© Cambridge University Press Cambridge

Total Page:16

File Type:pdf, Size:1020Kb

© Cambridge University Press Cambridge Cambridge University Press 978-0-521-70073-3 - Introduction to Bryophytes Edited by Alain Vanderpoorten and Bernard Goffinet Index More information Index Entries in bold refer to figures abscisic acid (ABA) 194, 208 Barbilophozia floerkei 48 acclimitization 211 basidiomycete 61, 100 acidification 36 basipetaly 72 acropetaly 72 Bazzania 44, 46 Acroschisma wilsonii 76 Bazzania trilobata 45 adaptation to drought 185, 201 Betula 65 alga 42 biodiversity indicator species 226, 241 allopolyploidization 152 bioindicator 224 Alsia californica 28 biomonitoring-direct 225, 227 alternation of generation 3 indirect 225 aluminium (Al3þ) 205 Blasia 64 amber 142 Blasia pusilla 62 Amblystegiaceae 105 Blepharostoma trichophyllum 48 Ambuchanania leucobryoides 76 bog 37, 153 analogue 16 chemistry 39 Andreaea 71, 77, 88, 89, 90, 94, Brachythecium rutabulum 164, 179, 184, 105, 114 203, 207 Andreaea rupestris 76 Breutelia azorica 194 Andreaeobryopsida 91, 101, 102 Bryophyta 5 Andreaobryum 77, 94 bryophyte-annual production 30 Andreaeobryum macrosporum 77 biomass 29 Andreaeopsida 101, 102 cover 159 Anomodon rugelii 80 diversity 154, 160, 168 Anthoceros 24, 120, 121 economic value 32 Anthoceros neesii 122, 123 epiphyte 166 Anthocerotophyta 7, 15 epiphyte diversity 164 antibiotic properties 41 life cycle 3 Antitrichia californica 151 mineral content 34, 202 Aphanorrhegma serratum 88 monoicy 132 Arabidopsis thaliana 16 monophyly 2 arachidonic acid 42 soil crust 36 Archidiaceae 182 spore number 179 Archidium 89, 182 spore size 179 Archidium alternifolium 176, 179 Bryopsida 101 Ascomycete 61, 100 Bryoxiphium 81 Asterella 59 Bryum 176 Atrichum 83 Bryum argenteum 134, 230 Atrichum crispum 140 Bryum capillare 206 Atrichum undulatum 91, 134 Bryum dichotomum 178 Austrofossombronia 51 Bryum rubens 99, 178 Azolla 120 Bryum schleicheri var. latifolium 247, 248 294 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-70073-3 - Introduction to Bryophytes Edited by Alain Vanderpoorten and Bernard Goffinet Index More information Index 295 Buxbaumia 78, 103, 136, 179 extinction 234, 237, 238–244 Buxbaumia viridis 135 focal species approach 245 fortress concept 245 calcicole 205 genetic diversity 244 calcifuge 204, 205 habitat destruction 238 Calliergon 41 horticulture 237 Calliergon obtusifolium 81 immigration 238–244, 249, 251 Calliergonaceae 104 indirect threats 238 Calliergonella cuspidata 222 invasive plants 238 Calluna vulgaris 38 legislation 234 calorific value 40 levels of threat 233 Calypogeia 51 management 244, 252 Calypogeia fissa 161 peatland 248, 251 calyptra 23 protected areas 244 Campylium stellatum 105 regeneration 252 Campylopodium allonense 143, 145 reintroduction 246 Campylopodium medium 145 restoration 248, 254 Campylopus introflexus 38, 140, 141, 238 Sphagnum 255 Campylopus pilifer 39, 80 strategies 244 Campylopus pyriformis 99, 100 threat categories 233, 235, 237 carbon cycling 26 threatened species 237 storage 27 unsuitable conditions 251 storage in ecosystem 30 continental drift 124 carnivory 47 coprophily 95 Catharomnion ciliatum 79 cost of reproduction 133 cation exchange capacity (CEC) 37, 204, 205 Crossidium crassinerve 187 Cavicularia densa 62 Cryphaea heteromalla 217 cavitation 19 cryptic speciation 