<<

ACOUSTICAL OCEANOGRAPHY OF THE LEVANTINE

Nazim Cubukcu

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

ACOUSTICAL OCEANOGRAPHY OF THE

LEVANTINE SEA

by

Nazim Cubukcu

September 1978

Thesis Advisor: A. B. Chace

Approved for public release; distribution unlimited.

Tl JUJ

SECURITY CLASSIFICATION OF THIS PACE (When Dele Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED Acoustical Oceanography of the Master's Thesis; September 1978 «. PERFORMING ORG. REPORT NUMBER

7. AUTHORC; ». CONTRACT OR GRANT NUMBERS;

Nazrm Qubukcu

9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA a WORK UNIT NUMBERS Naval Postgraduate School Monterey, CA 93940

1 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Naval Postgraduate School September 1978 Monterey, CA 93940 13. NUMBER OF PAGES 147 14. MONITORING AGENCY NAME & AOORESSf// il/r«r«ii /ram Controlling Otttce) IS. SECURITY CLASS, (ol thlm riport) Naval Postgraduate School Unclassified Monterey, CA 93940 15*. DECLASSIFICATION/ DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (ot thlm Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ot thm mbmlrmcl entered In Block 30, It dltlmtmnl from Report)

IB. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on rmrmtem mid* II nmcmmmmty mnd Identity by block number)

20. ABSTRACT (Cantlnuo on rovmrmm tide It neceeemry ltd Identity by block number)

Data on oceanographic conditions in the Levantine Sea in the eastern

end of the were compiled. Water masses, bottom sedi-r

ments, and Bottom topography are described. Four locations were chosen

as representative of the Levantine Sea. Acoustic propagation was modelled j

COITION OF t NOV «• IS OBSOLETE DD | jam 73 1473 S/N 2- 014- 010 6601 I SECURITY CLASSIFICATION OF THIS PAGE (Whem Dmlm Kntmrmd)

ItfcCUMITV CLASSIFICATION Of TWIS »4QC(, W»|»W f>.|« gntmni

for four different months in the 50 to 5000 Hz frequency range for source

and receiver depths of 21 to 300 ft at each location. Optimum passive

detection of submarine targets was found to occur when source and receiver

were at the same depth. This could be achieved with the sonar either on

a submarine or lowered below a surface ship.

DD Form 1473

, 1 Jan 73 S/N 0102-014-6601 itcumtrt cl.amihcation of thu »«eer*»>«< o«»« *»»•'•*>

Approved for public release; distribution unlimited.

Acoustical Oceanography of the

Levantine Sea

by

Nazim Cubukcu Lieutenant ^Turkish Navy Turkish Navy Academy, 1971

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OCEANOGRAPHY

from the NAVAL POSTGRADUATE SCHOOL September 1978 c- / ABSTRACT

Data on oceanographic conditions in the Levantine Sea in the eastern end of the Mediterranean Sea were compiled. Water masses, bottom sedi- ments, and bottom topography are described. Four locations were chosen as representative of the Levantine Sea. Acoustic propagation was modelled

for four different months in the 50 to 5000 Hz frequency range for source and receiver depths of 21 to 300 ft at each location. Optimum passive detection of submarine targets was found to occur when source and receiver were at the same depth. This could be achieved with the sonar either on a submarine or lowered below a surface ship.

TABLE OF CONTENTS

I. INTRODUCTION -- -- 10

II. GEOGRAPHY OF THE LEVANTINE SEA - 11

III. HYDROLOGY - 13

A. VERTICAL STRUCTURE OF WATER MASSES -- 13

1. Near Surface Water ------14

2. Intermediate Water ------16

3. Deep Water -- 20

4. Bottom Water 24

B. SALINITY AND TEMPERATURE DISTRIBUTION 27

IV. BATHYMETRY 37

A. CONTINENTAL SHELF, SLOPE, AND RISE 39

B. AEGEAN PROVINCE, MOUNTAINS, AND ABYSSAL HILLS 44

C. MEDITERRANEAN RIDGE 44

D. TRENCHES, ABYSSAL PLAINS, AND SUBMARINE CANYONS 45

V. SEDIMENTS 46

VI. CORRELATION BETWEEN SOUND VELOCITY AND OTHER PHYSICAL PROPERTIES OF BOTTOM SEDIMENTS 53

VII. SOUND PROPAGATION FOR ANTISUBMARINE WARFARE 61

VIII. CONCLUSION - 72

APPENDIX A. SOUND VELOCITY AND TRANSMISSION LOSS CURVES - 74

APPENDIX B. MONTHLY BT DATA AT FOUR DIFFERENT LOCATIONS 131

LIST OF REFERENCES 144

INITIAL DISTRIBUTION LIST - - - 146

LIST OF TABLES

Table I. Average monthly temperature of sea surface and overlying air in a strip of 5 squares along the Turkish and Egyptian coasts ------19

II. Average monthly precipitation at coastal meteoro- logical stations in the northern and southern Levantine Sea ------19

III. Chemical composition (in percent) of the upper sediment layer in the Levantine Sea ------51

IV- VI . Convergence zone range and transmission loss values for Locations A, B, and C in specific months ------64

VII-X. February, July, November, and December convergence zone range and transmission loss at Location C for various source depths (TD) and receiver depths (SD) ----- 67

XI. Convergence zone range and transmission loss values for Location D in specific months ------71

LIST OF FIGURES

Figure 1. Location map of the Levantine Sea ------12

2. General surface circulation, January through December ------15

3-4. Contours of pressure of a water column at the sea surface to a depth of 20 m ------17

5. T-S diagrams of the core layer of the Levantine intermediate water ------21

6. Distribution of salinity within the core layer of intermediate water in winter ------22

7. Distribution of salinity within the core layer of intermediate water in summer ------23

8. Distribution of oxygen within the core layer of the deep water ------25

9. Map of the potential bottom temperatures ------26

10. Locations of the salinity and temperature profile sections ------28

11. Vertical salinity distribution in Section I during summer ------29

12. Vertical salinity distribution in Section II during summer ------30

13. Surface isohalines in summer ------31

14. Surface isohalines in winter ------31

15. Isohalines at the depth of 300 m in summer ------32

16. Isohalines at the depth of 300 m in winter ------32

17. Schematic block diagram of salinity distribution and circulation in the Levantine Sea ------33

18. Vertical temperature distribution in Section I during summer ------35

19. Vertical temperature distribution in Section II during summer ------36

20. Chart of Levantine Sea showing bottom contours at 500 m intervals and boundaries of physiographic provinces based upon precision sounding profiles ------38

21. Locations of selected sounding profiles ------40

22. Bottom topography of the two sections that are shown in Figure 21 - 41

23. Profiles of the continental slope, rise, and Cone 42

24. Characteristics of sounding profiles over various physiographic features ------43

25. Locations of piston cores obtained in Sea ------47

26. General stratigraphy of the 32 cores of Figure 25 - — - - - 48

27. Distribution of the clay-mineral assemblages in the eastern Mediterranean Sea ------50

28. Porosity distribution in the Mediterrean Sea sediments ------50

29-34. Relationships between sound velocity and mean grain size, porosity, void ratio, moisture content, density, and carbonate content ------54

35-42. Sound velocity and transmission loss curves at Location A in February, July, November, and December ------75

43-50. Sound velocity and transmission loss curves at Location B in February, July, November, and December ------83

51-82. Sound velocity and transmission loss curves at Location C in February, July, November, and December ------91

83-90. Sound velocity and transmission loss curves at Location D in February, July, November, and December ------^------123

91-102. Monthly BT data at four different locations 132

ACKNOWLEDGEMENTS

I would like to express my appreciation for the guidance and assist- ance given by LCDR A. B. Chace who generously shared his experience in the field of acoustical oceanography in numerous invaluable discussions and timely encouragement throughout the entire study.

I also wish to recognize the efforts of my wife, Mehtap, during the last two years. Her patience and understanding helped to make the entire learning experience at the Naval Postgraduate School an enjoyable one.

I. INTRODUCTION

The most important naval application of oceanography is sound propa-

gation through the sea. There have been many attempts to establish rela- tionships between oceanic properties and sound propagation. Effective naval use of the requires detailed description and understanding of the important environmental factors. The Eastern Mediterranean has re-

ceived little attention yet relative to antisubmarine warfare (ASW) ; it is a critical area.

The purpose of this thesis is to examine environmental properties of the Levantine Sea such as water mass, bottom topography, sediments and

their compositions, and to relate them to sound propagation. The verti- cal sound velocity profile and acoustical transmission loss are examined at four specific sites using a range of frequencies (from 50 to 5000 Hz),

target depths, and sonar depths. Four selected months were used to obtain the seasonal picture.

10

II. GEOGRAPHY OF THE LEVANTINE SEA

The Mediterranean Sea is divided into two major sections, Western and

Eastern, by the ridge which includes , Sicily, and the submerged parts of the sill between and .

The Eastern Mediterranean exclusive of the generally has been divided into two parts, the Ionian and Levantine basins (Sverdrup,

Johnson, and Fleming, 1942). The boundary between these basins formerly was placed at the ridge extending from to Africa. Recent bathy- metric data, however, show that the two are not connected by a ridge. A better western boundary is a line from Ras-al Hilal on the

Libyan coast to the island of by way of Gavdhos Island [Figure 1).

The area covered by the Levantine Sea is approximately 320,000 square kilometers with a maximum depth of 4384 m (Carter, Flanagan, Jones,

Marchant, Murchison, Rebman, Sylvester, and Whitney, 1972).

The Levantine Sea is bordered on the north by Crete, the Dodecanese

Islands, and . On the east it is bordered by , , and

Israel and to the south by and . The Island of is located in the northeast quadrant of the basin. The northwest margin of the basin includes an island arc extending from Crete through the

Dodecanese Islands to Rhodes.

11

ro

•r™ +-> c >

03

O r- +-> 03 C->O

0) s_ 13 CD

12

:

III. HYDROLOGY

The physical oceanography of the Mediterranean Sea is primarily con- trolled by the climatology of the . Water loss by evaporation is greater than the gain resulting from precipitation and river discharge.

Lacombe and Tchernia (1972) describe the Mediterranean as a machine which balances both its water and salt contents. Incoming water from the

Atlantic is evaporated and in the winter season cooled at the surface, and to a lesser extent diluted by rain and river outflow, resulting in the typical dense and salty Mediterranean water mass which ultimately flows back into the Atlantic at subsurface depths through the Strait of .

The mechanism of this machine determines not only the physical properties of the Mediterranean water masses, but their main flow patterns as well.

A. VERTICAL STRUCTURE OF WATER MASSES

There are four distinct water masses in the Mediterranean Sea (Wiist,

1961). The Levantine Sea has all of these masses; in fact, this area is

"jery important because it is the source of intermediate Levantine water.

Vertical convection currents which can cause a complete overturning of the entire water column are an important factor in the formation of subsurface water and are most likely to occur during periods of minimum surface temperature CPollak, 1951).

By means of the vertical distribution of salinity, oxygen, and tem- perature, the Levantine Sea water is separated into four different water masses

1. Near Surface Water of Atlantic origin between the surface and

75 m depth,

13

2. The Intermediate Water between 200 m and 600 m depth,

3. The Deep Water between 1500 m and 3000 m depth,

4. The Bottom Water at depths to 4200 m.

Each of these water masses is now treated in more detail.

