Climate Variability in the Subarctic Area for the Last 2 Millennia

Total Page:16

File Type:pdf, Size:1020Kb

Climate Variability in the Subarctic Area for the Last 2 Millennia Climate variability in the subarctic area for the last 2 millennia Marie Nicolle, Maxime Debret, Nicolas Massei, Christophe Colin, Anne Devernal, Dmitry Divine, Johannes Werner, Anne Hormes, Atte Korhola, Hans Linderholm To cite this version: Marie Nicolle, Maxime Debret, Nicolas Massei, Christophe Colin, Anne Devernal, et al.. Climate variability in the subarctic area for the last 2 millennia. Climate of the Past, European Geosciences Union (EGU), 2018, 14 (1), pp.101-116. 10.5194/cp-14-101-2018. hal-01715912 HAL Id: hal-01715912 https://hal.archives-ouvertes.fr/hal-01715912 Submitted on 23 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Clim. Past, 14, 101–116, 2018 https://doi.org/10.5194/cp-14-101-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Climate variability in the subarctic area for the last 2 millennia Marie Nicolle1, Maxime Debret1, Nicolas Massei1, Christophe Colin2, Anne deVernal3, Dmitry Divine4,5, Johannes P. Werner6, Anne Hormes7, Atte Korhola8, and Hans W. Linderholm9 1Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France 2GEOPS, CNRS, University of Paris-Sud, 91405 Orsay CEDEX, France 3Centre de recherche en géochimie et géodynamique (Geotop), Université du Québec à Montréal, Montréal, QC, Canada 4Norwegian Polar Institute, Tromsø, Norway 5Department of Mathematics and Statistics, Arctic University of Norway, Tromsø, Norway 6Bjerknes Center for Climate Research and Department of Earth Science, University of Bergen, Bergen, Norway 7University of Gothenburg, Department of Earth Sciences, Gothenburg, Sweden 8Department of Environmental Sciences, Environmental Change Research Unit (ECRU), University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland 9Regional Climate Group, Department of Earth Sciences, University of Gothenburg, 40530 Gothenburg, Sweden Correspondence: Marie Nicolle ([email protected]) Received: 10 March 2017 – Discussion started: 31 March 2017 Revised: 12 December 2017 – Accepted: 15 December 2017 – Published: 25 January 2018 Abstract. To put recent climate change in perspective, it is 30-year cycle is found in Alaska and seems to be linked to necessary to extend the instrumental climate records with the Pacific Decadal Oscillation, whereas ∼ 20–30- and ∼ 50– proxy data from paleoclimate archives. Arctic climate vari- 90-year periodicities characterize the North Atlantic climate ability for the last 2 millennia has been investigated using variability, likely in relation with the Atlantic Multidecadal statistical and signal analyses from three regionally aver- Oscillation. These regional features are probably linked to aged records from the North Atlantic, Siberia and Alaska the sea ice cover fluctuations through ice–temperature posi- based on many types of proxy data archived in the Arctic tive feedback. 2k database v1.1.1. In the North Atlantic and Alaska, the ma- jor climatic trend is characterized by long-term cooling inter- rupted by recent warming that started at the beginning of the 1 Introduction 19th century. This cooling is visible in the Siberian region at two sites, warming at the others. The cooling of the Lit- Since the beginning of the industrial era, the global average ◦ tle Ice Age (LIA) was identified from the individual series, temperature has increased by about 1 C and recent decades but it is characterized by wide-range spatial and temporal ex- have been the warmest in the last 1400 years (PAGES 2k pression of climate variability, in contrary to the Medieval Consortium, 2013; IPCC, 2013). The warming is more pro- Climate Anomaly. The LIA started at the earliest by around nounced at high latitudes in the Northern Hemisphere than in AD 1200 and ended at the latest in the middle of the 20th cen- other parts of the Earth (Serreze and Barry, 2011; PAGES 2k tury. The widespread temporal coverage of the LIA did not Consortium, 2013), being more than twice the rate and mag- show regional consistency or particular spatial distribution nitude in the Arctic than the global average (Cohen et al., and did not show a relationship with archive or proxy type 2014). To place this warming in the perspective of long- either. A focus on the last 2 centuries shows a recent warm- term natural climate variability, the instrumental time series ing characterized by a well-marked warming trend parallel are not sufficient and it is necessary to extend the meteo- with increasing greenhouse gas emissions. It also shows a rological measurements back in time with proxy data from multidecadal variability likely due to natural processes acting paleoclimate archives (ice cores, tree rings, lake sediments, on the internal climate system on a regional scale. A ∼ 16– speleothems, marine sediments and historical series). Published by Copernicus Publications on behalf of the European Geosciences Union. 