144 cell water content 188 cryptogamic crusts 35 Cephalozia connivens 23 Cryptothallus 65, 66 Ceratodon purpureus 179 cuticle 19, 41, 186, 187, 196, 214, 227 Chandonanthus hirtellus 165 cyanobacterium 33 Charophyceae 12 Cyathophorum adianthum 79 Cheilolejeunea 165 cytoplasmic polarity 20 chemical composition 41 Chiloscyphus polyanthos 210, 217, 218 Dawsonia 19 chlorophyll content 215, 216 Dawsonia lativaginata 179 cladistic biogeography 146 Dawsonia superba 132 cleistocarpy 182 decomposition 27, 33 Climacium americanum 73 rate 37 Climacium dendroides 78 deficiency zone 203 climate change 214 Dendroceros 107, 109, 118, 120, 121 bryophyte diversity 223 desiccation resistance 19 Cololejeunea biddlecomiae 48 desiccation tolerance 16, 186, 189, 190, 193, Colura 47 239, 252 Colura zoophaga 49 bryophyte vs vascular plant 192 compensation point 197, 222 constitutive 194 competition 168 inductive 194 compression fossil 10 physiology 194 conducting cells 17–22 protective mechanism 191 Conocephalum 52 repair mechanism 192 Conocephalum conicum 45, 56, 179 trade-off 196 conservation-axenic cultures 247 variation 188 bryophyte diversity 232, 244 diaspore 132 colonization 243, 250 bank 180 commercial harvest 237 Dichodontium palustre 206 cryopreservation 247 Dicranaceae 86, 144, 145, 186, 217 deforestation 238, 241 Dicranella 75 direct threats 237 Dicranella cerviculata 145 dispersal limitation 249 Dicranella heteromalla 179 ex situ conservation 247 Dicranidae 94 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-70073-3 - Introduction to Bryophytes Edited by Alain Vanderpoorten and Bernard Goffinet Index More information 296 Index Dicranum 42, 165, 169, 170 Erpodium biseriatum 126, 129 Dicranum flagellare 174, 175 Exormotheca pustulosa 68 Dicranum montanum 217 external water conduction 186, 194 Dicranum polysetum 170 extracellular water 193, 196 Dicranum tauricum 217 digestibility 41 favourability gradient 167 Dinckleria 54 fern 42 dioicy 52, 59 fertilization range 132 Diphyscium 103 Fissidens 81 Diphyscium foliosum 78 Fissidens bryoides 81 Diplophyllum albicans 179 Fissidens celticus 133 Diplophyllum obtusatum 48 Fissidens dubius 157, 160 disjunction 124 Fissidens serrulatus 197, 198 dispersal 126 Folioceros 121 distance 133, 134 Folioceros appendiculatus 117 mode 132, 133 Fontinalis 207, 211 distribution pattern 127, 156 Fontinalis antipyretica 213 evolutionary significance 141 Fontinalis dalecarlica 104 human influence 139 food conducting cell 20 origin 130 forest productivity 37 Ditrichum flexicaule 81 fossil 142 Douinia 46 amber 142 Douinia ovata 45 fossilization 10, 11 drought avoidance 186 Fossombronia 59 escape 186 freezing tolerance 208 resistance 192 Frullania 47, 163 dry deposition 203, 215 Frullania appalachiana 48 Frullania polysticta 49, 54 Echinodium prolixum 240 Funaria 11, 176 ecological amplitude 105 Funaria hygrometrica 79, 88, 93, 97, 135, 169, 178, index 225 179, 206, 230, 231 niche 162 Funariaceae 104, 186 role 40 Funariales 90, 103 role-invertebrate 40 fungal infection 41, 48 soil development 34 water erosion 35 gametophyte viability 188 weathering 34 Garovaglia 197 significance 26, 34–39, 232 gene flow 150 switch 36 recruitment 193 ecology-global 153 genetic structure 156 landscape 156 Gingko biloba 42 population 162 glaciation 156 species interaction 166 Glomales 120 economical significance 