1 . Near Surface Water

Summer prevailing winds strengthen the eastward flowing surface currents. These waters of Atlantic origin are recognizable by their rela-

tively low salinity and are found everywhere in the Levantine Sea. North to northwest winds (Etesian winds) prevail over this area in summer. These winds are both strong and consistent in direction which results in effec-

tive mixing of the near surface waters. Zonal transport of Central

Mediterranean surface waters adds to the Levantine surface water with the winds mixing them to a depth of 20 to 75 m.

In winter the influence of the Atlantic surface water in the

Levantine Sea is decreased because in the Central Mediterranean much of

it is deflected north toward the Adriatic.

During the summer and winter seasons the circulation of the sur-

face waters of the Levantine Sea is wery complex. Figure 2 shows the

general circulation January through December. The most intensive and

stable feature is the cyclonic gyre north of Crete. Between Crete and

Africa there is a flow from the central basin into the Levantine Sea in

the surface layer. This easterly surface current in the Levantine Sea

weakens in summer (Ovchinnikov and Fedoseyev, 1968).

Nielsen (1912) showed the most commonly presented picture of the

currents in the Eastern Mediterranean. His description should be modified

on the basis of later studies; for example, studying the influence of the

Nile flood waters along the Israeli coast two varieties of water

14

U3 en

£ O to

s_ O) -Q E uo> Ol

o

i- ra Z3 C n3

C O

3

01

o i* s- < oi c o>

CM ft Ol 3s_

J L J I L

15

developing side by side have been discovered (Engel , 1967). On the other

hand, hydrological conditions in the Gulf of Iskenderun (northeastern

corner of Levantine Sea) show that the surface circulation there forms two eddies.

The velocity of the currents seldom exceeds 6-12 nautical miles

per day. The general pattern of the geostrophic circulation at the surface

and at a depth of 20 m, indicating general counterclockwise flow in the

eastern part of the Levantine Sea, are shown in Figures 3 and 4, respec- tively.

The seasonal variation of the surface salinity in the Levantine

Sea is affected primarily by evaporation and to a lesser extent by the

annual cycle of rainfall. In fall and winter the surface water tempera-

ture is higher than the air temperature. The surface waters of the

northern Levantine Sea are slightly cooler than those to the south. The

average values of air and surface temperatures calculated for a strip of

five degree squares along the Turkish and Egyptian coasts are shown in

Table I. The seasonal air-sea temperature differences are such that

evaporation and cooling are a minimum in summer (May-July) and a maximum

in fall and winter. The annual cycle of rainfall in this region, shown

in Table II, tends to reduce the salinity in the winter season. The

minimum salinity occurs earlier in the southern Levantine Sea, presumably

under the influence of the Atlantic surface water entering from the

west (Morcos , 1972). More salinity and temperature information for the

Levantine Sea are shown in Appendix B and Figures 11 through 19.

2. Intermediate Water

The formation of Intermediate Water depends mainly on climatologi-

cal conditions resulting in vertical mixing and sinking of relatively

16

TURKEY

Figure 3. Contours of pressure of a water column at the sea surface to a depth of 20. m CEngel , 1967)..

17

TURKEY

Figure 4. Contours of pressure of a water column at the sea surface

to a depth of 20 m (Engel , 1967).

18

TABLE I

AVERAGE MONTHLY TEMPERATURE OF SEA SURFACE AND OVERLYING AIR IN A STRIP OF 5° SQUARES ALONG THE TURKISH AND EGYPTIAN COASTS (°C) (Morcos, 1972)

Turkish Co ast Egyptian Coast (°0 (°0 Months Sea Sea Air t -t Air t -t Water w u Water w u January 17.0 15.2 1.8 17.2 15.9 1.3 February 15.5 14.4 1.1 16.3 15.4 0.9 March 16.2 15.6 0.6 16.0 16.3 -0.3 April 15.9 17.3 -0.4 17.4 17.9 -0.5 May 19.5 20.2 -0.7 20.0 20.6 -0.6 June 22.0 23.5 -1.5 22.9 23.5 -0.6 July 24.8 25.8 -1.0 24.9 25.5 -0.6 August 25.5 27.1 -0.6 25.8 26.2 -0.4 September 25.2 25.4 -0.2 25.4 25.2 0.2 October 23.3 23.1 0.2 24.0 23.5 0.5 November 20.6 19.6 1.0 21.9 20.8 1.1 December 18.2 16.6 1.6 19.2 17.8 1.4

Annual range 11.0 12.7 9.8 10.8

TABLE II

AVERAGE MONTHLY PRECIPITATION AT COASTAL METEOROLOGICAL STATIONS IN THE

NORTHERN AND SOUTHERN LEVANTINE SEA (mm) (Morcos, 1972)

Northern Lev ant Sea Southe rn Levan t Sea (mm) (mm) Months Cyprus Rhodes Antal ya Cape Port Alex- Saloum Andreas Said andria

January 237 247 96 18 48 21 February 123 151 74 13 24 15 March no 75 47 10 11 8 April 25 39 36 5 3 <1 May 30 27 22 3 2 5 June 0.5 13 2 0.0 0.0 <1 July 0.0 2 0.0 0.0 0.0 <1

August 0.0 1 <0.1 0.0 <0.1 0.0

September 4 11 16 0.0 1 <1 October 96 49 26 3 6 2 November 152 129 61 10 33 26 December 199 267 138 15 56 18

Total 973 1011 518 77 184 95

19

cold saline waters to intermediate depths. Along the coast of Minor,

the temperature drops in February to values of about 15.5 -16.0 C. At the

same time the surface salinity is high (39.0%). The combination of low

temperature and high salinity forms relatively dense surface water on both

sides of Rhodes. This large homogenous water mass is formed in the upper

250 m, then spreads at subsurface depths as a core layer that is called

Levantine Intermediate Water (Morcos, 1972). While spreading westward,

it mixes with lower salinity water from above and below resulting in a de- crease in salinity and temperature, with an associated increase in depth

from 50-100 m to 100-250 m and finally to 300-400 m. T-S diagrams of the

core layer of the Intermediate Water in the northern and southern Levantine

Sea are shown in Figure 5.

After having passed the central Ionian Basin the main flow goes

over the Sicilian ridge through the Strait of Sardinia. Distributions of

salinity within the core of the Levantine Intermediate Water in winter

and summer are shown in Figures 5 and 7, respectively.

In the summer, the Levantine Intermediate current is perceptibly

weaker than in winter. Apart from this fact the main trends of the dis-

tribution of the salinity within the core layer remain the same in summer

as in winter (WList, 1961). During the summer the circulation of the

intermediate waters in the Levantine Sea shows a degree of complexity

similar to that of the surface layer.

3. Deep Water

According to Nielsen (1912) the source of the deep water is the

southern Aegean Sea, but Pollak (.1951) showed that this is not true. Only

one of the three passages from the southern Aegean into the Mediterranean

has an appreciable sill depth. This is the Andikithara Channel, north

of Crete, with a maximum depth of 805 m. The other two channels have

20

»

s- s

(U +J r~ •o o CD S CO s- cu +-> o sz

cCD o

> O)

3 »jnirj*(tiii«t

CD 41 ©

n os- o

O— CM (/) l">. E CT> ro i— s_ o C71 « in -ro ot/i CO -o o s_ to o i 2:

o m

CD s_

3 Jjni»j«iti»j_

21

~

+> 2

XJ e s-

O)

i- O u

»->

s >>

ta i

o C +J O l/T •i- H3 4->3 3,

r- S_ s-

5 s

c CD

22

CD

3

CU o cu

cu

4- O

S_ cu >>

cu oS- u

ai

^ +-> •1" c •r— • r— -•—* o 01 •f^ :3 +->3 3 -O •i— S- S_ cu +-> F oi E •T— 13 a 01

cu

CD

23 depths of 137 m and 290 m. Moskalenko and Ovchinnikov (1968) state that formation of deep water depends to some extent on the warmer and saltier waters which penetrate the Levantine Sea from the Crete Basin of the Aegean Sea. This idea is consistent with Nielsen (1912) but is contrary to Pollak (1951). Wiist (1961) showed, on the basis of the oxygen distribution in the deep water (Figure 8), that the main source region for the high oxygen content Levantine Sea Deep Water is the

Adriatic Sea. On the basis of these investigations it appears that the is the principal source of the Levantine Deep Water and that a significant Aegean source would be unlikely due to the shallow sill depths. Future research may provide confirmation.

If the upper limit of the deep water in the Levantine Basin were defined by marked changes in the gradient of water properties, a depth of about 700 m would be selected; on the other hand Pollak (1951) using absolute values as criterion, specified 1600 m as the upper limit for deep water. The deep water mass has nearly uniform temperature and salinity values (13.5 °C < T < 13.7 °C -- 36.6%,< S < 36.8%}.

4. Bottom Water

Bottom waters in the western and eastern Mediterranean are sepa- rate and distinct due to the shallow 330 m depth of the Sicilian sill.

Bottom waters are best characterized by potential temperature, salinity, and potential density (Wiist, 1961). The map of potential tem- perature, which is the temperature that a water sample would attain if

raised adiabatically to the sea surface (Sverdrup et al . , 1942), is shown in Figure 9 for the bottom waters. At the borders there is a weak tem- perature gradient, which means that the isotherms are here nearly parallel to the contour lines of depth.

24

S-

+-> s Q. O)

4- O

s_ >> to

CD oS-

.£= +->

en x>^ o ««- o o 3 -Q •r~ S- -t-> l/l •r—a

oo

25

o un

+->

QJ Oi. E 4- O

t/l

Q. CD -a

to QJ S-

+-> fD S- CD Q.

e o -u +->o -Q

0) +J

01 i£> -c en

o +-> CO

OI S_ en

26

The bottom water in the Levantine Basin originates at the surface in the Adriatic Sea in winter. The main flow of Adriatic bottom water is at first directed to the south and accompanied by marked vertical mixing on the Otranto Sill (between Italy and ). From here, similar to the deep water, it turns to the east and enters the Levantine Basin where it flows with a nearly constant temperature of 13.27 C into the great depths south of the Rhode Sill and Cyprus (Wiist, 1961).

There is a thick transition layer between intermediate and deep waters, but between deep and bottom waters no significant transition layer exists. Wiist (1961) described the properties of deep and bottom waters using temperature, salinity, and oxygen. The differences between these water masses are slight so that it is difficult to determine a boundary between them. Lack of detailed observations from the eastern Mediterranean compounds the problem.

B. SALINITY AND TEMPERATURE DISTRIBUTION

In the Levantine Sea vertical salinity gradients are small. Isohaline conditions are approached from near the surface to the bottom. Figure 10 shows locations of the salinity profile sections during summer which are shown in Figures 11 and 12, respectively.

In the horizontal salinity distribution the maximum surface salinity occurs in both seasons in the Gulf of Iskenderun. Figures 13 and 14 show the horizontal surface salinity distribution in summer and in winter, re- spectively. In the intermediate water, the gradient of the horizontal salinity distribution becomes smaller than at the surface. Figures 15 and

16 show this distribution for the depth of 300 m in summer and in winter.

Figure 17 shows both the surface and the east-west vertical salinity dis- tribution in the Levantine Sea.

27

.

Figure 10. Locations of the salinity and temperature profile

sections (.Engel , 1968)

28

Figure 11. Vertical salinity distribution in Section I during summer (Engel, 1968)

29

.