102 M. Nicolle et al.: Climate variability in the subarctic area for the last 2 millennia Over the last decade, extensive efforts have been made In this study, we explore the regional expression of the to collect and compile paleoclimate available data to recon- Arctic–subarctic climate variability during the last 2 millen- struct past climate variability on regional, hemispheric and nia using statistical and wavelet analysis. To do so, we de- global scales. Most temperature reconstructions include dif- fine three regions, North Atlantic, Alaska and Siberia, from ferent types of archives and proxies (Moberg et al., 2005; which we calculated climatic variations. Hence, the regional Mann et al., 2009; Kaufman et al., 2009; Ljungqvist, 2010; mean records allowed us to determine if the timing of the Marcott et al., 2013) and some studies focused on a single long-term and secular (MCA and LIA) climatic fluctuations paleoclimate archive type and/or area (e.g., McGregor et al., that occur on the global Arctic–subarctic scale are also char- 2015, for oceans; Weissbach et al., 2016, for ice core; Wilson acteristic of the regional climate variability. Special attention et al., 2016, for tree rings). In the Arctic and subarctic area is given to the last 2 centuries, with the comparison between (90–60◦ N), several multi-proxy reconstructions of tempera- the three regional mean records and instrumental climate in- tures encompassing the last 2 millennia were published on dex, to determine the influence of internal climate variabil- a global (PAGES 2k Consortium, 2013; McKay and Kauf- ity but also the ability of paleoclimate series to reproduce man, 2014; Werner et al., 2017) and regional scale (Hanhi- decadal to multidecadal variability observed in instrumental järvi et al., 2013). The annual resolution of these reconstruc- data. tions allows the study of the climate variability from low fre- quencies (i.e., millennial and multi-centennial fluctuations) to high frequencies such as decadal variations. 2 Paleoclimate data Climatic reconstructions highlighted a millennial cooling trend associated with the monotonic reduction in summer The records used in this study were compiled by the Arc- insolation at high northern latitudes and a reversal marked tic 2k working group of the Past Global Changes (PAGES) by an important warming of more than 1 ◦C consistent with research program. This working group released a database the increase in greenhouse gases since the mid-20th century comprising 56 proxy records for the Arctic area (ver- (e.g., Kaufman et al., 2009; PAGES 2k Consortium, 2013). sion 1.1.1; McKay and Kaufman, 2014). The database con- The long-term cooling trend correlates with the millennial- tains all available records that meet data quality criteria con- scale summer insolation reduction at high northern latitudes cerning location (from north of 60◦ N), time coverage (ex- (Kaufman et al., 2009) but an increased frequency of vol- tending back to at least AD 1500), mean resolution (better canic events during the last millennium may also have con- than 50 years) and dating control (at least one age control curred with and contributed to the cooling episodes that oc- point every 500 years) (Fig. 1a). See Table S1 in the Supple- curred after AD 1000 (PAGES 2k Consortium, 2013; Sigl et ment for more information about each site (cf. also McKay al., 2015). and Kaufman, 2014). Superimposed on the long-term climate fluctuation, Proxy records are from different archive types. Most continental-scale temperature reconstructions in the North- are continental archives with very reliable chronologies ern Hemisphere highlight major climatic warming and cool- (16 ice cores, 13 tree rings, 19 lake sediment cores and ing pulses during the last millennium, with relatively warm 1 speleothem). Six records are from marine archives and conditions during the Medieval Climate Anomaly (MCA, one is a historic record (months of ice cover). Among the AD 950–1250; Mann et al., 2009) and a cold Little Ice Age 56 records, 35 have an annual resolution (Fig. 1b). Hence, (LIA, AD 1400–1700; Mann et al., 2009) period. The LIA the high temporal resolution of the Arctic 2k database series is, however, characterized by an important spatial and tem- offers the possibility of studying the high-frequency climate poral variability, particularly visible on a more regional scale variability of the last 2 millennia, assuming that the proxy (e.g., PAGES 2k Consortium, 2013). It has been attributed record climate variability and the archiving process do not to a combination of natural external forcings (solar activity induce a bias in the multi-annual to centennial frequencies and large volcanic eruptions) and internal sea ice and ocean analyzed.
