Additive Manufacturing of Hydroxyapatite Bioceramic Scaffolds: Dispersion, Digital Light Processing, Sintering, Mechanical Properties, and Biocompatibility
Journal of Advanced Ceramics 2020, 9(3): 360–373 ISSN 2226-4108 https://doi.org/10.1007/s40145-020-0375-8 CN 10-1154/TQ Research Article Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility Chengwei FENGa, Keqiang ZHANGa, Rujie HEa,*, Guojiao DINGa, Min XIAb, Xinxin JINc, Chen XIEd,* aInstitute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China bSchool of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China cSchool of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China dShanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China Received: October 21, 2019; Revised: February 3, 2020; Accepted: March 18, 2020 © The Author(s) 2020. Abstract: Hydroxyapatite (HA) bioceramic scaffolds were fabricated by using digital light processing (DLP) based additive manufacturing. Key issues on the HA bioceramic scaffolds, including dispersion, DLP fabrication, sintering, mechanical properties, and biocompatibility were discussed in detail. Firstly, the effects of dispersant dosage, solid loading, and sintering temperature were studied. The optimal dispersant dosage, solid loading, and sintering temperature were 2 wt%, 50 vol%, and 1250 ℃, respectively. Then, the mechanical properties and biocompatibility of the HA bioceramic scaffolds were investigated. The DLP-prepared porous HA bioceramic scaffold was found to exhibit excellent mechanical properties and degradation behavior. From this study, DLP technique shows good potential for manufacturing HA bioceramic scaffolds. Keywords: additive manufacturing; digital light processing; vat photopolymerization; hydroxyapatite; bioceramic scaffold and bioactivity [2–4]. The excellent osteoconductivity 1 Introduction makes HA as an artificial substitute material for bone, and also makes bone cells adhere, proliferate, and Bioceramics have attracted great attentions in recent mineralize on surface.
[Show full text]