KAW Nro.3-2005

Total Page:16

File Type:pdf, Size:1020Kb

KAW Nro.3-2005 A new box Kalmar around the on the block worldA GLOBAL BUSINESS MAGAZINE FROM KALMAR INDUSTRIES, NO.3/2005 Giant straddle Smart solution carrier order for South America Remote maintenance and Smartrail® technology combined with Long-time Kalmar customer E-One’s, significant fuel savings and the promise of less down- Sociedad Portuaria Regional de time, is a particularly smart solution for those operators who Cartagena (SPRC) in Colombia has ordered four E-One RTGs. want high productivity with the minimum environmental impact. Kalmar has been awarded an order www.kalmarind.com/ news room for 53 straddle carriers from South African Port Operations (SAPO), the terminal operating subsidiary of South 45ft palletwide reefer boxes are Africa’s transportation conglomerate, being built in increasing numbers, In global terms, the measuring 1.2m x 1.0m, they are trialling 45ft pw curtainsided Transnet Limited. Sabah Ports many by MCI in China, to replace 45ft container is still have become an essential tool containers. From the customer’s in enabling intermodal operators point of view, they satisfy the de- refrigerated trailers on certain www.kalmarind.com/ news room chooses equipment routes. Coolboxx is a joint venture very much a ‘special’, to compete heads-to-head with sire for side access but for termi- between Geest North Sea Line seen primarily in the road hauliers. nal operators, they need special and services and two specialist reefer trucking transpacifi c trades and In comparison, a 40ft ISO consideration. Inevitably, when companies and its new containers consultancy to a lesser extent in container can load just 25 of the compared with a steel-sided are primarily being used between Port of smaller pallets or 21 of the larger container, they are more vulner- Continental Europe, the UK and the Asia-Europe trades. Continues on page 8 size. able to damage whether that be Ireland. Hamburg Elsewhere, 20ft and 40ft Although 45ft pw containers from careless handling or from ISO containers have a can be lifted using 40ft spread- would-be thieves. goes electric ”Kalmar cranes have an excellent virtual monopoly on ers and mixed with 40ft ISO 45ft pw reefers have been containers in stacks, terminal around for a while and they Kalmar has reinforced its role as the reputation“, says Simon Bird, deepsea routes. operators do need to make al- differ from other pw contain- lem as the expensive reefer unit main supplier of handling equipment Chief Executive Offi cer of lowances for the extra width. ers in that they are 2.6m wide is protected from damage when to the German ports industry with the Bristol Port Company. In Europe though, there is a dif- rather than 2.5m. This increase being handled and stacked by recent orders for 24 straddle carriers ferent type of 45ft container, the New designs mean in width, which is also permitted strategically located steelwork. for delivery to HHLA and Eurogate. Continues on page 9 2.5m wide, so called pallet-wide new challenges with reefer trailers, recognises It is also stated that those termi- www.kalmarind.com/ news room (pw) container, and these are the increased thickness of side- nal operators who must handle being ordered in ever-increasing Now though, there are special wall and enables them still to these units have been made fully numbers by shortsea shipping 45ft pw containers now coming carry Euro-pallets three abreast aware of the special treatment lines. As a result, many European into service which present addi- or the larger pallets two abreast. required. Nevertheless, the man- Innovative 16 terminal terminal operators are having to tional handling considerations. However, due to the loss of inter- ufacturers of container refriger- adjust their handling operations Because intermodal opera- nal length due to the need to ac- ation units are now being urged approach tractors to accommodate these non- tors are competing with trailers, commodate the reefer unit itself, to develop even slimmer prod- standard units. they have sought for many years capacity had been restricted to ucts so that they can be housed ’’Lack of space and the for STAM European shortsea carri- to develop a container offering 32 Euro pallets rather than 33. safely within the container en- need for high produc- ers, or intermodal operators as full side access. Many shippers velope. tivity were the main Kamel Khelil, Directeur Central many prefer to be described, and consignees still seem to pre- 45ft-plus requires extra care As with 40ft reefers, termi- reasons behind the of Société Tunisienne d’Acconage offer door-to-door services and fer unloading pallets from the nal operators do need to bear decision to combine et de Manutention (STAM), performs point out that they are in direct side using conventional forklift Now though, designers have in mind at all times that when RTGs and shuttle competition with road hauliers