31 Glomerales 24 ecosystem engineer 35 glomeromycete 24, 61, 100 ectohydry 187 Glomus 24 elaiosome 39 Gondwana 130 embryophyte 2, 8, 15, 50 greenhouse effect 157 endemic radiation 152 Grimmia 212 endemism 127, 130 Grimmia pulvinata 176, 178, 188, 189 endohydric species 186 Grimmiaceae 104 endomycorrhizae 23 growth rate 169 endozoochory 40, 139 growth-form 171, 172, 195 entomophily 94, 95 cushion 171 Eopolytrichum antiquum 144 feathery mat 171 Ephemeropsis tjibodensis 4 mat 171 Ephemerum 103 pendent 171 epiphyll 162 turf 171 epiphyte 162 wet 171 zonation 164 Gymnostomiella orcutii 80 epizoochory 138 Gymnostomiella vernicosa 78 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-70073-3 - Introduction to Bryophytes Edited by Alain Vanderpoorten and Bernard Goffinet Index More information Index 297 Haplomitrium 18, 25, 44, 46, 47, 52, 55, seta 7 61, 62, 64 sperm cell 111 Haplomitrium gibbsiae 45 spore 116, 117, 120 Hattorioceros striatisporus 117 sporocyte 114 Herbertus aduncus 48 sporophyte 7, 9 Herbertus dicranus 165 stoma 8, 22, 110–111, 115, 116, 120 herbivory 41 symbiosis 118, 119 defence 41, 51 tuber 118 Herzogobryum 125, 129 water retention 107 historical biogeography 146 water conducting cells 7 Homalothecium 146, 148 zygote 112 Homalothecium sericeum 164 hyalocyst 100 homologous recombination 32 hydroid 18, 21 homologue 16, 17 Hygroamblystegium 74 homoplasy 21 Hygroamblystegium fluviatile 74 Hookeriales 104 Hygroamblystegium tenax 74 hornwort 178 Hylocomium splendens 28, 79, 150, 169, 216 amphithecium 114 Hypnales 104 antheridium 111, 112, 114, 120 Hypnum imponens 79 apical cell 107, 108, 118 Hypnum lacunosum 80 archegonium 111, 113, 119 asexual reproduction 118 index of atmospheric purity (IAP) 225 basal meristem 8, 113, 115 intercontinental dispersal 124 biogeography 121 International Union for the Conservation of capillary space 107 Nature and Natural Resources (IUCN) carbon-concentrating mechanism 106 233, 235 columella 8, 113, 115 IUCN categories 235 cuticle 110 criteria 234 cyanobacterium 106, 107, 119 introduced species 139, 140 dehiscence 8, 107, 117 invasive species 140, 141 desiccation 116 involucre 23 dioicy 111, 118 Isothecium stonoliferum 28 ecology 121 endothecium 113 Jamesoniella autnmnalis 48 evolution 120 Jenssenia wallisii 45 foot 7, 113 Jubula 58 gametophyte 7 Jungermannia 51, 53 gas exchange 110 Jungermannia vulcanicola 206 gemmae 118 Jungermanniales 63 germination 118 Jungermanniidae 63 haustorium 113 heterocyst 118, 119 Kiaeria starkei 219 homology 110 kingdom 127 homoplasy 121 Holantarctic 127, 129 involucre 114, 115 Holarctic 125, 127, 128, 153 leaf 106 Neotropic 127, 129 midrib 106 Paleotropic 127, 129 monoicy 111 South African 127 mucilage 107, 110, 116, 118, 120 mucilage cell 108, 119 land plant 8 mucilage cleft 109, 110 adaptation to land 16 nitrogen 118 archegonium 8, 9 Nostoc 110, 111, 118, 119 archegonium role 9 phylogeny
Recommended publications
  • Systematic Botany 29(1):29-41. 2004 Doi