Figure 12. Vertical salinity distribution in Section II during

summer [Engel , 1968)

30

15* 20* 25' . 30* 35*

Figure 13. Surface isohalines in summer (Armanda, 1969)

25* 30' 35* . 15* 20*

Figure 14. Surface isohalines in winter (Armanda, 1969)

31

Figure 15. Isohalines for the depth of 300 m in summer (Armanda, 1969).

Figure 16. Isohalines for the depth of 300 m in winter (Armanda, 1969).

32

5<> > ^ 38.3-38.7t%. 30.7* - 39.0%. sao%

>CURR£NTS| ; CONVECTION, AOVCCTION

Figure 17. Schematic block diagram of salinity distribution and circulation in the Levantine Sea (Wiist, 1961)

33

Vertical temperature distribution for the sections of Figure 10 are

shown in Figures 18 and 19. Surface and intermediate water masses show

seasonal temperature variation. A surface maximum occurs in summer.

Winter has both the coldest and deepest surface water masses.

Appendix B shows the monthly BT data at four different points.

34

Figure 18. Vertical temperature distribution in Section I during

summer (En gel , 19.68).

35

Figure 19. Vertical temperature distribution in Section II during

summer (Engel , 1968).

36

IV. BATHYMETRY

Information about the depth of the Mediterranean Sea is reported in

early literature beginning with Herodotus in 450 B.C. (Emery, Heezen, and

Allan, 1966). Since then there have been many additional attempts to

determine the bathymetry. The bathymetry and physiographic provinces of

the Levantine Sea are shown in Figure 20. Recent studies show that the

deepest part of the sea is the Rhodes Abyssal Plain with a depth of 4700 m

(Emery et al . , 1966).

The Mediterranean Sea is almost entirely located within the Alpine Geo-

synclinal Belt (Goncharov and Mikhailov, 1963). The largest forms of

bottom relief in the eastern part are determined by the complex inter-rela-

tion between the structural elements of the north, in the zone of young

folding (the Aegean and the ), and of the southern

adjacent to the ancient Africa-Arabian shelf. The largest bottom relief

in the eastern Mediterranean is the complex formed by the island arc of

Crete and Rhodes. The crest of this arc extends northwest into Greece and

east into Turkey. Deep troughs stretch along this arc from the Ionian

Islands to the . The troughs, located on the convex side

of the arc, are separated by anticlines but they are a single system and

are connected with a deep 1500 km long regional rift.

The troughs generally have a V-shaped profile with a maximum depth of

4000 to 5000 m (Goncharov and Mikhailov, 1964). Between Cyprus and the

continental slope of Egypt there is a plateau bordered on the north and south by two troughs.

37

«

T3 c to en c CO =3

S- O . CU 00 C C •i- o E co O Z O (1) IT) i. Q. o CO Q. S- 3 3 O T3 +J <1) C CO O rtS O ja

E co O CU 4-J U +-> C O-i- -Q > o o> s_ • C Q.— 3 O ID o •!-

n3 S- • wooCI) Or— QJ CO +J S= =>> CU •r- J= 4-> Q. >, C £- ra •— > O EHI CU LU _J CO ^

4- -r- CO O S- CU (O r- +-> -a t- S- C ti- ns 3 o JS o s_

o CNJ

CU 3s- Ol

38

,

A. CONTINENTAL SHELF, SLOPE, AND RISE

If the Nile Cone and Gulf of Iskenderun are omitted the width of the continental shelf of the Eastern Mediterranean Sea is less than 15 kilo- meters. In these two regions the continental shelf may exceed 70 km and both areas are of depositional origin.

The shelf break off the usually occurs at a depth of about

95 m, somewhat shallower than the average of 110 m off the south coast of

Israel. Continental shelves elsewhere in the region (see Figure 20) are too poorly sounded to depict details of the topography, terraces, or even a reliable depth of the shelf break. Due to sediment deposition near the eastern and western edges of the Nile Cone there is no significant shelf break. Profiles of the Nile Cone also indicate several terrace levels.

Figures 22, 23, and 24 show characteristics of sounding profiles of various physiographic features taken from the area shown in Figure 21.

The continental slope is the region between shelf break and continen- tal rise. It has a variable depth range between 800 and 2200 m. On the continental slope of the Afro-Arabian platform two types of relief can be distinguished. A steep slope, which stretches along the coast of Syria and the Lebanon and also occurs west of the Nile Cone, and a gentle slope, which is located off the coast of Egypt where it is covered by alluvium from the Nile and also in the along the coast of Libya just off Figure 21 (Goncharov and Mikhailov, 1954).

Profiles 1 and 13 of Figure 23 and Profile 2 of Figure 24 show that

the topography of the upper continental rise is irregular CEmery et al .

1966). The continental rise consists of sediments contributed to the sea by the Nile River and carried northeastward by the regional current.

39

CO

S-

i/> CO

o i- o. en e •r— c o 01 -o o o>

cu (/I

<+- o

l/I o

u03 o

cu 3

40

00 in CTi

QJ c

CD s- o>

c c o

cd i- (0

o •r" -PO CD c/7 O 3

CD

O

a. C7> rei cu s_ o> o OQ. 4-> o +J +J o CO

CM CM

ai s-3 _J en

41

DISTANCE IN KM n 80 60 50 40_ 30 20

Figure 23. Profiles of the continental slope, rise, and Nile Cone. Location of each numbered profile is shown in Fiqure 21 (Emery et al . , 1966).

42

DISTANCE IN KM 10 15 20

1 1 ' 31*41' N it* 40' c l» H 1 «» irw" h

27 01 e )20l M - 1214 M

2002

14*»0' N 3020 m

Figure 24. Characteristics of sounding profiles oyer various physiographic features (Emery et al . , 19661,

43

B. AEGEAN PROVINCE, MOUNTAINS, AND ABYSSAL HILLS

The Aegean Province extends south from Greece and western Turkey past

Crete to a southeastern boundary at the Pliny and Strabo trenches. The most characteristic feature is the presence of numerous small islands

bounded at the south by Crete and Rhodes. Topography of the Aegean Province

is determined by its tectonic and volcanic origin only slightly smoothed by

subsequently deposited sediments (Emery, et al , 1966). .

The Levantine Basin contains several mountainous areas. South of

Crete there are the Ptolemy Mountains, the shallowest of which has a depth

of 1000 m. Others include the Aleximander Mountains, Hecataeus Mountains,

Eratosthenes Seamount, and Mela Mountain, all shown in Figure 20. The two most extensive mountain provinces are completely separated from each other

by trenches. For example, Pliny Trench reaches depths of 3200 m.

C. MEDITERRANEAN RIDGE

A deep sea ridge termed the Mediterranean Ridge extends from southern

Italy passing between Crete and Libya and curving sinuously northeastward

to Cyprus. Cyprus and the shallow area northeast of the island may be

considered as a shallow continuation of the ridge. The ridge is about

1600 km long and averages about 150 km wide. Both sides of the ridge are

marked by slopes which have an average gradient of about 1:10 and a relief

of 200-600 m. They descend onto an abyssal plain along the south side and

into trenches along most of the north side. Crest depths from Crete to

Cyprus vary from 2200 m to 2500 m. The greatest relief on the ridge occurs

between Crete and Libya where it is flanked by Pliny and Strabo Trenches

to the north and by the Herodotus Basin to the south.

The ridge resembles other mid-ocean ridges. Its sinuous course through

the Eastern Mediterranean Sea places it almost equidistant between the

44

African and European shores (Emery et al . , 1966). Most earthquake foci in

the Levantine Sea lie on a belt along the axis of the ridge. Earthquakes

are less frequent than in the Aegean Arc (Comninakis and Papazachos, 1972).

D. TRENCHES, ABYSSAL PLAINS, AND SUBMARINE CANYONS

The northwestern flank of the Mediterranean Ridge is bounded by two

subparallel , northeast and southwest trending trenches within the area.

The Pliny Trench, which divides and rejoins, surrounds the Ptolemy Mountains

Farther east the Mediterranean Ridge is bounded by Strabo Trench, the

southern end of which cuts into the ridge. The northeastern end diverges

from the ridge toward a small circular abyssal plain east of Rhodes.

The Rhodes Abyssal Plain contains the greatest depths in the Levantine

Basin, about 4700 m. Figure 20 shows long and narrow Herodotus Abyssal

Plain which separates the irregular topography of the Mediterranean Ridge

from the smoother surface of the Nile Cone. It represents ponding of

sediments from the Nile River against the medial ridge.

There are four submarine canyons in the Levantine Basin. They indent

the shelf-break and extend down to at least 1000 m depth. The largest is

Alexandria Canyon off the Egyptian coast. Gaza Canyon is named for the

ancient still existing city near its head. A sounding line crosses its

extension on the Domietta Fan as a leveed channel (see Figure 23, Profile

9). A third canyon lies just off the Israel -Lebanon boundary near the

former Arab town of Akziv, for which it was named. Beirut Canyon, the

fourth one, lies off the north coast of Syria.

45

V. SEDIMENTS

The Levantine Sea floor topography has been modified by deposition of sediments. The chief area of deposition is the Nile Cone. Sediments elsewhere beyond the continental slopes of the region are too thin to have greatly modified the topography, but they are nearly ten meters thick in

most cores (Emery et al . , 1966). Figure 26 shows the general stratigraphy of 32 sediment cores located as shown in Figure 25.

The distribution of sediment types is dependent upon the water depth and bottom morphology. In those areas with a broad shelf, coarse-grained sediments (sand) cover broad zones and are conspicuous on bottom sediment charts. These sediments are seldom found deeper than 50 to 100 m. Muds cover most of the continental slope and abyssal sea floor.

There are three general types of sediment in the Levantine Basin

(Emelyanov, 1972):

1. Terrigenous sediments occur in the geosynclinal areas of the basin.

Usually they are gray in color with a moisture content ranging from 24 to

81 percent. The Nile terrigenous sediments are generally quartz sands and

pel i tic muds. Muds occur in limited regions on the shelf and extend con- tinuously over the continental slope and basin between the Nile Cone,

Cyprus, and Syria. They are characterized by high water content, from 55

to 68 percent, and gray color (Emelyanov, 1972).

2. Biogenic sediments are widely distributed between , Crete,

and Alexandria. They are highly calcareous (50 to 69 percent CaCO-J,

tough, viscous, and light brown in color.

3. Chemogenic sediments of calcareous composition (oolites) probably

cover the south edge of the Levantine Sea (Emelyanov, 1972).

46

fd s- s- cu

T3 CD

S-

*-> CO

ai

ai

-o CCD

JO O

CO 0) s. o cj c co O CO +-> en

CO i

o to

CO +J C cu O •r— >> +J 4. m CU o E O LU _l

LO C\J

cu S- 3 CD

47

<1> -o JZ c +-> n3

4- to O CD •r- CO s_ C re o •a f— c +-> 3 •*— o CO O -O. Q. O i" OJ sz -C Q. h- fa S_ CT) • o IT) •r- (XI CO >> O) .c S- a. 3 CJI o •r- +j Lu en 4- C O »r- T3 (/I S_ OJ o • s_ O'-^ o U c£> <_> (C CO cn CM 01 i— CO c

j= i +> ra ro

4- o +-> O +-> cu

>,XJ >-, .c cu 1- Q-+-> a> rtj u & %. cu UJ CT> •i-3 *. ^ •r- o -t-> S- i. ra Q. 3 s_ o +j cu -i-> CO 1_ c cu o r— s o fO 1- CO -C d) cu +-> c: s- a. cu o cu O u -a

CO CM

OJ 31_ CT> SMlilK HI tSt03 Ml MUM

48

The thickness of unconsolidated sediments may exceed one kilometer in

some areas with sizeable local variations (Wong and Zarudzki , 1969). The thickest sections are found off the shores of Libya, Egypt, Israel,

> Lebanon, and Turkey.