trucks rather that via end doors managed to squeeze 33 pallets handling empty 45ft reefers with carriers,’’ says Sergei a fi nal inspection of the company’s using 13.6m (44.6ft) long trailers. and specialised loading bays or into a 45ft reefer container but FLTs or reachstackers, the cen- Artjomov, Chairman of 16 new Kalmar TRX 182 terminal Since 45ft pw containers can ramps. only by allowing the refrigera- tre of gravity of the container the Board, Muuga CT. tractors. The units are due to join match 13.6m trailers in being Now, operators such as tion unit to protrude slightly be- is significantly offset due to the the 14 Kalmar terminal tractors able to load 33 pallets measur- Geest North Sea Line and spe- yond the end frame. Operators weight of the refrigeration unit at Continues on page 4 ing 1.2m x 0.8m or 26 pallets cialist 45ft pw supplier UNIT45 say that this isn’t a major prob- the front of the container. delivered to STAM in 2001. Stora Enso chooses precise and CONTENTS gentle paper roll handling ..................................3 The new Kalmar DCE 80-9 HE paper trucks ordered by Stora Enso for its Hylte paper mill feature precision- adjusted clamp pressure for maximum handling safety and efficiency. Innovative handling solution for Tallinn’s Muuga CT ......................................... 4 Baltic boom .........................................................6 Reducing risk ...................................................... 7 In good mood Sabah Ports chooses equipment and with and services consultancy ...................................8 confidence ‘Royal’ STS order ................................................. 9 Kalmar has doubled good products. The Kalmar brand its turnover in the must continue to be the land- mark of good quality and sup- last fi ve years, mainly port for the product all over the through organic growth. world. We don’t categorise prod- Acquisitions have ucts based on where or how Facing rigorous demands in California ............ 10 contributed only about they are manufactured because in order to qualify for carrying 10% of this increase. the Kalmar brand the products and services must meet our glo- Our greater strength has ena- bal quality standards. We are Ante-Holz acquires front-mounted bled us to become much more well aware of the fact that qual- fork lift trucks and one logstacker .................. 12 global and has also expanded ity is a continuous challenge and Stora Enso our product offering remarkably. needs continuous attention, but Our growth is a combination of we will not compromise on this the success our customers have one core value. chooses precise and enjoyed and the work Kalmar With only a few months left has done to meet the changing of 2005, we can all see that this Fewer forklifts, greater handling efficiency .... 13 demands from the market. We year too will be one more year in gentle paper roll handling are both proud of and humble in the tremendous development of sharing this development with our industry. Over the past few our customers. months, we in Kalmar have been Paper rolls represent such major fi nancial values that it is vital they are New pedal set Our transformation mov- pleased to announce a large Maersk Sealand secures shipments handled with precision and exactly the right amount of pressure. For six ing closer to our customers number of new major orders every step of the way ...................................... 14 The trucks for Hylte will be and leaving component man- showing that our products con- months Stora Enso’s newsprint paper mill in Hylte, Sweden, has been equipped with newly developed ufacturing to our partners, tinue to move well. We are grate- testing Kalmar’s new 8-tonne truck, complete with integrated paper clamp. twin pedals. The pedal not ac- has increased the number of ful for the confidence so many The evaluation has shown that the machine entirely satisfi ed Stora Enso’s tivated acts as a foot support “Kalmarians” working side by customers have shown in us and requirements. when in resting position, thus side with our customers. It give at the same time it is a pleas- reducing strain on the feet and SCA calls on Kalmar expertise ......................... 16 us unique opportunities to learn ure the see the strength in their legs. The new pedal set repre- first hand of our customers business. We enter 2006 in good As such, Stora Enso is now or- Hylte’s ergonomic and safety re- sure is precision-adjusted so that sents a significant ergonomic needs and what is most impor- mood and with confidence. dering a further five DCE 80-9 HE quirements. the paper roll can neither slide improvement. tant to them. trucks with hydrostatic opera- nor suffer any damage. The rolls This major change to our tions for its Hylte facility. Two Automatic precision are deposited at exactly the right Revolving driving structure has however not Christer Granskog A revolution in log stacker technology ...........