    Systematic Botany 29(1):29-41. 2004 doi: http://dx.doi.org/10.1600/036364404772973960 Phylogenetic Relationships of Haplolepideous Mosses (Dicranidae) Inferred from rps4 Gene Sequences Terry A. Heddersonad, Donald J. Murrayb, Cymon J. Coxc, and Tracey L. Nowella aBolus Herbarium, Department of Botany, University of Cape Town, Private Bag, Rondebosch 7701, Republic of South Africa bThe Birmingham Botanical Garden, Westbourne Road, Edgbaston, Birmingham, B15 3TR U. K. cDepartment of Biology, Duke University, Durham, North Carolina 27708 dAuthor for Correspondence ( [email protected]) Abstract The haplolepideous mosses (Dicranidae) constitute a large group of ecologically and morphologically diverse species recognised primarily by having peristome teeth with a single row of cells on the dorsal surface. The reduction of sporophytes in numerous moss lineages renders circumscription of the Dicranidae problematic. Delimitation of genera and higher taxa within it has also been difficult. We analyse chloroplast-encoded rps4 gene sequences for 129 mosses, including representatives of nearly all the haplolepideous families and subfamilies, using parsimony, likelihood and Bayesian criteria. The data set includes 59 new sequences generated for this study. With the exception of Bryobartramia, which falls within the Encalyptaceae, the Dicranidae are resolved in all analyses as a monophyletic group including the extremely reduced Archidiales and Ephemeraceae. The monotypic Catoscopium, usually assigned to the Bryidae is consistently resolved as sister to Dicranidae, and this lineage has a high posterior probability under the Bayesian criterion. Within the Dicranidae, a core clade is resolved that comprises most of the species sampled, and all analyses identify a proto-haplolepideous grade of taxa previously placed in various haplolepideous families.
    [Show full text]
  • Fossil Mosses: What Do They Tell Us About Moss Evolution?
    Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca.
    [Show full text]
  • Globally Widespread Bryophytes, but Rare in Europe
    Portugaliae Acta Biol. 20: 11-24. Lisboa, 2002 GLOBALLY WIDESPREAD BRYOPHYTES, BUT RARE IN EUROPE Tomas Hallingbäck Swedish Threatened Species Unit, P.O. Box 7007, SE-75007 Uppsala, Sweden. [email protected] Hallingbäck, T. (2002). Globally widespread bryophytes, but rare in Europe. Portugaliae Acta Biol. 20: 11-24. The need to save not only globally threatened species, but also regionally rare and declining species in Europe is discussed. One rationale of red-listing species regionally is to be preventive and to counteract the local species extinction process. There is also a value in conserving populations at the edge of their geographical range and this is discussed in terms of genetic variation. Another reason is the political willingness of acting locally rather than globally. Among the rare and non-endemic species in Europe, some are rare and threatened both in Europe and elsewhere, others are more common outside Europe and a third group is locally common within Europe but rare in the major part. How much conservation effort should be put on these three European non-endemic species groups is briefly discussed, as well as why bryophytes are threatened. A discussion is given, for example, of how a smaller total distribution range, decreasing density of localities, smaller sites, less substrate and lower habitat quality affect the survival of sensitive species. This is also compared with species that have either high or low dispersal capacity or different longevity of either vegetative parts or spores. Examples from Sweden are given. Key words: Bryophytes, rarity, Europe, dispersal capacity, Sweden. Hallingbäck, T. (2002).