The prevailing winds in the region are from the north, however, winds

from the south and southwest do exist and are important in transporting sediments from the north African desert to some parts of the sea

(Venkatarathnam and Ryan, 1971).

The main fresh-water sources for the Levantine Sea are the Nile River and the . A major portion of the sediments carried into the

Black Sea by rivers is trapped there. During periods of usually high rainfall, floods and local torrents along the rugged southern coast of

Peloponnesus, Crete, and Turkey might locally contribute relatively im-

portant quantities of easily eroded surface soils.

There are four clay mineral assemblages in the Levantine Sea (Figure

27). The Nile assemblage containing very high amounts of smectite (more

than 50 percent) and considerable amounts of kaolinite (15-25 percent)

characterize the sediments of the eastern Levantine Basin. The second

assemblage is found in the southeast Aegean Sea. Smectite is more

abundant (40-60 percent) than other minerals but its concentration is not

as high as in the area of Nile assemblage. Third, a relatively kaolinite-

rich assemblage is present in the sediments of the Mediterranean Ridge

south of Crete and its extension into the eastern Ionian Basin. Fourth,

the Kithira assemblage with yery high proportions of illite (.50 percent)

and 20-40 percent of smectite. Table III shows the total chemical compo-

sition of the upper sediment layer in the Levantine Sea.

49

ram

Figure 27. Distribution of the clay-mineral assemblages in the eastern Mediterranean Sea; l=Nile assemblage; 2=southeast Aegean assemblage; 3=kaolinite-rich assemblage; 4=Kitnira assemblage (Venkatarathnam and Ryan, 1971],

Figure 28. Porosity distribution in the Mediterranean Sea sediments (Keller and Lambert, 1972)_,

50

i1 •

o IM en t>> «r lo- ID cn M cn C7I CO in in en m in lO s 5 CM in in CM M- CM cn l en

O in •-• #— en o in in in oo CM CM o o en in «r li- o en O in i LU CJ 00 en en a in lt CM- il- CM in VO o I o o o o o O ea # c o SI ov r«i f-» F-» CM H- CM co in in IX < 4J o O o o • en o o o o o o o a> o o CT> O o o o o o C c o O-i-

in Irt C in CM cn o CM lO in in in o cr CO CM CM CM cn CM CM CM CM CM • CM r~ r~ cn * o t- CM •— >- CM r— CM in CM o in cn CM o o o oo CTl cn CTl cn CO o •a CM CM CM

O in O o in in O VO O . in en o c cn CO CM Ti- cn CM CM o Q en in cn en m m in in in o in o o o o o o o o o LU in o CM a o cn en o> cn CT< cn en o d; cxi o en CM CM w-~ cn CM CM CM n CM LU r^ a. en in if cn cn CM O i-h Q. ,— o S o O CM I o o 1 o o i 1 1 O i a J > in in in in in m m- LU : o o o o o o § s o O _i i— c cc CO ro o O o o o o o o o o =C LU >, 1— O r— CM o o o o ai o o o o o o o gj o r— o in o u o VO co in in lO m nj o JU o o O o o o

CJ c. CM *r in in m in id in in m CM in z «n CO CM vn cn cn i— o O o •CM in CO cn in o in in ID cn «* Oi o co CTl o CM O O d z r— o CM o CM CM o o o CM O in 00 CO O CM i* o in co in en 00 I— r" 1—4 VI O cn CO in m m r-» cn CM CO 00 CM en cn CM en en CM CM CM o . a. JZ E •M s: a. c o in in en en o co o m o a o co en in cn o ID CM en in en in CM en CM CM O co in _l CM CM CM CM < cn CO !». o m oo cn in in en X C o CM in in en CM in o cn O a -j in CO 00 CO CM li- in in CM CM CM CM CM en cn en en en en en f — z B s z z z i: z * z z z

lO in lO "J- li- VO lO li- in in in en en en en m en en en en en en en

51

Porosity of the Levantine Basin sediments is shown in Figure 28.

The relatively low porosities found north of Crete are associated with fine-grained ash and pumice deposits. Highest porosities are associated with the lutites of the Nile-contributed sediments.

52

VI. CORRELATION BETWEEN SOUND VELOCITY AND OTHER PHYSICAL PROPERTIES OF THE BOTTOM SEDIMENTS

Low frequency propagation models employ the environmental parameters of both the water column and the ocean bottom. The sea bottom is a re- flecting and scattering boundary of the sea having some characteristics similar to the sea surface. Sound velocity in the Mediterranean Sea sedi- ments has been intensively examined and is reviewed here. Relevant physical properties of marine sediments include grain size, porosity, void ratio, and moisture content.

Sound velocity is positively correlated to the mean grain size as shown in Figure 29. There is an over-all increase in sound velocity as the skewness values change from negative to positive. In fine-grained sediments, if coarse mud is dominant and clay is secondary, the size dis- tribution is negatively skewed (Horn, Horn, and Delach, 1968). V V

Porosity is defined by n = — , and void ratio by e = vp , where s

n = porosity

e = void ratio

V = volume of voids

V = volume of total mass, including solids, water, and air

V = volume of the solids

A study of 14 Mediterranean Sea cores by Horn et al.(1968) correlated sound speed with measurable physical sediment properties (Figures 29-34).

Porosity is the prime factor affecting compressional sound velocity in the unconsolidated sediments (Figure 30). The sound velocity was found to increase as sediment porosity decreases; the highest sound velocity

53

CO

cr,

os- in

o o >

o M OO C/J T3 2 c fO

NGJ S:

en

CD s

a> 3ai +-> •3 O) -Q

00

ai J~ s

5 «.

CTi pas/uj) AllOO"UA CM

cu 3s_ en

54

CO

03

f-> OJ

o

>> +> I- o o r— > c c ** 3 > s = O1 (o S

o00 oS- e (1) a)

-t->

o

"3

a)

§ O CO (oas/u,) A1I0013A 0} s-

55

-

u o >a; T5 O

-ac

li

Q = • !~> ai co +j en

C +J O CD r- +J C to s- r— O a) a= a: —

CO

3s.

(33S/ai) A1I0013A

56

. —

3 o V) -oc CO

+-> c CU -1-' C o o

?. cu • S- *~N =5 00 1- »-> CO (T 4_> (1) 3 cu 1- -0 c 01 s- Q. O U •r- 31 i .c - c >, o -u •r- 'f— -l-> (_> OS O I— r— 0) QJ q; >

CM 00

cu s-3 C7> I"* Ll_

(3'Vuj) A1ID013A

57

••w

iaoo

•»^o -

•too -

15

F •41C

. tz u .:v;. g <0o K Id j// >

£AtS

• • • "S" •% • \

DRY DENSITY

I >-

WET DENSITY

Figure 33. Relationsnip between density and sound velocity

(Horn et al . , 1968)..

58

1 1 1 1 I T o o • > • 3 • O • - s -ac • • to • • • c

• o • o •

• •* C it) c ill o v. ...• . }- -° • • « ^ to • • • O ° • . * • • • •• • a. CTl • • • ••• o O) « +-> c

• • • • •• • • CO •

• en o 3 8 Si 8 • | I t Sag* «* J» * (33Vuj) A1ID013A

59

(1832 m/s) was in a layer of fine-grained sand that had a porosity of 0.34.

Void ratio and moisture content are also inversely proportional to sound velocity. Figures 31 and 32 show these relationships. The highest velocity of 1832 m/s coincided with a moisture content of 16 percent.

Density and sound velocity are directly proportional (see Figure 33).

The lowest sound velocity, 1478 m/s, was in a sandy mud with a wet density of 1.44 grams/cubic centimeter. Since this approaches the sound velocity of the adjacent sea water much of the impinging energy would penetrate the bottom rather than being reflected back into the water column.

The highest velocity 1753 m/s in coarse sand occurred in a sample having

3 a wet density of 2.08 gm/cm . The sediments tested from the Mediterranean

3 Sea had wet densities that range from 1.22 to 2.14 gm/cm . Little relation- ship was found between carbonate content and sound velocity (Figure 34).

Urick (1967, page 130) shows the relation between porosity and bottom

reflection loss. The data presented by Horn et al . (1968) shows that the sampled areas of the Levantine Sea represent a nearly mean value of bottom loss. On this basis a bottom type of four out of nine was selected for acoustic modelling purposes. A value of eight was chosen for Location A due to the irregular bathymetry of that area.

60

VII. SOUND PROPAGATION FOR ANTISUBMARINE WARFARE

Four specific sites (see Figure 1) were chosen for computing the acoustical transmission loss (TL) for the Levantine Sea, as follows

Site Latitude Longitude

A 35° OO'N 23° 10'E

B 33° OO'N 27° OO'E

C 35° OO'N 31° OO'E

D 34° OO'N 34° OO'E

The Integrated Carrier Acoustic Prediction System (ICAPS), for passive sonar, was used to calculate TL. Inputs to ICAPS consisted of BT data from Fleet Numerical Weather Central's hydroclimatology file, wave height from atlas data (Oceanographic Atlas of the North , 1963), source and receiver depths, acoustic frequency, bottom depth, and bottom- loss type.

A target depth of 50 feet was assumed for a submarine at periscope depth, and a receiver (sonar) depth of 21 feet was taken to simulate a surface ship hull-mounted sonar. At Location C additional target and re- ceiver depth combinations were examined in order to simulate variable depth sonar and submarine sonar. BT data were selected from February,

July, November, and December for all four sites to show seasonal effects;

BT data for all months of the year are tabulated in Appendix B. All TL curves are shown in Appendix A.- In order to cover a broad frequency range and simulate a submarine source, 50 Hz, 300 Hz, 850 Hz, and 5000 Hz fre- quencies were chosen.

61

Location A is the deepest of the four locations. Figures 35-42 and

Table IV show the sound propagation and TL properties at the Location A for the four different months. The 50 Hz frequency showed no convergence zone (CZ) at any time of year. The higher frequencies demonstrate CZ propagation. Maximum CZ range occurs in summer.

Location B has TL characteristics similar to that of Location A. Fig- ures 43-50 and Table V show the sound propagation and TL properties at the

Location B for the four different months. The 50 Hz frequency does not show a CZ. The 5000 Hz transmission has the maximum TL. The 300 Hz and

850 Hz TL patterns are parallel and have the same CZ range. Maximum CZ range occurs in summer.

Location C sound propagation and TL properties are shown in Figures 51-

82 and Tables VI-X. The longest CZR of 58 kyds appears for 300 Hz and

850 Hz in summer. The 50 Hz frequency showed no CZ again except in Novem- ber and 5000 Hz has the longest TL. In February, various target-sonar depth combinations demonstrate only minimal differences in propagation loss and CZ range. In July and December, the deeper combinations show shorter CZ range and TL is a minimum for the sonar and target at the same depth. The advantage of locating the hydrophone at target depth is a reduction of TL of about 5-10 Hz. In November using 100 ft as the sonar depth the possibility of detection of a submarine near the surface is high with low TL in low frequencies. Using deep sonar, then, the possibility of detection of a submarine in deeper water increases.