Recommended publications
  • Glossary of Nautical Terms: English – Japanese
    Glossary of Nautical Terms: English – Japanese 2 Approved and Released by: Dal Bailey, DIR-IdC United States Coast Guard Auxiliary Interpreter Corps http://icdept.cgaux.org/ 6/29/2012 3 Index Glossary of Nautical Terms: English ‐ Japanese A…………………………………………………………………………………………………………………………………...…..pages 4 ‐ 6 B……………………………………………………………………………………………………………………………….……. pages 7 ‐ 18 C………………………………………………………………………………………………………………………….………...pages 19 ‐ 26 D……………………………………………………………………………………………..……………………………………..pages 27 ‐ 32 E……………………………………………………………………………………………….……………………….…………. pages 33 ‐ 35 F……………………………………………………………………………………………………….…………….………..……pages 36 ‐ 41 G……………………………………………………………………………………………….………………………...…………pages 42 ‐ 43 H……………………………………………………………………………………………………………….….………………..pages 49 ‐ 48 I…………………………………………………………………………………………..……………………….……….……... pages 49 ‐ 50 J…………………………….……..…………………………………………………………………………………………….………... page 51 K…………………………………………………………………………………………………….….…………..………………………page 52 L…………………………………………………………………………………………………..………………………….……..pages 53 ‐ 58 M…………………………………………………………………………………………….……………………………....….. pages 59 ‐ 62 N……………….........................................................................…………………………………..…….. pages 63 ‐ 64 O……………………………………..........................................................................…………….…….. pages 65 ‐ 67 P……………………….............................................................................................................. pages 68 ‐ 74 Q………………………………………………………………………………………………………..…………………….……...…… page 75 R………………………………………………………………………………………………..…………………….…………..
    [Show full text]
  • Glossary of Nautical Terms & References
    Canadian Coast Guard Auxiliary Search & Rescue Crew Manual GLOSSARY OF NAUTICAL TERMS & REFERENCES Glossary of Nautical Terms 245 Bearing – The direction in which an object lies A with respect to the reference direction. Bearing, Collision – A set of bearings taken on a Abaft – In a direction towards the stern. converging vessel in order to determine if a danger of collision exists. Abeam – On the beam; a direction at right angles to the keel. Bearing, Compass – A bearing relative to the Ship’s Compass North. Aboard – In or on board the vessel. Bearing, Magnetic – A bearing relative to the Afloat – A vessel totally supported by water and Magnetic North. off the bottom. Bearing, Relative – A bearing relative to the ship’s Aft – At or towards the stern. heading or bow of the vessel. Ahead – In the direction of the vessel’s head or Bearing, Ring – A ring fitted over a compass and bow. equipped with sighting lines for observing Aid to Navigation – A device or object, external to compass bearings. the vessel, located to assist in safe navigation. It Bearing, True – A bearing relative to True North. may be natural, a man-made structure or object. Beating – The procedure of sailing or running to Air Accident – A SAR Incident where the original windward with alternate tacks across the wind. vehicle of transportation of the persons involved was an airborne vehicle, regardless of Belay – To make fast a rope on a cleat by taking where the vehicle came to rest. turns. Amidships – In the middle of the ship, whether Bifurcation Buoy – A buoy that marks where a longitudinally or laterally.
    [Show full text]
  • AFRAMAX Tanker Design
    The Society of Naval Architects and Marine Engineers (SNAME) Greek Section – Technical Meeting 15. March 2012, Athens HOLISTIC SHIP DESIGN OPTIMISATION: Theory and Applications by Apostolos Papanikolaou National Technical University of Athens - NTUA Ship Design Laboratory – SDL http://www.naval.ntua.gr/sdl A. Papanikolaou HOLISTIC SHIP DESIGN OPTIMISATION 1 List of contents 1. Introduction to Holistic Ship Design Optimisation • Important Design Optimization Notions • Holistic Optimisation Methodology 2. Optimization of RoPax ships – Case study • Projects ROROPROB (2000-2003) and EPAN-MET4 (2004-2007) 3. Optimisation of High-Speed vessels • Project FLOWMART (2000-2003) 4. Holistic Optimisation of Tanker Ships – Projects SAFEDOR and BEST (2005-2011) • Multi-objective Optimization of Tanker Ships • Case study-reference ship • Alternative configurations • Discussion of results 5. Conclusions- The Way Ahead A. Papanikolaou HOLISTIC SHIP DESIGN OPTIMISATION 2 Important Design Optimization Notions (1) • Holism (from Greek όλος, meaning entire, total)-holistic The properties of a system cannot be determined or explained by looking at its component parts alone; instead of, the system as a whole determines decisively how the part components behave or perform. “The whole is more than the sum of the parts” (Aristotle Metaphysics) • Reductionism-reduction: is sometimes interpreted as the opposite of holism. “A complex system can be approached by reduction to its fundamental parts” • Holism and reductionism need, for proper account of complex systems, to be regarded as complementary approaches to system analysis. • Systemic and analytical approaches are also complementary and strongly related to holism and reductionism • Risk (financial): “A quantifiable likelihood of loss or of less-than-expected returns” • Risk (general): “A quantifiable likelihood of loss of an acceptable state or of a worse-than-expected state condition” • Safety: may be defined as “An acceptable state of risk” A.