    [Show full text]
  • <I>Sphagnum</I> Peat Mosses
    ORIGINAL ARTICLE doi:10.1111/evo.12547 Evolution of niche preference in Sphagnum peat mosses Matthew G. Johnson,1,2,3 Gustaf Granath,4,5,6 Teemu Tahvanainen, 7 Remy Pouliot,8 Hans K. Stenøien,9 Line Rochefort,8 Hakan˚ Rydin,4 and A. Jonathan Shaw1 1Department of Biology, Duke University, Durham, North Carolina 27708 2Current Address: Chicago Botanic Garden, 1000 Lake Cook Road Glencoe, Illinois 60022 3E-mail: [email protected] 4Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvagen¨ 18D, SE-752 36, Uppsala, Sweden 5School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada 6Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden 7Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland 8Department of Plant Sciences and Northern Research Center (CEN), Laval University Quebec, Canada 9Department of Natural History, Norwegian University of Science and Technology University Museum, Trondheim, Norway Received March 26, 2014 Accepted September 23, 2014 Peat mosses (Sphagnum)areecosystemengineers—speciesinborealpeatlandssimultaneouslycreateandinhabitnarrowhabitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock–hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum.Usingadatasetof39speciesof Sphagnum,withan18-locusDNAalignmentandanecologicaldatasetencompassingthreelargepublishedstudies,wetested
    [Show full text]
  • Flora of New Zealand Mosses
    FLORA OF NEW ZEALAND MOSSES MITTENIACEAE A.J. FIFE Fascicle 23 – DECEMBER 2015 © Landcare Research New Zealand Limited 2015. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International license Attribution if redistributing to the public without adaptation: “Source: Landcare Research” Attribution if making an adaptation or derivative work: “Sourced from Landcare Research” See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951- Flora of New Zealand [electronic resource] : mosses. Fascicle 23, Mitteniaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2015. 1 online resource ISBN 978-0-478-34793-7 (pdf) ISBN 978-0-478-34747-0 (set) 1.Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. UDC 582.344.837(931) DC 588.20993 DOI: 10.7931/B1PP4N This work should be cited as: Fife, A.J. 2015: Mitteniaceae. In: Heenan, P.B.; Breitwieser, I.; Wilton, A.D. Flora of New Zealand - Mosses. Fascicle 23. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/B1PP4N Cover image: Mittenia plumula, capsule. Drawn by Rebecca Wagstaff from A.J. Fife 7079, CHR 406028. Contents Introduction..............................................................................................................................................1 Taxa Mitteniaceae ....................................................................................................................................
    [Show full text]
  • Systematics and Ecology of the Moss Genus Scleropodium (Brachytheciaceae)
    Systematics and ecology of the moss genus Scleropodium (Brachytheciaceae) By Benjamin Elias Carter A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Brent D. Mishler, Chair Professor Bruce G. Baldwin Professor Chelsea D. Specht Spring 2012 Abstract Systematics and ecology of the moss genus Scleropodium (Brachytheciaceae) By Benjamin Elias Carter Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Brent D. Mishler, Chair Scleropodium is a genus of six species in the Brachytheciaceae. Although they are common in north temperate zones, they have not received monographic treatment in over a century. The aims of this study were to test species circumscriptions within the genus with molecular data, complete a thorough global taxonomic treatment of the genus, and to quantitatively investigate the ecological preferences of the species. A molecular phylogenetic study was conducted using 104 individuals spanning the range of morphological variation and the geographic extent of the genus. Maximum Parsimony and Bayesian phylogenetic analyses and a statistical parsimony network analysis of ITS and the chloroplast rps4, bsbA2 and trnG regions were performed. Although slight differences were found among analyses, there were six clear molecular groups. Five of these corresponded directly to the species Scleropodium californicum, S. cespitans, S. julaceum, S. obtusifolium and S. touretii. The sixth species, S. occidentale, is new to science and is described here. It is similar in ecology and morphology to S. obtusifolium, but has several diagnostic features in both molecular markers and morphological characters.