Location D shows a CZ for 50 Hz propagation in July and November, as may be seen in Figures 83-90 and Table XI. But TL is also high at both times. The 300 Hz and 850 Hz frequencies show longer ranges to CZ than the other points. Once again, seasonal variation in CZ range is signifi- cant.

62

Sound propagation conditions, as mostly dependent on the temperature changes, show unique differences between winter and summer. Maximum sound velocity occurs simultaneously with maximum surface temperature in

August. The Levantine Sea has the highest sound velocity in the

Mediterranean Sea. According to Urick (1967), a shallow summertime channel exists in the Mediterranean Sea. However, in the Levantine Sea this

"summertime channel" lasts from spring to fall. It is most intense in summer.

Reflection from the ocean bottom can extend propagation ranges; this is known as bottom-bounce. Major factors affecting bottom-bounce trans- mission include water depth, angle of incidence, frequency, bottom com- position, and bottom roughness. A flat bottom allows maximum accuracy in estimating range. Because of the rough topography and generally shallow depths, bottom-bounce path prediction in the Levantine Sea is difficult.

The sediments consist of mud in the deeper portions of the sea. In the coastal areas sediment composition is either a mixture of mud-sand-rock or mud-rock. They are all poor reflectors. Therefore bottom-bounce propagation is expected to be weak. Duct propagation in the surface layer is limited in winter, because the mixed layer depth in the Levantine

Sea is yery shallow.

63

— —

cu

> p^ -t->

72.9 78.9 o to 3 .!= LO p-. a +-> CO C cu o -O E E ocu aai o Pvl «* p-~ CJ 1 CO LO co i CO

cu c > in co CVJ CO o < ID 'r™ CO CO o p-n CO +-> t— p-> p^ r-^ p-. co 03 O s- O 01 _a _l E s_ o > <- Zo to a; CO LO p> 3 o i co r--. co r-N CO r-- >as

to toO _l cu > o-> CO i— CO CO c: o _i CVJ CVJ CO 1— o CO •P" LT> r-~ co p> p-. P-, to cn CO • ^ E • CO >> c ca (O T3 s_ I— c • r— cc •o M CO LO CVJ CO c

ai _J Oil— c ro "O a: c fO cu 0) > co ai cri p^ co co c CO O T3 _J cvj in o CVJ p~. «* co' pg >> o p- co co p^ p^ co p^ ^i cn ! ocu c c •p* cu CD 00 S- •1 3 cu > a: C N4 cu o <_> Ll_ p-j IOMIS VO i— io LO c_> i CVJ in P-^ cvj in i CVJ

ISI N N N a: X 3C CQ <: O o in o O Frequency o LO o CO co o LO

1

64

> —

>cu <: en to CM CO CO j - n • • • • _J O to CM CO ID to 1— o r^ r- r-> r-> co iE Ol +j s- c 01 o J3 E E o oCU •r- cu <4- Q •r— a: O M to CM lO CM to CU c_> 1 CO 1 co r^ CO a. to

0~J cu> eC CM CTl en en LO _J «*— • • • « • o 1— in — to o r-N in CO r»> r> r-v r-> co O03 O s- J3 E >CJ o z CC IVl CTl CO en co en 0) c_> t oo r- co r-. CO

>

CO «-y to o >cu «C ir> to co co

^. to o c 3 re "3 ec CM "* cm in -o M CM c CO i | ^r co * CO *3- re

(1) en c ^3 re a: >cu > «SC r^ i— to CT1 CM CM tO a> Smr » o • • • e _J CM f— r-, en co m en CO o 1— ivi CO

cu >> o S. e re " cu 3 ' CD s. S- -Q . > | co to en co to en CO c_>

>1 N N N N o az or zz X CD o o a o | 3 ir> o LT> o CO a co O ! cu in S- u_ i

65

^' —

^~.

>01 < to CM CM +J ^— • • • to o _1 to •— oo CM tO 3 +J 1— 00 r» r--. i~* r-. o o t. E jQ T3 E o01 atil O DC O) IO CM to r— t_) ' CO l~- co r--» 1 10

00 «d- to co to CM e o _l C\J i— to CM 00 CO 1— p-. r> p~. r-. r-» co

5- u 01 J3 o E >01 s- o o ZL

to Of rvi , (U CO i— CM i— f— 3 c_> «r ** oo «t oo "* r— >

co — to O >at «=c CO co <=i- - *-ii • • • _i CM tr> to CM I— cr> r~s t-^ en to to •r- E >> to 3 c >"3 uto Q£ TJ M oo co 3- C t_3 i to to >*

01 en c cc >01 > c Si!'' • • • • • o _l o CM P», en to CM M t— en r~% r-> to r»> 00

CD u >> c S- (D en 3 S- s- JD > ai c u_ a; o m O i— o o o o o i co to co to CO

1

1 >•» UJ i- N tsl N N I c 3: =C 3C sc ' 00 a a a O o 1 cr to o to o 1 ai CO CO o i s. to Ll.

i

1

66

cu > 73.7 78.5 75.7 82.5 o ft ft i— CO o cu co o 300 300 3&- o CO M o TD: SD: CO cj . CO to CM LT) OO o=3

i- cu CO

> > 73.9 79.5 _J OO >3- ft ft h- oo oS- o co 100 300 CJ c o CNJ C\J co co *r" cj i oo co CM CM +J TD: SD: U"3 O _J cu OO > CO -u 71.9 76.6 ra < OO ft ft 1— co co CO co o 50 300 _1 c o CM OO CM oo 'r- CJ i OO CO oo CM to TD: SD: 00 •r— E co CU CM to c > "3 Lfl oo S- ft ft 1— co H- • CM CO T3 Q 300 100 C 00 (13

01 oi.c CTl co oo TD: SD: c +-> 1 CM CM CM fO Q. a: ai -a qj c s- cu 00 O) > o 72.9 76.7 71.1 79.2 1^1 > _1 < CNJ •1 ft ft 1— CO 0) a> o CJ cj co c ai 100 100 01 s- ai s_ -o ai c a: > 3 JZ < 71.0 76.9 75.4 78.2 S- +-> ft ft 1— co -Q CL IT) Cll CD oo U_ "O 50 100

a: tvi o o o o o I OO CO OO VO oo TD: SD:

N N fM CO Hz Xoua nb9wij o o o LT> o LO 50Q0 OO oo

67

CO a] > 69.7 74.5 70.3 75.4 ft ft i— < p-» o 300 300 CO

Ol o or £- M ro m CM «3" CM i CO o TD: SD: co to l£5 CO

to =9 cu in o ' > _J .< r— i ' CO ra ft ft > co 100 300 oS- o in 1 i 1 CO TD: SD: o

(0 ai CM (J > o <: to o ID ft ft r-. 00 00 4-> co rO 50 300 (/l 01 o CM

C_J t in in TD: SD: o

to CM in 10 cu _1 > ft ft h- i co

rO Q en S- OO 300 100

"O 10 c x: in ra 4-> O C_) i i CO Q. TD: SD: ai aj cn-o c ra s- a} CO C£ a> > 70.4 78.1 > oo" cu <, a ft ft 1— r-. r-. c cu o o o co cu s- 100 100 a> c c cu ra ec o> P-4 r-. in p~. to TD: SD: CJ i CO LO CO CO s_-~ r— C ' o a) en C_} to > —J <: 79.5 75.7 CO ft ft r— o oo en LO =3 CU "3 -O co 50 100

CO 1 CO CO

c_) 1 «3- to <* TD: SD:

N N CO =c Hz /Coua ib9uj O o O o in 5000 CO 00

i

68

Q

CSJ oo CM 69.6 74.7 70.9 74.8 00 ft ft I—

300 300 oCL> s- cc o CO CM CO M r— CM O TD: SD: c_> CO CO CO CO CO CO 3co O •r- ai CM co S- > >(T3 _] < CO tn CO ft ft o CTl o oo 100 300

cc M CM o CO c <3- o i >=i- o TD: SD:

o o co >ai CTl r-. +J _1 P-> oo CO ft ft f— CTl to CM CO 00 5Q 300 COo cc CM CM

1 CO TD: SD: CO CO CM oo ^- CD CO _1 > oo en CO c ft ft 1— at O 300 1Q0 oo T3 Q £= OO *~^ fO cc CD CO CM O CO TD: SD: 3- cnj= i <* C +J ro Q. Qi Ol "O «3- ft ft 1— p»> co

cu at u 1Q0 100 c ai ai s- u> s- -o CC en m TD: SD: CJ ti- ? si- CO C c_> Q I— S- »-- ers CO Ol 72.4 77. 74.1 80.5 -O CO CM CO E J= ft ft I— r-. oo 01 4-> > Q. o aj 50 100

cc M CO r— CM i— CM «* 00 <3- CO «tf- TD: SD:

N N Hz A0U3 lb9UJ o o o IT) o LO 50QQ CO oo

69

CTl CO

70.3 74.4 68.6 75.1 ft ft _1 CO 00 1— r-

o 300 300 s- o to DC r— Cvl TD: SD: o c_> CO CO LO CO LO CO to3 o

&- Ol co fO > > 74.9 80.1 77.5 79.9 ft ft _i CNJ I— CO s- O o co 100 300

c ac o r-« o CO C\J CO i CO 1 co r--. CO TD: SD: o o o <> CO 73.2 78.0 75.0 83.3 ft ft _1 CTl 1— CO 01 CO OLO 50 300 _1 c ac o rvi r-~ CO i-~n co . co r-» co r-~ CO •r"- TD: SD: o oo LO •1— E o> co 10 > c —i 74.9 80.1 77.5 79.9 c Q ra 00

01 ac r~ CO CvJ CO C7> L0 TD: SD: o c -C C_> i co r-> co r-s CO IB !-> a: Q. Ol CTl o s_ 68.0 72.7 71.4 78.1 CO rvi O) ft ft < > o oo <1) •r- co o Ol c o 100 100 c TD: SD: a i co r-> CO [-> CO c (O o CJ ^~-Q s_ I— 01 Ol *~^ > CTl jQ 69.6 74.3 70.3 79.7 E -c ft ft _j CvJ o> +-> I— CO o Q. co d) CD 50 100 Q XJ

ac c-j Lf) i— LO i— Lf)

1 co r»» co r~» CO TD: SD: o

CO N X Hz A0U9Iibauj o o a LO o Lf) 5000 CO co

70

_J O 7.17 77.2 71.9 78.8 85.7 s_ 1— ai .0 to E ^c CD +J U c CD o O E

CD C_) 1 co r~~ CO

a. CD to >

1 O CM r— 01 00 CD c o s- ai lO fa E o >CD o O Z as s- LO tn CM o c_> 1 •3-

to t/1o CD <> o r> to IO CO •r™ _j c/i CM r-> co a to CM to ai r-> r-. co E i/i c >> ra s_

c c ra oc cu ai > e o NNO _j LD r— r-> 73.5 76.5 81.1 en r> oCD r-^ 00 00 c: CD CD S- s- ra ai > s- c -Q o CD as 1—1— CM a r— r— a O 1 co to cr> co to ai CO

>> CO O N N N N c or ar 3CD CT O to § tr> a 01 CO 00 S- a Lu

1

71

VIII. CONCLUSION

Sound propagation patterns are created by sound speed gradients.

Sound rays propagate away from any layer that has a sound velocity maxima.

In the upper layers of the Levantine Sea, heating by the sun together with the absence of the surface mixing by the wind, creates a sound channel.