Recommended publications
  • Canada GREENLAND 80°W
    DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-B Module 7 70°N 30°W 20°W 170°W 180° 70°N 160°W Canada GREENLAND 80°W 90°W 150°W 100°W (DENMARK) 120°W 140°W 110°W 60°W 130°W 70°W ARCTIC Essential Question OCEANDo Canada’s many regional differences strengthen or weaken the country? Alaska Baffin 160°W (UNITED STATES) Bay ic ct r le Y A c ir u C k o National capital n M R a 60°N Provincial capital . c k e Other cities n 150°W z 0 200 400 Miles i Iqaluit 60°N e 50°N R YUKON . 0 200 400 Kilometers Labrador Projection: Lambert Azimuthal TERRITORY NUNAVUT Equal-Area NORTHWEST Sea Whitehorse TERRITORIES Yellowknife NEWFOUNDLAND AND LABRADOR Hudson N A Bay ATLANTIC 140°W W E St. John’s OCEAN 40°W BRITISH H C 40°N COLUMBIA T QUEBEC HMH Middle School World Geography A MANITOBA 50°N ALBERTA K MS_SNLESE668737_059M_K.ai . S PRINCE EDWARD ISLAND R Edmonton A r Canada legend n N e a S chew E s kat Lake a as . Charlottetown r S R Winnipeg F Color Alts Vancouver Calgary ONTARIO Fredericton W S Island NOVA SCOTIA 50°WFirst proof: 3/20/17 Regina Halifax Vancouver Quebec . R 2nd proof: 4/6/17 e c Final: 4/12/17 Victoria Winnipeg Montreal n 130°W e NEW BRUNSWICK Lake r w Huron a Ottawa L PACIFIC . t S OCEAN Lake 60°W Superior Toronto Lake Lake Ontario UNITED STATES Lake Michigan Windsor 100°W Erie 90°W 40°N 80°W 70°W 120°W 110°W In this module, you will learn about Canada, our neighbor to the north, Explore ONLINE! including its history, diverse culture, and natural beauty and resources.
    [Show full text]
  • Taiga Plains
    ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Plains Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories Revised 2009 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA PLAINS This report may be cited as: Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories – Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 173 pp. + folded insert map. ISBN 0-7708-0161-7 Web Site: http://www.enr.gov.nt.ca/index.html For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small photographs in the inset boxes are enlarged with captions on pages 22 (Taiga Plains High Subarctic (HS) Ecoregion), 52 (Taiga Plains Low Subarctic (LS) Ecoregion), 82 (Taiga Plains High Boreal (HB) Ecoregion), and 96 (Taiga Plains Mid-Boreal (MB) Ecoregion). Aerial photographs: Dave Downing (Timberline Natural Resource Group). Ground photographs and photograph of cloudberry: Bob Decker (Government of the Northwest Territories). Other plant photographs: Christian Bucher. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Chris Hampel Geographic Information System Specialist/Resource Analyst, Timberline Natural Resource Group, Edmonton, Alberta.