    [Show full text]
  • Panama Canal Expansion Impacts on Fleet Patterns and Challenges in Terminal Design Presented by Michael Horton, C
    Panama Canal Expansion Impacts on Fleet Patterns and Challenges in Terminal Design Presented by Michael Horton, C. Eng, P.E. Agenda • Panama Canal Expansion, the Coming Fleet – Fleet Vessel size – Container Vessel Size • Design Criteria , Present & Future – Terminal Requirements for the Future – Options for Berth Construction • Challenges, Moving Forward – Time – Money • Conclusions The New Generation Source: ACP Ready or Not? In 1995 the Regina Maersk was big at 6,500 TEU – 5,800 trucks – 25 barges – 550 cargo planes Regina Maersk (1995) Now We Have the Emma Maersk at 11,000 or 13,000TEUs Emma Maersk (2006) But Still Not The Biggest Vessel On The Water Typical Maritime Transport Costs Source: Delft University, “Containerization International Charter Market Report”, Drewry Container Market Review 2006-2007. Container Ship Dimensions by Capacity (averages) Capacity Draft LOA Beam (TEUs) (m) (m) (m) 2,000-2,999 11.6 239 31.5 3,000-3,999 12.1 259 32.4 4,000-4,999 13.0 284 33.2 5,000-5,999 13.7 281 39.0 6,000-6,999 13.9 302 40.6 7,000-7,999 14.6 343 42.6 8,000-8,999 14.3 329 42.8 9,000-9,999 14.7 344 44.0 >10,000 15.5 398 56.4 Immediate Demand (ECSA carrier) • (2010) - 6,300 TEUS: – Length: 300 Meters – Beam: 40 Meters – Draft: 14.5 Meters – DWT: 76,000 • (2014) - 8,800 TEUS: – Length: 338 Meters – Beam: 46 Meters – Draft: 15.5 Meters – DWT: 116,000 Vessel Size: Conclusion • Panama Canal sets the new top end? • Vessel size will be a factor of route, market potential and facilities availability • With or without the Canal expansion, terminal
    [Show full text]
  • 13.012 Hydrodynamics for Ocean Engineers Reading #3
    13.012 Hydrodynamics for Ocean Engineers Reading #3 13.012 Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2004 Archimedes’s Principle and Static Stability “Any object, wholly or partly immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object.” “The apparent loss in weight of a body immersed in a fluid is equal to the weight of the displaced fluid.” I. Archimedes’s Principle: The force on a body due to pressure alone (in the absence of viscous forces) K F = ∫∫ p nˆ ds (3.1) S where pressure is a function of depth below the free surface: p(z) = −ρgz . (3.2) K F = ∫∫ p nˆ ds = − ρg ∫∫ z nˆ ds (3.3) S S By Calculus the surface integral can be converted into a volume integral (Gauss’s Theorem/Divergence Theorem): K K ∫∫G ⋅ nˆ ds = ∫∫∫∇ ⋅G dV (3.4) SV Thus equation becomes: K FpndsgzndsgdVgVk==−=∫∫ˆˆρρρ ∫∫ ∫∫∫ =ˆ (3.5) SSV version 3.0 updated 9/8/2004 -1- ©2003, 2004 aht 13.012 Hydrodynamics for Ocean Engineers Reading #3 We can see now that the buoyancy force acts to counterbalance the displaced volume of fluid. For a half submerged body the area of the water plane must be accounted for in the integration. II. Moment on a body (Ideal Fluid) The moment on a submerged body follows directly from structural mechanics or dynamics methodologies. K K M = p(x × nˆ) ds ≡ (M ,M ,M ) = (M ,M ,M ) (3.6) ∫∫ 1 2 3 x y z S Figure 1: x, y, z coordinate reference frame.