    [Show full text]
  • Nomen Est Omen — Die Bedeutung Der Art- Und Unterart-Epitheta Der Schweizer Moosflora
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 Nomen est omen: die Bedeutung der Art- und Unterart-Epitheta der Schweizer Moosflora Urmi, Edi Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-103870 Journal Article Published Version Originally published at: Urmi, Edi (2014). Nomen est omen: die Bedeutung der Art- und Unterart-Epitheta der Schweizer Moosflora. Meylania, (53):3-80. Nomen est omen — Die Bedeutung der Art- und Unterart-Epitheta der Schweizer Moosflora von Edi Urmi Meylania 53 (2014) Editorial Nomen est omen — Die Bedeutung der Art- und Unter- art-Epitheta der Schweizer Moosflora Dass die Beschäftigung mit der Herkunft der botanischen Namen eine spannende Sache ist, hat uns schon Josef Bertram 2005 mit der Sondernummer 32/33 der Meylania gezeigt: „Herkunft und Bedeutung der Gattungsnamen der in Deutschland, E. Urmi in der Schweiz und in Österreich vorkommenden Moose“. Dass die Faszination Meylania 53 (2014): 3-80 ungebrochen ist, beweist uns nun Edwin Urmi in dieser Sondermeylania, die als Ergänzung zu den Gattungsnamen die Bedeutung der Artnamen zum Inhalt hat. Wer wissen möchte, was der wissenschaftliche Name Anthoceros punctatus bedeu- Der Autor hat akribisch unsere ganze Moosflora durchgekämmt. Artnamen für tet, sucht zunächst Aufklärung in der Sondernummer 32/33 der Meylania. Dort Artnamen hat er analysiert und versucht, die Bedeutung der jeweiligen Namen zu hat Josef Bertram in vorbildlicher Weise z. B. den Gattungsnamen Anthoceros er- deuten. Häufig war die Bedeutung recht naheliegend, manchmal ging der Weg aber klärt (BERTRAM 2005).
    [Show full text]
  • Liverworts, Mosses and Hornworts of Afghanistan - Our Present Knowledge
    ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 68: 11-24, 2019 DOI: 10.2478/cszma-2019-0002 Published: online 1 July 2019, print July 2019 Liverworts, mosses and hornworts of Afghanistan - our present knowledge Harald Kürschner & Wolfgang Frey Liverworts, mosses and hornworts of Afghanistan ‒ our present knowledge. – Acta Mus. Siles. Sci. Natur., 68: 11-24, 2019. Abstract: A new bryophyte checklist for Afghanistan is presented, including all published records since the beginning of collection activities in 1839 ‒1840 by W. Griffith till present. Considering several unidentified collections in various herbaria, 23 new records for Afghanistan together with the collection data can be added to the flora. Beside a new genus, Asterella , the new records include Amblystegium serpens var. serpens, Brachythecium erythrorrhizon, Bryum dichotomum, B. elwendicum, B. pallens, B. weigelii, Dichodontium palustre, Didymodon luridus, D. tectorum, Distichium inclinatum, Entosthodon muhlenbergii, Hygroamblystegium fluviatile subsp. fluviatile, Oncophorus virens, Orthotrichum rupestre var. sturmii, Pogonatum urnigerum, Pseudocrossidium revolutum, Pterygoneurum ovatum, Schistidium rivulare, Syntrichia handelii, Tortella inflexa, T. tortuosa, and Tortula muralis subsp. obtusifolia . Therewith the number of species increase to 24 liverworts, 246 mosses and one hornwort. In addition, a historical overview of the country's exploration and a full biogeography of Afghan bryophytes is given. Key words: Bryophytes, checklist, flora, phytodiversity. Introduction Recording, documentation, identification and classification of organisms is a primary tool and essential step in plant sciences and ecology to obtain detailed knowledge on the flora of a country. In many countries, such as Afghanistan, however, our knowledge on plant diversity, function, interactions of species and number of species in ecosystems is very limited and far from being complete.