    [Show full text]
  • Climate and Vegetation • Almost Every Type of Climate Is Found in the 50 United States Because They Extend Over Such a Large Area North to South
    123-126-Chapter5 10/16/02 10:16 AM Page 123 Main Ideas Climate and Vegetation • Almost every type of climate is found in the 50 United States because they extend over such a large area north to south. • Canada’s cold climate is related to its location in the far northern latitudes. A HUMAN PERSPECTIVE A little gold and bitter cold—that is what Places & Terms thousands of prospectors found in Alaska and the Yukon Territory dur- permafrost ing the Klondike gold rushes of the 1890s. Most of these fortune prevailing westerlies hunters were unprepared for the harsh climate and inhospitable land of Everglades the far north. Winters were long and cold, the ground frozen. Ice fogs, blizzards, and avalanches were regular occurrences. You could lose fin- Connect to the Issues gers and toes—even your life—in the cold. But hardy souls stuck it out. urban sprawl The rapid Legend has it that one miner, Bishop Stringer, kept himself alive by boil- spread of urban sprawl has led US & CANADA ing his sealskin and walrus-sole boots and then drinking the broth. to the loss of much vegetation in both the United States and Canada. Shared Climates and Vegetation The United States and Canada have more in common than just frigid winter temperatures where Alaska meets northwestern Canada. Other shared climate and vegetation zones are found along their joint border at the southern end of Canada and the northern end of the United States. If you look at the map on page 125, you will see that the United MOVEMENT The snowmobile States has more climate zones than Canada.
    [Show full text]
  • Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific Since the Last Glacial Period—The Sino–German
    challenges Concept Paper Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific since the Last Glacial Period—The Sino–German Pacific–Arctic Experiment (SiGePAX) Gerrit Lohmann 1,2,3,* , Lester Lembke-Jene 1 , Ralf Tiedemann 1,3,4, Xun Gong 1 , Patrick Scholz 1 , Jianjun Zou 5,6 and Xuefa Shi 5,6 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung Bremerhaven, 27570 Bremerhaven, Germany; [email protected] (L.L.-J.); [email protected] (R.T.); [email protected] (X.G.); [email protected] (P.S.) 2 Department of Environmental Physics, University of Bremen, 28359 Bremen, Germany 3 MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany 4 Department of Geosciences, University of Bremen, 28359 Bremen, Germany 5 First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; zoujianjun@fio.org.cn (J.Z.); xfshi@fio.org.cn (X.S.) 6 Pilot National Laboratory for Marine Science and Technology, Qingdao 266061, China * Correspondence: [email protected] Received: 24 December 2018; Accepted: 15 January 2019; Published: 24 January 2019 Abstract: Arctic and subarctic regions are sensitive to climate change and, reversely, provide dramatic feedbacks to the global climate. With a focus on discovering paleoclimate and paleoceanographic evolution in the Arctic and Northwest Pacific Oceans during the last 20,000 years, we proposed this German–Sino cooperation program according to the announcement “Federal Ministry of Education and Research (BMBF) of the Federal Republic of Germany for a German–Sino cooperation program in the marine and polar research”. Our proposed program integrates the advantages of the Arctic and Subarctic marine sediment studies in AWI (Alfred Wegener Institute) and FIO (First Institute of Oceanography).
    [Show full text]
  • The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer Tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects
    animals Article The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects Larisa A. Ilina 1,*, Valentina A. Filippova 1 , Evgeni A. Brazhnik 1 , Andrey V. Dubrovin 1, Elena A. Yildirim 1 , Timur P. Dunyashev 1, Georgiy Y. Laptev 1, Natalia I. Novikova 1, Dmitriy V. Sobolev 1, Aleksandr A. Yuzhakov 2 and Kasim A. Laishev 2 1 BIOTROF + Ltd., 8 Malinovskaya St, Liter A, 7-N, Pushkin, 196602 St. Petersburg, Russia; fi[email protected] (V.A.F.); [email protected] (E.A.B.); [email protected] (A.V.D.); [email protected] (E.A.Y.); [email protected] (T.P.D.); [email protected] (G.Y.L.); [email protected] (N.I.N.); [email protected] (D.V.S.) 2 Department of Animal Husbandry and Environmental Management of the Arctic, Federal Research Center of Russian Academy Sciences, 7, Sh. Podbel’skogo, Pushkin, 196608 St. Petersburg, Russia; [email protected] (A.A.Y.); [email protected] (K.A.L.) * Correspondence: [email protected] Simple Summary: The reindeer (Rangifer tarandus) is a unique ruminant that lives in arctic areas characterized by severe living conditions. Low temperatures and a scarce diet containing a high Citation: Ilina, L.A.; Filippova, V.A.; proportion of hard-to-digest components have contributed to the development of several adaptations Brazhnik, E.A.; Dubrovin, A.V.; that allow reindeer to have a successful existence in the Far North region. These adaptations include Yildirim, E.A.; Dunyashev, T.P.; Laptev, G.Y.; Novikova, N.I.; Sobolev, the microbiome of the rumen—a digestive organ in ruminants that is responsible for crude fiber D.V.; Yuzhakov, A.A.; et al.