    [Show full text]
  • Operational Challenges to Port Interfaces in the Multi-Modal Transport Chain (Maritime and Hinterland Connections)
    Operational Challenges to Port Interfaces in the Multi-modal Transport Chain (Maritime and Hinterland Connections) 2013 Table of contest Introduction ................................................................................................................................ 4 PART I EVALUATION OF THE EXISTING SITUATION .................................................... 5 1. Research methodology ....................................................................................................... 5 1.2 Setting the Criteria ....................................................................................................... 5 1.3 Selection of indicators ............................................................................................... 11 2. Latvian ports ..................................................................................................................... 21 2.1 Freeport of Riga ......................................................................................................... 22 2.2 Port of Liepaja ........................................................................................................... 33 2.3 Port of Ventspils ........................................................................................................ 38 3. Lithuanian ports ................................................................................................................ 43 3.2 Port of Klaip ėda ........................................................................................................
    [Show full text]
  • Course Objectives Chapter 2 2. Hull Form and Geometry
    COURSE OBJECTIVES CHAPTER 2 2. HULL FORM AND GEOMETRY 1. Be familiar with ship classifications 2. Explain the difference between aerostatic, hydrostatic, and hydrodynamic support 3. Be familiar with the following types of marine vehicles: displacement ships, catamarans, planing vessels, hydrofoil, hovercraft, SWATH, and submarines 4. Learn Archimedes’ Principle in qualitative and mathematical form 5. Calculate problems using Archimedes’ Principle 6. Read, interpret, and relate the Body Plan, Half-Breadth Plan, and Sheer Plan and identify the lines for each plan 7. Relate the information in a ship's lines plan to a Table of Offsets 8. Be familiar with the following hull form terminology: a. After Perpendicular (AP), Forward Perpendiculars (FP), and midships, b. Length Between Perpendiculars (LPP or LBP) and Length Overall (LOA) c. Keel (K), Depth (D), Draft (T), Mean Draft (Tm), Freeboard and Beam (B) d. Flare, Tumble home and Camber e. Centerline, Baseline and Offset 9. Define and compare the relationship between “centroid” and “center of mass” 10. State the significance and physical location of the center of buoyancy (B) and center of flotation (F); locate these points using LCB, VCB, TCB, TCF, and LCF st 11. Use Simpson’s 1 Rule to calculate the following (given a Table of Offsets): a. Waterplane Area (Awp or WPA) b. Sectional Area (Asect) c. Submerged Volume (∇S) d. Longitudinal Center of Flotation (LCF) 12. Read and use a ship's Curves of Form to find hydrostatic properties and be knowledgeable about each of the properties on the Curves of Form 13. Calculate trim given Taft and Tfwd and understand its physical meaning i 2.1 Introduction to Ships and Naval Engineering Ships are the single most expensive product a nation produces for defense, commerce, research, or nearly any other function.
    [Show full text]
  • Glossary of Nautical Terms the Maritime World Has a Language of Its Own
    Glossary of Nautical Terms The maritime world has a language of its own. It may seem silly to use special terms instead of simply using one that we use for the same thing shore side, but it actually serves a practical purpose. For example, why not just call a galley a kitchen; it’s just a place where you cook food, right? Not exactly, in a kitchen you can leave pot of hot soup on the counter and, barring some geological event, it will still be there when you get back. In a galley, it is more likely to be all over the deck upon return. Using the proper terminology aboard a vessel helps to enforce the mindset that the maritime environment is different from that on shore and therefore, demands a different code of conduct. Objects: Bit: Two adjacent posts used for mooring or making a line fast to ​ Bollard: A single post used for mooring or making a line fast to ​ Boom: (1) Horizontal spar attached to the foot of a sail; (2) A spar used for lifting such as ​ on a crane or davit Bow: The forward end of the vessel ​ *Bowsprit: Spar protruding from the bow of a sailing vessel used for the attachment of the ​ headsails Bulkhead: A vertical partition inside a vessel ​ Bulwark: A partition extending above the weather deck of a vessel used to prevent seas ​ from washing over and keep objects and personnel from going overboard Capstan: Deck winch, usually configured vertically, used for hauling in lines See ​ Windlass. Ceiling: Planking on the interior sides the hull used for separating internal space from the ​ frame bays; in some cases used to increase hull stiffness to prevent hogging particularly in wood vessels (Hogging is the sagging of the vessel towards the bow and stern due to lack of floatation from the narrowing of the hull.