    [Show full text]
  • Field Guide to the Moss Genera in New Jersey by Keith Bowman
    Field Guide to the Moss Genera in New Jersey With Coefficient of Conservation and Indicator Status Keith Bowman, PhD 10/20/2017 Acknowledgements There are many individuals that have been essential to this project. Dr. Eric Karlin compiled the initial annotated list of New Jersey moss taxa. Second, I would like to recognize the contributions of the many northeastern bryologists that aided in the development of the initial coefficient of conservation values included in this guide including Dr. Richard Andrus, Dr. Barbara Andreas, Dr. Terry O’Brien, Dr. Scott Schuette, and Dr. Sean Robinson. I would also like to acknowledge the valuable photographic contributions from Kathleen S. Walz, Dr. Robert Klips, and Dr. Michael Lüth. Funding for this project was provided by the United States Environmental Protection Agency, Region 2, State Wetlands Protection Development Grant, Section 104(B)(3); CFDA No. 66.461, CD97225809. Recommended Citation: Bowman, Keith. 2017. Field Guide to the Moss Genera in New Jersey With Coefficient of Conservation and Indicator Status. New Jersey Department of Environmental Protection, New Jersey Forest Service, Office of Natural Lands Management, Trenton, NJ, 08625. Submitted to United States Environmental Protection Agency, Region 2, State Wetlands Protection Development Grant, Section 104(B)(3); CFDA No. 66.461, CD97225809. i Table of Contents Introduction .................................................................................................................................................. 1 Descriptions
    [Show full text]
  • Tsubota Et Al 2003 Hikobia14
    Hikobial4:55-702003 MOlecularphylo窪enyOftheGrimmiales(Musci)basedOnchlOroplast mcLsequencesI HIRoMITsuBoTA,YuMIAGENo,BELENEsTEBANEz,TOMIoYAMAGucHIANDHIRoNoRIDEGucHI TsuBoTA,H、,AGENo,Y、,EsTEBANEz,B,YAMAGucHI,T&DEGucHI,H、2003. MolecularphylogenyoftheGrimmiales(Musci)basedonchloroplastr6cLsequences・ Hikobial4:55-70. FamilialcircumscriptionsoftheGrimmialesandtheirallies,includingthe Orimmiaceae,thePtychomitriaceaeandtheSeligeriaceae,havebeenrepeatedly discussedHerewepresentphylogeneticinferencesontheGrimmiaceaeandtheir ロ alliesbasedonmaximumlikelihoodanalysesofchloroplast76cLgenesequences・ Oursmdyshowsthat(1)theGrimmiaceae(s」at.)withtheinclusionofthegenera CtJ叩〕ノノosje/伽andP〃c〃o〃か伽lismonophyletic;(2)G〃んo〃"伽hasaclose affinitytMrcjoaoftheDicranales;(3)theSeligeriaceaefblmadistinctcladesisterto theGrimmiaceae(s・lat);(4)theGrimmiales(s」at.)withtheinclusionofthe SeligeriaceaearemonophyleticwhentheDrummondiaceae,theScouleriaceaeandthe Wardiaceaeareomitted;and(5)theDrummondiaceae-Scouleriaceaecladeappearsat thebasalpositionofthehaplolepidousmossgroupDicranidae,adjacenttothe Bryoxiphiaceae.SincethemonophylyoftheGrimmiales(s」at.)includingmembers oftheSeligeriaceaeiswellsupported,weproposeherethattheordercanbetreatedin awidesense,andincludesfamilieswhichhaveincommontheG伽〃α/Mjgel・ja typeperistome、 H1、伽乃"Mα,Tb〃o】'bwmg"cルノ&ノブノァo"MDegz`chj,DEpq"me"'q/Djo/ogjcaノ 比je"Ce,Gma"α/e比/ioo/q/Sbje"Ce,〃imshj"zaU7mノeハノノリノ,KtJgα"!(〕ノαmα/-3-/, HjgZzsルノーハjrosh〃α-sハノ,HIrosh〃α7398526,ノヒWn YjlmMge"0,Depα"me"/q/Dio/OgjcaノSb/e"Ce,FtJMll〕ノq/Sbje"Ce,脇、s/i〃α 肋加e'Fjlワノ,KtJgzJmJi〕′α"zα/-3-/,ノリigaW-h"oshj"Ta-shj,HIroSル〃α739-8526,.ノヒJpα〃
    [Show full text]
  • A Preliminary List of Subalpine and Alpine Bryophytes of Rize, North-East Turkey