This channel occurs all year long except in winter when the isothermal water and a positive velocity gradient extend throughout the water column from. bottom to surface. The sound channel becomes stronger in summer, with a maximum sound channel axis depth of 1000 m in August, and weaker in spring and fall. When the sound channel is strong, a near-surface negative gradient and resulting downward refraction greatly limit the surface duct range of ship sonars. Long ranges then become possible via the CZ path.

In a weak mixed layer, high frequencies are ducted in the surface layer.

Low frequencies leak from the surface layer and propagate along other paths.

Seasonal temperature variation affects only the upper 125-150 m (sur- face layer) of water. The rest of the water column has nearly the same temperature all year long. At the surface, maximum and minimum tempera- tures occur during the months of August and February. The sea surface tem- perature difference between these two months is 9-10 C. Seasonal salinity changes are small; therefore the sound speed profile is mainly influenced by the temperature in the upper layers. Temperature changes cause a 25-30 m/sec sound velocity variation in the surface layer.

Bottom reflectivity depends on the bathymetry and the composition of the bottom sediments. Rough topography and mud sized sediment causes poor reflectivity in the basin.

72

Finally, in one-way sound propagation, high frequencies have the highest TL as usual. The lowest transmission losses occur for the 300 and 850 Hz signals. Optimum passive detection of submarine targets was found to occur when source and receiver were at the same depth. This could be achieved with the sonar either on a submarine or lowered below a surface ship.

73

APPENDIX A

SOUND VELOCITY AND TRANSMISSION LOSS CURVES

74

o on • S- mCM ... """ 0) _.;...--- o o~ «— LO o (_) a. LU CO\ o • h- o- Ll_ O m o >- i— 1—4 a (_) o o - r— CD O -J CD > Ld rr > O 00 O O" LD CO a) =P 5- CI o

i 1 o 4 i r>cD o o o o =*< o o o o LO o LO o CM m r- o

(id) Hld3d

75

—•

>1

S- • _Q — QJ M C •r- O>, cC C 0) +•> 3 c a- •r- Ol O S_ a.<*-

o-o r— 0) C r— O CU •r- .a

i/) i e <* ui ai s= > ra s-

I— <->

SSCH

76

t t 1

o , o~ . C\J LD

•r—

O *

«— c LO •I—o a. (_) UJ +-> re CD \ O aj •r— O LO a. >- >> 1— u t— o o C_J o o o~ 'aj> _1 o on

o - o 00 oo

o 1 i i 1 1 o i o o rx3 O O o =* O o o o LP o m o CM m —

(id)- Hld3Q

77

o Q.

o c o

(/I l/I •r-E to C 113 i-

00 CO

01 s-

CT>

SS01 9Q

78

S- E O

O o.

03

OJ

o S- D. >v +-> t— O o > -oc 3 o

CI

0) 5-

(Id) Hld3Q

'

o o

o-

<- - - .a o- £ ai> o o o in L d o- to a o v- O- Q. s: in aJ O a- O

o

mo- c

a- ©

o- CD «cstowoo o. o a o O "3" d CO 03 CD o CM sscn gu

80

o CD- CM LO

O s- -Q O" E Ol u in 0) u Q LU CO o o o o lo Q. >- 10

i +J r— u o O o > CO 3 ZF o t/7

o <^-

- 0) a 1 1 1 i ^C2 i- o o o o CD o a a CD •r- LO o LO O U_ C\J LO r- O

(Id) Hid3Q

81

s- -Q E o01

+> c •f— o Q.

4-> n3

in t t O CO CO C^ «d- c CVJ o * * • •f— » • • to • IC LH • • I— LU Q. e ZC_> OLU fyi »-H en S_ IOUJ I— CD CC >- •—• q. <: LU _| . 3C S CM o o =3" Ul t— t-t > I— z o I "3"

o O o a o d - r- OD CO a CM ssqi aa

82

i 1

o o~ >, C\J s_ to m 3

. o c o~~ ca <— +j m c CJ o UJ Q- lo \ o fO h- °~ a> i- u_ a 4- LO O >- Q. h- >> i— -(-> CJ O o o~ o _J CD > uj rr -a > c O o 1/7 O" •- n CO si- rr tu s-

. a> u_

o 1 i i +" 1 o — i o D O a o o =r a o o o un o m o CM m r-

(id) HlddQ

83

o o

co- co

03

o-

CLI

CO- CO en a o >- a-

UJ o- O

o

o- S

03

CO- CO IOLU »- o-«a:

•a: oo

O a o o "3" "3 ID CO CD a C\J ssoi 8c:

84

i

o o CM LD

O •r—

in c_) o LU Q. CO +J \ O rtj t- o- - s- i— Q. i— >> r- CJ o - O o o o

__l CO a) LU =f > > c o o I/O o~ .

CO <5T rf i- 3 en o

o I i l i r>o o o o o rr o o o o in o LO o c\j in r- . o

(Id) HlddQ

85

SS01 8Q

86

i —

o o~ s_ ai C\J LD £ >ai o •z.

*^- O - a ca *— +j c m •r- O (_) a. LU +j en >

»—1 •iu (_) o a o - o lu> =r a o 1/7

o - , a "=1- QO 0) rF s-

•r- O

a I I I i »a O o o o rf a o o o LO a LO o OJ in r^ o

(id) Hld3Q

87

o o

en

o- oo

SL a- ai s >ai o o- aen >- a- O ^ in Q. +J

CD c/J o- O c o •r— o- •T— E

«3 o-

CO

o- 0:00 a> 3 QQ 00

O O a a "J" d to CD CD o 9SQ1 8Q

88

i

o~CD

OJ s_ LO S • OJ u O c o~ »— ' m-1 co 4->

CJ •r— LU o Q. CO\ o - (T3 1— a u_ o "A - O h- Q. »— >! CJ O - -l-> Q O (JO _J Cn LU rF > > -o c 3 o O 1/7 CD- CD en z? tu 3s_

•r- CD U_ CD~] 1 i f*o 1 o1 O o 1 o rJ o o o o LO o LO CD OJ LD r- CD

(Id) Hld3Q

89

1

ssoi aa

90

o O' C\J LO 3 i. iQ O CD O"

LO t_> CJ UJ o en o. \ o +J i- o "3 Li_ CD CD LO 4- >— O S_ Q.

LJ O *-> •— O O' o _J CD o r— lu z? O) >

O o O" CO

01 s- O en o o O o o o O a LO o m o LO o

(Id) Hld3Q

91

o o

en

CO >> S- 03

S- a- -Q

cj CD C o ain Q- >- o- ^ in t/1

LU O C5 C o

00

o-

CO- CM CM

O) 3S_ o- o o 0:00 3E CQ (•)

O a o a "3" a r- CO en CM ssoi ea

92

o o >

+-> a.

cd- co 3 O

o-

>> o- n3 CD S_ 01 aen >- o- ^ in CJ

LU L3 o o- CL

+-> cc

O1/7 en o -r—

1/1 1/7 o- •f— CM e to C 03 S_ o-

ID

o. s_ a o o o d en CD oo en o CM ssqi aa

93

o o

>QJ o- O

O- Cl a> CO T3 c 2 o -C

CD

CO o QJ >- o- :c: in O ^ r^- o a.

o- CO o o o O r~ f~ * • • • 3; • a- 1— nr c\j a. t— UJ Q_ •r— UJ E O to »— C UJ OS to a- C3 << S- a: 7—

o o1 d d d QJ CD CO en o c\j ^-1 S90i aa 1—

94

> O .a ra

a.

3 O

3 i-

QJ

O Q.

4-> ra

oi/i c o

c(/I fa i.

LD IT)

0) 3s_ CD

SSQ1 9Q

95

>O) o

CO

Q. -a c 3 o

s.

ZS S_ -Q 0)

o

+J

C/> O

o

«3

to IT)

CD s- ssoi aa

96

>CD £

a. a> -a e 3 o .c to

S- 03

S-

0)

<_>

c o CL

o c o

00

(I) S_ en

SS01 9Q

97

>a) a o a id

o- en a.

O3 OQ

o- b

o- cu CO

CO

4-> >- co- s= LO 'r- se: O Q.

-l-> o a- S-

a. a o o o o d to oo CX> o CM ssoi aa

98

o o mCM

>1 I— o -3

LO

LJ 4-> LU CO o O a. O O 03 LO >- o s_ a. LJ O _i cn UJ rJ< o 0)

O o CO cn U")

CD o O' r r O o o o O o o a, o o c\j m l> o

(1J) Hld3Q

99

o a. +j 03

(SI O

o •I- ol 01 •i—E c/i sz 03 s-

o

ai 3s_ CT>

SS01

100

> o

ra

a.

3 >i

O C •T—o a. +->m

1/1 o(/)

to I/I

IjO

ssoi aa

101

> o

Q. Ol T3 3 o

3

3

o Q-

(/) oi/r c o

s c

CM

O) S-

SS01

102

>cu o -Q

a.

2 o s: 1/1

•T— 3 >>

o Q.

rt3

i/> Oi/T

o

00

i-

CU s_ cn

ssoi aa

103

> o

+-> CL III T3 3 O

3 >> r—

+J c •r-O Q.

-)->

(tJ

oo O01

00 01 •r—E c 03

s- en SS01

104

V > o

CO x: +-> Q. 0) -a c 3 o

-E 4->

>>

£1 i— O

+->

o Q.

10 OCO

o£= •r— CO CO •I-E COc

i-

CO

ssqi aa

105

>QJ O JQ IB

Q- -a

3 o

+J •p— 3 >>

O a.

+-> "3

(/> en O

to

C

S_

0)

SS01 GO

106

i

o O' C\J LO

s-

E o >0) O' o

m •I—

LU o o a. h- O" U_ O i_n >- i— o i— cj o Q. a O' _i en (J uj r* o a)>

O 3 O" O

ai a O' o o o a o o o o CD m a OJ in o

ill) Hld3Q

107

S- OJ -Q e O)

o Q.

c/1 o

o

r— E

CO

s-

ssoi aa

108

o o > o

ID

CO

Q. OJ o- T3 CO 3 O

o-

i. O) E CD >aj o aCD >- o- *; LD

CD o a- a.

07 oOl m

ol l— CM E 01

03 S-

O d d O O o o f— CD CD a CM SS01 8Q

109

>0) o

a.

s_ o

4->

o a.

00 CO o c o •r* (/i OO •T— E coo n3 s-

o

QJ S- =3 CD

ssqi aa

no

> O id ro

Q. T3 C s o

s_ -Q E m > o

o

00 Oto

to

•I— E 00

S-

<1> S- CD 9SQ1 9Q

111

o o

> o CD to 00

+-> CD- oai CD c 3 o o-

s_ 1) -Q to = > O aen >- o-

o

oo o- Ooo cn C o I— 00 a- 00 •p- CM s ot

r0 OH

CM

a. CO a O o a 'J d 3 CD CD en a CM ssqi aa

112

>01 o

03

L0

Q. O) -a

o JS.

01 s >O) o

+J c o a.

in o c o •r— CO (/J •f— E 1/1

ai s-3

SSQ1 9Q

113

> O

ra

CO jC +-> CL Ol T3

O

00

s_ OJ -Q E >Ol o

o Q.

oo O00 c o

00 00

00 c

en sscn aa

114

t i

o a~ (\J s- LO QJ JO , E ^ «— ^s^ in ^ C_) ^s^**^ UJ ^"*^ o ^f"^*^ a. CO ^^^"^ \ _ u i— o- -\ ^^^"^^ 03 —•—*"^ -— l_ a ^ . LO >— a h- a. »— U CD - ED O _i cn o >UJ __r > c O o o~ CO in =* r-> a; 3s_ CD o o III! o O O o o a O o LO o m o (\J LD o

(id) Hld3G

115

s- OJ \a E oCD aQJ

o Q.