    [Show full text]
  • Crop Production in a Northern Climate Pirjo Peltonen-Sainio, MTT Agrifood Research Finland, Plant Production, Jokioinen, Finland
    Crop production in a northern climate Pirjo Peltonen-Sainio, MTT Agrifood Research Finland, Plant Production, Jokioinen, Finland CONCEPTS AND ABBREVIATIONS USED IN THIS THEMATIC STUDY In this thematic study northern growing conditions represent the northernmost high latitude European countries (also referred to as the northern Baltic Sea region, Fennoscandia and Boreal regions) characterized mainly as the Boreal Environmental Zone (Metzger et al., 2005). Using this classification, Finland, Sweden, Norway and Estonia are well covered. In Norway, the Alpine North is, however, the dominant Environmental Zone, while in Sweden the Nemoral Zone is represented by the south of the country as for the western parts of Estonia (Metzger et al., 2005). According to the Köppen-Trewartha climate classification, these northern regions include the subarctic continental (taiga), subarctic oceanic (needle- leaf forest) and temperate continental (needle-leaf and deciduous tall broadleaf forest) zones and climates (de Castro et al., 2007). Northern growing conditions are generally considered to be less favourable areas (LFAs) in the European Union (EU) with regional cropland areas typically ranging from 0 to 25 percent of total land area (Rounsevell et al., 2005). Adaptation is the process of adjustment to actual or expected climate and its effects, in order to moderate harm or exploit beneficial opportunities (IPCC, 2012). Adaptive capacity is shaped by the interaction of environmental and social forces, which determine exposures and sensitivities, and by various social, cultural, political and economic forces. Adaptations are manifestations of adaptive capacity. Adaptive capacity is closely linked or synonymous with, for example, adaptability, coping ability and management capacity (Smit and Wandel, 2006).
    [Show full text]
  • Description of the Ecoregions of the United States
    (iii) ~ Agrl~:::~~;~":,c ullur. Description of the ~:::;. Ecoregions of the ==-'Number 1391 United States •• .~ • /..';;\:?;;.. \ United State. (;lAn) Department of Description of the .~ Agriculture Forest Ecoregions of the Service October United States 1980 Compiled by Robert G. Bailey Formerly Regional geographer, Intermountain Region; currently geographer, Rocky Mountain Forest and Range Experiment Station Prepared in cooperation with U.S. Fish and Wildlife Service and originally published as an unnumbered publication by the Intermountain Region, USDA Forest Service, Ogden, Utah In April 1979, the Agency leaders of the Bureau of Land Manage­ ment, Forest Service, Fish and Wildlife Service, Geological Survey, and Soil Conservation Service endorsed the concept of a national classification system developed by the Resources Evaluation Tech­ niques Program at the Rocky Mountain Forest and Range Experiment Station, to be used for renewable resources evaluation. The classifica­ tion system consists of four components (vegetation, soil, landform, and water), a proposed procedure for integrating the components into ecological response units, and a programmed procedure for integrating the ecological response units into ecosystem associations. The classification system described here is the result of literature synthesis and limited field testing and evaluation. It presents one procedure for defining, describing, and displaying ecosystems with respect to geographical distribution. The system and others are undergoing rigorous evaluation to determine the most appropriate procedure for defining and describing ecosystem associations. Bailey, Robert G. 1980. Description of the ecoregions of the United States. U. S. Department of Agriculture, Miscellaneous Publication No. 1391, 77 pp. This publication briefly describes and illustrates the Nation's ecosystem regions as shown in the 1976 map, "Ecoregions of the United States." A copy of this map, described in the Introduction, can be found between the last page and the back cover of this publication.
