Cologne George Washington University Germany 1957 E Street NW, Suite 403 E-mail: [email protected] Washington, DC 20052, USA Asteroid 9826 Ehrenfreund 2114 T-3 Languages: German, English, French, Dutch Academic Education 2008 M.A. Management & Leadership Webster University • Title: Managing Global Space Exploration, GPA: 3.83 1999 Habilitation in Astrochemistry University of Vienna • Title: Cosmic Dust 1990 PhD Astrophysics University Paris VII, Groupe de Physique des Solides, and University of Vienna • Graduated with excellent grades • Title: Visible and Infrared Spectroscopic Studies of Polycyclic Aromatic Hydrocarbons and other Carbon Clusters 1988 M.S. Molecular Biology Austrian Academy of Sciences, Institute of Molecular Biology, Salzburg • Graduated with excellent grades • Title: Purification and properties of an Iminopeptidase from Streptomyces plicatus 1983-1988 Astronomy and Biology/Genetics University of Vienna, graduated with excellent grades Professional Experience 2015- Chair of the Executive Board, German Aerospace Center 2013-2015 President, Austrian Science Fund FWF 2008- Research Professor, Space Policy & International Affairs, Elliott School of International Affairs, George Washington University, USA 2008-2017 Lead Investigator: NASA Astrobiology Institute, Node Wisconsin 2006- Professor, Astrobiology, University of Leiden, NL 2005-2008 Distinguished Visiting Scientist/Consultant,
    [Show full text]