00 O c o

oo CO

U3

a;

en

sscn aa

116

SS01 9Q

117

SSQ1 8Q

118

> o

Q. T3

3 O

CD -Q E OOJ QOJ

+->

o

+-> fO

c/> OC/l

o

to

(13

cn

oi 3i- CT)

SS01

119

SS01 80

120

>0) o

a.

s_

o01 a0)

c o Q.

+-> ITS

l/> oI/) e o

s re

s_ CD

S901 9Q

121 ssqi aa

122

i «

o o~ CM • LD 3 • - S-

cu CD •" O - c m»— Q * ,^**^^ P CJ C LlJ o CO Q. \ o +-> 1— o~ - o h- i— >, +J CJ o - o o (_> _i en o LU =F >CD > a e 3 o o CO o - oo PO =r CO 01 3s_ o U.

a 1 1 1 i i^a O o o o zi* O o o o LO o LO o C\J LO r- o

(Id) Hid3Q

123

< 1 1

o o

o- 00

o-

o- to s- -a aCO >- o- x: in o c o- o ac a.

cr> ^ »^ oo 00 sf O on • • • • • 3C c • h- o o LU Q. •I— o O UJ oo iff On oo 1— •r- l-^ > q: S IOUJ 00 a: ac >- >— c i a. <; UJ _J :r 2: o- c_> LU (— >— > I— Z

0) oi. 1- o o d d d 01 CO en o •— c\j

SS01 3(3

124

i i ——

o o~ C\i LO

• 1

O - c O •1 ••— Q LO +J c CJ •i— UJ o CO CL \ o +J ^0 i— o- L_ O QJ •r- m 4- >- O h- CL i— >> +-> cj o - o o u _l CD o >UJ ZP > T3C 3 O o 00 o - co Lfi zr CO 0) 3s_ en •r- o Ll_

a l 1 1 i r^a O o 1 o o zJ o a a o LO o m o OJ ID r- o

(Id) Hld3Q

125 ssoi aa

126

(

o O -" C\J s_ m -O E >QJ O o c o~ •r™ r-1 a

LO +-> c CJ r- O UJ Q. CO \ o -t-> i— o- CD LU CD LO <4- o >- S- t— Q. i— >> +» CJ o - . U o o o _j en 01 l±j rt* >

» > T3 C 3 o o oo

• O^ t CD oo rf a) s-

, o Li.

o l i i I r^a a o o o ZF o o o o m o in o OJ m r^ o

(Id) HlddQ

127

SS01 8Q

128

i —

o . o~ CM s- -Q m E u

' CJ o UJ a. CO \ o to i— CO- LL- o LO o >- i. 1— a. i— CJ o - u c o o _i en i > L±J zF > c o o o^ CO CO rt1

o

o 1 1 i i f*X3 o o o a rl< o o o o in o LO o CM in r- o

(Id) H'id3Q

129

o o

o- cn

s- oo

to o CL en +-> o ra >- o- CO

CD o- 1/1 1/1 E

o- n3

O o- en ai

o-i

o. o a a d d CO oo CM ssoi aa

130

APPENDIX B

MONTHLY BT DATA AT FOUR DIFFERENT LOCATIONS

(Data contains depth in meters, temperature in °C, salinity in parts per thousand, and sound velocity in meter/second.)

131

— 1 • < .

j.i ^' m v£i »-4 *y «-* .i -O (* c* CO -0 n3 J" ifl r- o O ! Hi rn r u^ O" •J pg o m .— -- •"* UJ s CJ J CJT 4- ,-. oj ->' *-* C* m O - • * • 4 o a* CO 'JJ r CO < -, / - r-. •7 <\J f>- o* O CO .x, -a c *£J l> -— <\i r-i ,-H *— «-* f^i c* T-l ,. -— r- r 4 ,_., ,— ^ p-1 -• t\. m s ir\ U-. w\ :\ m m U> in n o -T* >n iT\ m IT- tf»

-' ,. . a- .n .o .-- f- j- -• r> < " '; *,; , ;„ ~ •_. f- /" j- O xr in * r-o.--'^ ,^ ,£,£l f»-a,aco©ciaJ'auti CO 0- C.J a a. u o o a* cr o c; C- CO H* A" *A to '> (>i ,ii oi C" o ui a a- m » a ^ i- ^ ^ ^ & p f. pn (*"i ci i' ^ pr. rff rn tt\ 0- pi pr, ffy pr. p> ,-n p. m pn m

CO

v rn -j- aj «o 1 r- r- to »-* i j r~t -r *r m o m '::' oOOr*-mrnOA-tCAr-A»iJ't-*0.0

,—I ••••••••••••••• -1 js. -i" i' ci "1 "' o J—, !>» r- ^j o >o .o w sr -T

-« o o o o o -4«m

00^->n_pn-o-rO-000000 ,— r-i ru <\J H n .1 r! H N W C. OOJOCOO 3

s r- r*- -t o~ o-» -r Ji rn .0 o -r a> o m *r in r* o (j r*- r- as ^3 ^^ o .— r-* %r r- cni -i. O -r O -.") cr- .m J"- r^-«o^>j->vrC~L~\*;'>oo>ro* 0. o r>- r- ra cr O" i) ^ ^

»* .-\j •^J r- r- <: '-y 1.7- CT ^« •r r- O -4J O O •0 -J" M O O* r- CQ r- rr- u uri r^ O O O ^« 1—1 1 ^-, .— «\j -/ u- u> '>r> m r- ,— ^1 •—1 ^^ <\' iSi rn -j- s-- in ul ,_, ^, ,_ r-* ^. r-l _ — — r n< 1 "* a« u"v L.^ * 1 j- u^ 11 a c U^ u U"\ U" vn in tr> u^ t/» in l^ m in ifi m u^ in in in m

-o c-OOOCiOcDCV-TCO.r'rv.Cr-AJ-r-Ci h" cc cr. en Cj 1: a^O'000'r^;^r-r*--o>oo^J O^HAHr.OC-ffJ.M^'Ci'C*'' CQ

u. aj£Xc:,'(riDctioj^Loa.Aa)cuaj[UCG cu iu 'jl a. ao cc p-i er> n n i^i pi pt pi p- m fli pr. pn rA fpi rn p»t p"< pr» pn rn pn rn pn pn pn pr rn p«i

CJ

.•- c^ c^ c. .^T >J* m> rvi *X> ~ c-v fi "> a- ci o- im o- 1 •£. O ir»pnOi^-Op"OL.i^-/3'0-00 . tr o- a en ^-H •••••*••••••••«« j* in ffl n « CD -^t^ o •£ ^ lt'J" >x j nt ~r m pn m pa pa m o'o^«4)« ifl ^ ^ .f n m O , ^^~-<--< Q_ ^^,r-lrHW^^.-l•-^^'-^•-

o- :o>rom<-cnoooooo-« ~li c. o o -r cc. a- c n, a- cv-.rO'Goc.ooooC'ca o o o ^ m .0 j- o o c o co c-> O >-% (- I--*-**— «h <^ ffi m ^j o o ^ Oknoo ^ „ ^ r-i ^ ~ .-n P-1 o o ,-, r-* CM .Vj (Xj r-< »— 1\* (Vj m pr

132

.

-"^ i\j M O* ft- to r-- ut> s !" IT. fvi s - t w-» -J i*l r-* J- CO -? t"' M *M * 1*1 t'-J .* . <-' '-T a; %j r~ ww r» I nT O O O m

/*- <* u> ,0 f- f*- o -o h3 «o r- Cr **h ro o> u*\ -iy r- r- r- r** N r*- r- >• i> ^-* *y rtj- ^ ,-i ,-. ,.-) ,-« ,-> #-' pH n ri i-< n M M r i f" li^ U"* L"» tTi iT* *"> -f» ^ ;f\ If. U"> IT i-"1 if in ui ;."• m u> !{*• if» u"\ u*i if> ift u> it, ir» o u~> ir\ ** ^l r-* »-t *-t r«* *-< ^ |H .-*—* f-t rH i—1 t-H

1 1 ** c*"1 i^-* *- <.' «0 (\i -.r o •£ O O *~t m w f*-- t- t~~ m fH ^ O P* N N ^- -r H i »i U> O* ococcooooo oj r- r- -^ -o ip

co a> tn oj Oj t%^ to u- cu ai ai oj -ju tu CO U' a (/ o o* cr C' c o- co oj a) o. cu cg aj - - en o> in fi o * (** m m (V rr m

CO a

.—•cr^^rnco-o-Or-p- H-- ^ (J N O O cu N O O- .h o f i m O m O s s- 2S M (-> rt C? 0' h ^ rn 6 fO pi O I O J* H _h «*«*••»•«•••«••• s_ ra ^' >'i ii ii rt 03 ^ -iJ o o u~\ -\ i*\ *r» m -*r -.r -r r^ m m ^ J u^ in ^ ^ ilW ^ j •: O '-*'- Q. .-< <— -^,-H^,-^'-^'-'.-^«-«^<-^'-| <-, , 3 S- -Q 0!

-c r-* ."> o-Is- -r -c o o a o o O'i.^r <3U0fMO-JO-t)OCOOOO oo'Nro^tnmajmr-ooocoo m o oo^cvco-rr-^joaar^oooooo oo-j M3t >ruMn>rinooOOO O C m O aj f* rm-ru'N OOOOO O , *C p' ,j--r-* <7'^ro-*~'OOOC.or~ ^^HHH^rnr^ ai o i^ Q c rt3 H r- (\J l\ o

CD , c7niH^'mcocJNs'ix J^-TO xir-N^-fViHO'coa/H^Oifi'r^C'HC7'inf\jj • ••#••••*••••***• m-Or-p,-h-p»-«0-o^or-0"-*'J'fMOr-i—t -j- rfN -o o u~\ irt m -o •O P- O* CM or tNi o a* r- a> ^_ ,h pW ^H ^-t ^H ,--. ,-, r-> r-* *-* *-• t\j <* * tn a"« u^ ir if U> »A IP u^ J-v ur\ it* U*V U>

p". u p- p* X l> r-H ^- Cj O O" CO ITl O O" vO -r (•* a. at s a. oj a . u. o*-j-a o p*r-p-p**oo^»o r^OOCCO'CCCOaDCDCDCt.CUCO a. i a. a. a. oj a, a) (O a, oj jj id 0*0^^ x i, w i X m v *i Pr fOp^r^<^c^.^fr>fr>(t r^ipTr''fTiP^f'*r o

O i/> ir> xT\ lt* r>r*rm(-rtfo

o H_or..*rci^^sroooooCOOCO O-OO-^^I--^ J-0-000 0000 OCPl^r-^-O'^rCOCOP-OCOOOOOCI oo^Nj-^r^cr-ra-iaDr^ooc'OOOO

O C" Kr^,f(iCwQ'(**'-rmOOOOOCOa3 - s0 P* *T -T -C U' -r O »C C O C< O O O -J <-* cr> C ' O O O C O C o ro —<«_i»-(^-t^-ip»,mm^ ^joi/^Oi/'iOO ^i h ro i\ ni i<"