    [Show full text]
  • Fresh Water and Its Role in the Arctic Marine System
    PUBLICATIONS Journal of Geophysical Research: Biogeosciences RESEARCH ARTICLE Freshwater and its role in the Arctic Marine System: Sources, 10.1002/2015JG003140 disposition, storage, export, and physical and biogeochemical Special Section: consequences in the Arctic and global oceans Arctic Freshwater Synthesis E. C. Carmack1, M. Yamamoto-Kawai2, T. W. N. Haine3, S. Bacon4, B. A. Bluhm5, C. Lique6,7, H. Melling1, I. V. Polyakov8, F. Straneo9, M.-L. Timmermans10, and W. J. Williams1 Key Points: • The Arctic Ocean Freshwater System 1Fisheries and Oceans Canada, Sidney, British Columbia, Canada, 2Tokyo University of Marine Science and Technology, has major intra-Arctic and extra-Arctic 3 4 effects Tokyo, Japan, Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland, USA, National • The Arctic Ocean Freshwater System Oceanography Centre, Southampton, UK, 5Department of Marine and Arctic Biology, UiT The Arctic University of Norway, regulates and constrains physical and Tromsø, Norway, 6Department of Earth Sciences, University of Oxford, Oxford, UK, 7Now at Laboratoire de Physique des biogeochemical processes Océans, Ifremer, Plouzané, France, 8International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, • Changes in the Arctic Ocean 9 10 Freshwater System are expected in USA, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA, Department of Geology and Geophysics, the future with substantial impacts Yale University, New Haven, Connecticut, USA Abstract The Arctic Ocean
    [Show full text]
  • Arctic and Subarctic Marine Ecology: Immediateproblems 77
    ARCTIC AND SUBARCTICMARINE ECOLOGY: IMMEDIATEPROBLEMS M. J. Dunbar” HE study of marine biology in the north has been pursued, in the past, mainly bythe Scandinavian countries. Inthe northern waters which TScandinavian biologists donot normally visit, and especially in theNorth American Arctic, marine investigation is in its infancy, and has even lagged behind terrestrial ecology in the same area. As there are now signs that this condition is to be put back in balance, this is the proper time to review briefly the most interesting results of the past and to point out the most promising fields of study for the immediate future. For the purposes of this paper the terms “arctic” and “subarctic”, applied to themarine environment only, are used as defined previously (Dunbar, 1951a): the marine arctic beingformed of those areas inwhich unmixed water of polar origin (from the upper layers of the Arctic Ocean) is found in the surface layers (200-300 metres at least). Admixture of water of terri- genous origin is ignoredin this definition. The marinesubarctic isdefined as those marine areas where the upper water layers are ofmixed polar and non-polar origin. By far the greater part of the marine subarctic lies on the Atlantic side, extending fromthe Scotian shelf and HudsonStrait to the Barents and Kara seas, and including almost the whole coast of west Greenland, the waters around Newfoundland and Iceland, much of the Norwegian Sea, and the waters off the west coast of Spitsbergen. The southern boundary of the marine subarctic is the limit of southward penetration of the arctic water; clearly it variesseasonally and with the state of the climatic cycle.
    [Show full text]
  • Subarctic Passive House Study
    July 11, 2013 Subarctic Passive House Case Study: A Superinsulated Foundation and Vapor Diffusion‐ Open Walls Cold Climate Housing Research Center Written by Bruno Grunau, PE July 11, 2013 Disclaimer: The research conducted or products tested used the methodologies described in this report. CCHRC cautions that different results might be obtained using different test methodologies. CCHRC suggests caution in drawing inferences regarding the research or products beyond the circumstances described in this report. i Subarctic Passive House Case Study: A Superinsulated Foundation and Vapor Diffusion‐Open Walls CONTENTS Summary .................................................................................................................................................................................................... 1 Introduction ............................................................................................................................................................................................... 2 Overview ................................................................................................................................................................................................ 2 Description of Wall System .................................................................................................................................................................... 3 Properties of Cellulose .....................................................................................................................................................................