    [Show full text]
  • Universal Ship Measurement
    Universal Ship Measurement IMSF 2011 Annual Meeting Colin Cridland, Managing Director Analysts Hong Kong, 1 June 2011 www.clarksons.com Universal Ship Measurement | IMSF 2011 Annual Meeting Disclaimer THIS PRESENTATION IS CONFIDENTIAL AND IS SOLELY FOR THE USE OF THE RECEPIENT . NEITHER THE WHOLE NOR ANY PART OF THE INFORMATION CONTAINED IN THE PRESENTATION MAY BE DISCLOSED TO, OR USED OR RELIED UPON BY, ANY OTHER PERSON OR USED FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF H. CLARKSON & CO. LTD (CLARKSONS). THE INFORMATION CONTAINED IN THE PRESENTATION, AND UPON WHICH THE PRESENTATION IS BASED, HAS BEEN DERIVED FROM PUBLICLY AVAILABLE INFORMATION. NONE OF THE INFORMATION ON WHICH THE PRESENTATION IS BASED HAS BEEN INDEPENDENTLY VERIFIED BY ANY MEMBER OF CLARKSONS NOR ANY OF ITS CONNECTED PERSONS. ACCORDINGLY, NO MEMBER OF CLARKSONS NOR ANY OF ITS CONNECTED PERSONS MAKE ANY REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, WITH RESPECT TO THE ACCURACY OF THE INFORMATION CONTAINED IN THE PRESENTATION, OR ON WHICH THE PRESENTATION IS BASED, OR THAT THIS INFORMATION REMAINS UNCHANGED AFTER THE ISSUE OF THE PRESENTATION. THE PRESENTATION IS NOT TO BE CONSTRUED AS CARRYING THE ENDORSEMENT OF CLARKSONS OR ANY OF ITS CONNECTED PERSONS. CONSEQUENTLY, NEITHER CLARKSONS NOR ANY OF ITS CONNECTED PERSONS CAN BE HELD LIABLE TO ANY PERSON TO WHOM INFORMATION DERIVED FROM THE PRESENTATION IS MADE AVAILABLE FOR THE ACCURACY OF THE INFORMATION CONTAINED IN IT. THE PRESENTATION IS NOT INTENDED TO RECOMMEND ANY STRATEGIC DECISION BY THE COMPANY AND SHOULD NOT BE CONSIDERED AS A RECOMMENDATION SUPPORTING ANY OF THE OPTIONS DISCUSSED HEREIN BYANY MEMBER OF CLARKSONS OR ANY OF ITS CONNECTED PERSONS TO ANY RECIPIENT OF THE INFORMATION.
    [Show full text]
  • Ship Types & Sizes
    The Source for Maritime Information and Insight Chris Pålsson, Director, IHS Fairplay Copyright © 2011 IHS Inc. All Rights Reserved. 1 Size matters Copyright © 2011 IHS Inc. All Rights Reserved. 2 Endorsed by the IMSF 2011 Copyright © 2011 IHS Inc. All Rights Reserved. 4 Basis for size categories • Dimensional limitations – Passages, straits, canals, bridges, locks….. • Operational – Rate setting mechanisms – Cargo batch sizes – Type of service – Range of service – ….. Copyright © 2011 IHS Inc. All Rights Reserved. 5 Lingo • Handysize, small/large • VLCC • Handymax, large • ULCC • Supramax • VLGC • Panamax, sub/post/new • Feeder • Kamsarmax • ULCS • Capesize, mini • Seawaymax • VLOC • Chinamax • MR, small/large • Q-max • Aframax • Säfflemax • Suezmax • …. Copyright © 2011 IHS Inc. All Rights Reserved. 6 Dimensional limitations Copyright © 2011 IHS Inc. All Rights Reserved. 7 Panama Canal Panamax – L 294.1 m – B 32.3 m – D 12.04 m – H 61.3 New Panamax – L 366 m – B 49 m – D 15.2 m Copyright © 2011 IHS Inc. All Rights Reserved. – H 61.3 8 Suez Canal Suez Canal Bridge Shohada 25 January Bridge Egyptian-Japanese Friendship Bridge Max draft: 20.1 m, Max height: 68 m Copyright © 2011 IHS Inc. All Rights Reserved. 9 The Strait of Malacca Depth 25 m. Max draft 21 m. Copyright © 2011 IHS Inc. All Rights Reserved. 10 St Lawrence Seaway • L 225.6 m (740 feet) • B 23.8 m (78 feet) • D 7.9 m (26 feet) • H 35.5 m (116 feet) Copyright © 2011 IHS Inc. All Rights Reserved. 11 Qatar: Q-max • L 345 m (1,132 ft) • B 53.8 m (177 ft) • H 34.7 m (114 ft) Copyright © 2011 IHS Inc.