    Abay 2017. Anatolian Bryol. 3:2, 75-80……………………………………………………………………….75 Anatolian Bryology http://dergipark.gov.tr/anatolianbryology Anadolu Briyoloji Dergisi Review Article ISSN:2149-5920 Print DOI: 10.26672/anatolianbryology.319193 e-ISSN:2458-8474 Online A preliminary list of subalpine and alpine bryophytes of Rize, North-East Turkey 1*Gökhan ABAY1 1Department of Plant Materials and Propagation Techniques, Division of Landscape Architecture, Recep Tayyip Erdogan University, Rize, Turkey; Received: 05.06.2017 Revised: 04.11.2017 Accepted: 12.10.2017 Abstract Based on the published papers, floristic investigations of bryophytes (liverworts and hornworts) were carried out for subalpine and alpine localities in the boundary of Rize province in Turkey. The number of bryophyte taxa in these regions is 140 (119 mosses and 21 liverworts) with the lists cited in this paper. The hepatic list includes 15 genera and also mosses 55 genera. The largest genera of liverworts and mosses were found to be Scapania with four taxa and Sphagnum is with 13. Racomitrium heterostichum, R. macounii, Ditrichum pusillum, and Hymenoloma crispulum were the most common moss species. Two liverworts, Aneura pinguis and Scapania undulata were noted as the most common. When the altitudinal data were analyzed, it was seen that 2300 m. is the most survey area of intensive collecting. Upper limits of the taxa are observed at 3060 and 3065 m. Bryophyte records above 3000 m were not very rich according to the available information. The study provides an updated and useful catalog of the bryophytes occurring above forest boundary of Rize. Keywords: Mosses, liverworts, subalpine, alpine, Rize, Turkey 1.
    [Show full text]
  • Research Article
    Ecologica Montenegrina 20: 24-39 (2019) This journal is available online at: www.biotaxa.org/em Biodiversity of phototrophs in illuminated entrance zones of seven caves in Montenegro EKATERINA V. KOZLOVA1*, SVETLANA E. MAZINA1,2 & VLADIMIR PEŠIĆ3 1 Department of Ecological Monitoring and Forecasting, Ecological Faculty of Peoples’ Friendship University of Russia, 115093 Moscow, 8-5 Podolskoye shosse, Ecological Faculty, PFUR, Russia 2 Department of Radiochemistry, Chemistry Faculty of Lomonosov Moscow State University 119991, 1-3 Leninskiye Gory, GSP-1, MSU, Moscow, Russia 3 Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro *Corresponding autor: [email protected] Received 4 January 2019 │ Accepted by V. Pešić: 9 February 2019 │ Published online 10 February 2019. Abstract The biodiversity of the entrance zones of the Montenegro caves is barely studied, therefore the purpose of this study was to assess the biodiversity of several caves in Montenegro. The samples of phototrophs were taken from various substrates of the entrance zone of 7 caves in July 2017. A total of 87 species of phototrophs were identified, including 64 species of algae and Cyanobacteria, and 21 species of Bryophyta. Comparison of biodiversity was carried out using Jacquard and Shorygin indices. The prevalence of cyanobacteria in the algal flora and the dominance of green algae were revealed. The composition of the phototrophic communities was influenced mainly by the morphology of the entrance zones, not by the spatial proximity of the studied caves. Key words: karst caves, entrance zone, ecotone, algae, cyanobacteria, bryophyte, Montenegro. Introduction The subterranean karst forms represent habitats that considered more climatically stable than the surface.
    [Show full text]