    [Show full text]
  • Reindeer (Also Known As Caribou)
    Reindeer (also known as Caribou) Scientific name: Rangifer tarandus (pronounced “RANGE-uh-fer” “Tuh-RAN-dus”) Its genus name (Rangifer) means “wild” or “untamed”. Its species (tarandus) refers to the fact that it’s found in more northern countries. Relatives: The species tarandus is the only species in the genus Rangifer. Some of their closest relatives are the pygmy deer (also called Pudu) and white-tailed deer. Size: Reindeer are 4 to 7 feet in height, and males can range from 275-660 pounds, with females weighing between 50 and 300 pounds. Habitat : Most reindeer occupy cold Arctic tundra regions across the entire northern hemisphere. They can also be found in subarctic regions otherwise known as boreal forest or taiga. Reindeer occupy the regions above the tree-line in arctic North America, specifically Canada and Alaska, and also Greenland. Also in North America, they extend to eastern Washington and northern Idaho.Reindeer are migratory. In fact, Reindeer are able to migrate farther than any other terrestrial animal—up to 5,000 kilometers a year! Predators: Grizzly bears, American black bears, wolverine, lynx, and especially gray wolves comprise the majority of reindeer predators. Humans also eat Reindeer, and Reindeer meat is popular in many Scandinavian countries. Speed: Reindeer can run at speeds between 36 and 48 miles per hour, and can swim at 6 miles an hour. Breeding : Reindeer breed once a year during the “rut” (breeding season) which usually occurs around October. During this time, males compete with one another by bellowing and clashing their antlers together. They do not form mated pairs, and males can breed with as many as 15 females.
    [Show full text]
  • (Hs) Ecoregion Taiga Shield Low Subarctic
    ECOLOGICAL REGIONS Taiga Shield High Subarctic (HS) Ecoregion The Taiga Shield High Subarctic (HS) Ecoregion occupies nearly peat plateaus are typical wetland vegetation. Permafrost is OF THE 125,000 km2, and includes 9 Level IV ecoregions that arc across continuous along the northern boundary but discontinuous the northern third of the Taiga Shield. Landscapes are dominated where bedrock is interspersed with mineral soils. Several large Eskers are a common glacial landscape feature NorTHWEST TerrITorIES by bedrock in the western half, and boulder till and sandy or rivers including the Coppermine, Snare, Snowdrift, Taltson, of the Taiga Shield and are particularly extensive Tundra-dwelling Arctic ground squirrels in the Taiga Shield High Subarctic (HS) Ecoregion. range south into the subarctic regions gravel outwash further east. Slow-growing, open white and black Thelon and Dubawnt flow through the Ecoregion; hundreds of They provide a wide range of conditions for Gyrfalcons are rare visitors throughout of the Taiga Shield, wherever suitable 2 plants, from sheltered lower slopes with enough most of the Taiga Shield but commonly habitat conditions occur. They are spruce woodlands with lichen and shrub understories grow on large lakes over 50 km in area and thousands of smaller lakes moisture for good tree growth to upper slopes breed in the Taiga Shield High Subarctic most common in the Taiga Shield lower slopes and valleys, shrub and lichen tundra occupies dot the landscape. that support only low shrubs and lichens. Eskers (HS) Ecoregion. Gyrfalcons prey on High Subarctic (HS) Ecoregion and provide important habitat for many different birds and mammals ranging in size from can be locally abundant in sites where TAIGA SHIELD songbirds to geese, and from voles to Arctic upper slopes and hilltops, and sedge marshes and polygonal wildlife species including barren-ground caribou, permafrost and surface bedrock are muskoxen, grizzly bears, wolves, foxes, wolverines, hares.
    [Show full text]