    [Show full text]
  • Lecture 11 Ship Types
    Lecture 11 Ship Types SHIP TYPES LECTURE STRUCTURE Section 1 Ship Types Section 2 Tankers Section 3 Dry Bulk Ships Section 4 Breakbulk Ships Section 5 RoRo Ships Section 6 Container Ships Section 7 Specialised Ships SHIP TYPES BY CARGO TYPES Bulk General Trades Cargo Trades Bulk Tanker Breakbulk Container RoRo Carrier Oil Major Tween Wheeled Deep-sea Tanker Bulk Decker Cargo Chemical Minor Multi- Car Short-sea Tanker Bulks Purpose Carrier Food Reefer Tankers LNG Palletised SHIP TYPES WORLD FLEET World Fleet 2000 and 2008 (million dwt) >6,600 ships 2000 2008 Source: UNCTAD, 2002, 2004, 2009 SHIP TYPES BULK CARGO Cargo Large homogeneous consignments Same cargo Consignment fills a complete ship or hold Simple stowage requirements Shipment details Small number of shippers Cargo loaded near location of origin Cargo discharged near destination Port-to-port contracts SHIP TYPES GENERAL CARGO - CHARACTERISTICS Insufficient to fill a ship or hold Large numbers of shippers Small diverse consignments Difficult stowage requirements Often onward hinterland move(s) Multi-port itineraries Primarily container, breakbulk and roro SHIP TYPES BREAKBULK Low handling rates Highly labour intensive High cost operations Very low productivity High freight rates Long delivery times Poor cargo quality control Constraint on trade SHIP TYPES BREAKBULK – STANDARD UNITS Pallets Paper Tonne Bags Coils Pallets SHIP TYPES SHIP DESIGN & VOYAGE TYPE Different types of voyage (journey) Deep-sea v Short-sea Mainline v Feeder Coastal v Short sea Coastal v River It is not the
    [Show full text]
  • The Design and Service Experience of the Polar Endeavour Class Tankers
    The Design and Service Experience of the Polar Endeavour Class Tankers Robert A. Levine1, (M) SNAME, (M) IMarEST, C.Eng., Manager Engineering Integration & Naval Architecture, ConocoPhillips Marine ABSTRACT The Polar Endeavour (Millennium) Class Tankers, represent the first U. S. flag crude oil carriers designed and built for the Alaskan Trade in compliance with the Oil Pollution Act of 1990 (OPA90). These vessels represent the start of a revolution in design for American crude carriers. Not only are they fitted with double hulls, which are deeper than required, but also they are fitted with twin independent engine rooms, and twin rudders. They are the first vessels to be classed R2- S+ and NIBS under the American Bureau of Shipping’s (ABS) Guidelines for Redundant Propulsion Systems and Navigation Integrated Bridge Systems. The vessels meet the requirements for Annex VI of MARPOL for air emissions, and are painted with tin free (TBT) anti-foul paints. This paper describes the design development process used and the unique and innovated design, which resulted. Three vessels have entered service in 2001, 2002 and 2003 and two are under construction for delivery in 2004 and 2005. 1 The opinions expressed in this paper are those of the author and do not reflect those of Polar Tankers Inc., ConocoPhillips Marine, ConocoPhillips Alaska or the ConocoPhillips Corporation. 1 ACRONYMS +A1E Compliance with ABS Rules for Self- KW Kilowatts Propelled Vessels & Equipment LAN Local Area Network (Computer) Standards LBP Length Between Perpendiculars
    [Show full text]