133

# t ( « • *

in (y O pj m a i\i rj in o m r^i h u^ oj h ffi f-< *-( m r~ r-t ix> to to •-< -( (*- o r- r- rvj N iT C O O '^ O >/ IVJ M O" O O O N ^ , 0>Tf\J03, coU, -ilO' H -r h h CO cooa"0"COajf-r*sOr-crr->inr-.cra>

r-H J" fvj CO 1 o i-- r- r- r- 43 sO -O >AJ O O mm ^ m ^ ir> m in m in xi i.' m m b-\ in »-* .— *~> >»* -i i—• *-« /-i r- —j HM N f»l m m IT* m U^ IT* L"\ ui m if, m in in in m m

H^ir.ininoN^Mh <£ ^ c*- m cm o* oooooooooC'co^-r- -c ^ m •vTOf" .* m *c t> »—i h- -r m r- r*. r*"1 <— o a- o a> (? a c o- o- u, cl u; .tj u aj (V a rr. pi i (f m ^ f m fn i^ in ^ n-, fl- ffl (T,

CO |-— mcOH^njafflO«fHOou,'i>JMQ) 2^ N I\ O «) O ^ CO 'TON-CMaj-Oinvrr-l in^ m u,, Of>->o<"r,i<.'\i'-<-x^Jf«">-o-«o *—4 •••*••••••*•.*. vn*rm^^ r-ia'r,-fTiON ^,"fMor*-c o -C Cl- (J O(sj^roor»-cosro>ooooooc OC70rjm(T"03

O o -c m c

CO

, mo i^ v fTi>rii^o'(\jcomO'Ou">r»o**'> fHcoiohO-J''-tNmc7'H

-J- inmmmininino%o a* P0 -t <\J o o f* CO r^ co co f^ r- ^ r- -o -O o o* •-H vr l\J o r- .-* CO • •-* f-1 .—» <—« —' P- r- * r— .-> — .-. C\J rv. ro ^r *r »n P-i .— »— »-4 .— r\. rv. j- j- m t-* .-I »— »H — t-t m m en in tnininmminininm m •JT\ in m i^ m *n m m in m m m tt'i in m in m m m iT> in m m m

rr. in if cirf'NC<-»-oCT-cDinoo, ^'in r*-OGOOG«fiOo-CCin<\jO*4'. ># h- c f-

CL.CC a^ajCtLLJCLXcOiXi'ijCOJwXMEiaJCO O'CtOO'O'Cf-Offlc&aaiLcaDcocijtuou 1 (" it i* r*" (< ci (« ci !• (^ fi er* fr-

s , i r^fNjvCc^<orvjoomtN.-ncoincor- mm [— oh-in<\jmof*-f -inma«i-«-r'00'^Hr*- £^i cDr-^mm-renor-OmOcar-sn^Os^-C py NNinNnMO^MtDOnO'h-O^mo

***"* - m in m in m in m m *r -J" -J" J f- <*» m m n"» r»*» a.

(-O-^n*. u-crr-j-c^cooocooo oo-'-trnf^mco-j o-oooooooo C o*0*in»— c, cccoacir-Oc*JCO OOOO o^nwo-^'Ocr cocof-ooooooo

COcuX'^OCrfn^inC OOOOOOCO 0>C*r<-'r,-r*rM (n-j'inoO0COO'— •^o-Ct— rv. in^rc-oooooccoco fs.coa*Or^gj*j-C'-i:., OCOCCjO*J' ,-l .-ii-t,-<(\.i*»"'r04.c2O'.nomoo r^»—< ^ (\j ra fi ^. aJOinCiinf'* #-« r-

134

» i

cri N m r-i rt o m u> N r>- o a ty m o> »

S ° " » * - : * « ui u^ 2 £ 2 id £ f 2 ^ ^ u^ m ^ to it m m ir» ui o 10 o m

OOr-j-oo^-Hsr^jj-mmr^r-c-i-H ^ n N c ^ : J ^ S ^ ^ ^ * w ' o-«.t,m.{ia, Odjioaoo., co co

OOOu>p-ic\jsOCOO J2 O « « - - £ * * "* " * * * « "* <* <" <^

0<\;j-.OOaO(\iCO.ro.oOOOOO Oc->CT'incif\.caicr-cor~ooooo

O m o oo m .* i-iiMrAxrinooooo < ° «"• "" ** C' i\, mmmcprvjcoo'OXCOOOO ? £ i £ 2 ~ ^ => & O © O r— ^

J»^ NH«mr-l^f(nort^fml.^^o^fflOH 'OOr-O.O.O^O^rMOvCrmmorO'O O0'j, ^MC*(C^in^aiH^ftJN(nfl»H CQ

«tt •4J u"* un -J- tf"V 1 >j" ^r J- m o «o O f— vT fvi O a* c- CO (OCD NN r- -o -o OO^^O r-<

r-* r— *— •~ i »-* p-« P*> r*i r"< r~ pM> «-— prt >~i r\j <\, r^ m r- .-* .— »-* f— #-l H «-<•-• •— M f\j c* *r *- m U> IT" IT" ir- ^ lT> Ifl tn IT IT ^O in m irs L-N in m m m

a; O tf M C IT. C CU -< C, Ov O'C'a)inOO'^^(n

O" c aj a. c- co oj cc n ^ as co a* a. au co oo GO 60

f\imof^ocop*-f,vja3-omfsjfnoh-o»-tr*' p 00*0-J CMOaoin»-«a3-u3fvit7'r,*-^3u'\mo

CD r*»r>-'£t iO'C-ou^invf>^"sr^ fi c^ f'1 m ro ^i

0'**C'r-

0*U"»r<'. T>CT, -^fMl, O^OOOOOO'

135

( ( * i

r- ao r-i r*- -o *j* in 0" ro u^ m r.| uj [« o m

»-* p- Ui m o- •'O p- r- p- o .-. -r ,-< O i\J ;-0 o» ^O po- •o m lTv !n sO •o o- r-4 •J- <\j co o o O .n r*i fw CJ f\l ,— rH r- r-* r* .-« ."W f\< f*l m r tVi On m in m m in lf> m ifi \n ^ ITi m ItS Lf\ in in m i_-> m IT» rn XI in m U~l m m in in IT* in in m r '

1 O-OvrOO^t-H^r^mrorop-p-m,-! ro «-• O" J3 O O 0" •& -7 O f- -i> •*! n» m Cm O*

, J Cijaoa;cOao O* CC CO CC03COUC<&CQ(BCD(U(DCDa3G0 CO OOiJ*0'0*'>00'COa it! fn en ff m f~. pn f. fo ,-" rr. m m f* fo co m ca O

Orm-lNrlvOHtDO^ O CO O f\J O P- ^r~* r*-.*-oi--o-Ou"»in-j->rmrrtmprtm O f\J<\lrHr-«.-i»—.-*»-«ti-ir-i«-«i-*

Oro-r^OcoroajNrooOOOOO OOftJ-rXrOrvjCQ-J'O^OOOOOO OOftjcowmo-cococDp-OOOOO O »-• P- m m O O" CO co CO P- OCOOOO oh-j-fvjr^c^r-i.'N.rosj-tnoooooo

r-*f\ir\J «j'P,-ftco*ro-oooooo ra -a f-i H W CM

CG

(\j^vrf^CT, ^Oa3r-iinfnjoONr>o*H m ^a^r*-p*CP^<>o^o*'^fn o%^fti<'n(j' *"* en

-*r CJ -a un sf u^ iD >0 a> 1 rH cu ^* m o OOHyf ftiO cp r- CJ CO ^ (NJ O J N r- r*- *o r- O >r o r* j-\ ft ft.' *— *-* r-< ^-« •— i— »-* r»"> •j- rv »-i I-*

fnOipiftjCN(D*ri?fffO'-rf\J^O^^ C* oc?*c*C"CDCijr»-a3cL;oaar-r*r-P*-^>0'C»o sTfrin->f"ft-r-400C'0*a37l-r*

o- -j CO M o «->i r- r^ r- a* in ~ m -c j- 03 p- m rxj (nftiC34, NONN030'OiDONN(J'Hl- o o <. cr- m aj CO «-« i-r r^ ^o m O us r*- 'O •o o o t^ ^j>OnK»0, ftJCDfnOf*ftjiyf*'0^f'0

a* a- r- vO ^T in in in sT -j- -J- >r sr m m m ro ro ro 1—4 oOCT'COh-'O-Ou^mm^'NrrOfnfon'vmnl

o

c c/r->j-(j,

136

. « t

a- «c -o m ro m o o -J* ^h i-o o- o .-« rt a* wl U"* ,-i O 4J r~i UN CM 0* O m -J" m C\J C\i CO #*••• ••«* *••» fM, >T O O rH U"\ ."S* X C"" iT\ -O CO O (*1 O GO CM •-i r- rj o ro 1 co r— r* -jd r- P- o ^-» j- cm oo r*- fr. cm .m cm ph *-« »-* *-h ,— --. r-* U3 CO CD O r>j «*- »M e> u^ U"* !.•< lA U^ IH If, if. m in lP n- <>T CM CM CM CM ,— •H •-4 r-. IS. CM CM CO m *r W* IT tn in m m *r ITi in tf> iTi m !Tl C% m u*\ LTl

C O it*i O O* —*^t-r^irNn-ifnr-N-rOrH o o* cr co r*- r*> f*» no co co to p» >o >o *.i -c / ur->OCf'linAJ(7' ocjaLoocOQjcoajcuooajcococococo f1 ^ 1^" (^.^^("^(^fflc^pifninin^ iwiffjfr, mr^rnromc". <*" en f> * o"t CO

i— <— r— rj * o * ao in m <*n *.f ir\vr-*rcr>sO(*-r^- *^o ouajaair-Ntnocjino'^i *q *— [_. cDr^Qmfsjfjr^p^-^oooor-r-nicD • • »- j* •••••••«•••••« 2" in u> >; n • /-Oin^>rcM^-nof-tn *— cOim MOa)N^«Oini(Mnj, ^fnMrfim q meOr^oONhO«Mnifl^g-i«irn(0(0

03 o»~«fir*or*rjcov o^oooao c OfMco*3-sOr-»o-cococDr-oooao aOr\tJ*co-0(Mco>rC'OOoaooo 13 omomr-csjcr'cococor'-oooooo o sf ^ u Nj-m^fiNjm^iTiooooo #i(\j(\jO^-i*M*,0-J'mOOOOOO l-^l-({^Jr^;m'0a3O^^u, ^*(Mr^P*fMcosrOOCOOOor-

*-*•—« r\. cm

ojONr<\ia*inrHinininr*-cocnrnOcoco'OiH" CQ Os OrHOf^'0-Oa3rHmOina*^Orf>'4-.0'»rO* ^rmcsim>o%r^co»-ir-cors-cofOfv»rorr-»^

1 o i—i *n r\j o O .A iO o >o r* c? ft -r cm O C C- co nT nT cr -O c\*» O O CD CO P- r- C7- »-t -J- «M O r- ^ »-* m m cm f\ •—• |M »-* r-« ^- .-» »- CM" *r u* in <**i rn cm CO t\J (\j ,— •—<*-+ r-i •— t-H (\j m m -j *r m IT* m m m in IP ITS L^ U> 1*1 lO U"\ l**1 in m in m m in in m m m *n m in in m ;n «n in m m in if un '.n

fh^Hir^Bj^O'fniainfvjC^'i ?*• O CO" otycucor-cococoajr-r-r-p'-siUsO^'O

, O a, a< au tu' ou .d (^ o ao oj a cccccococococo OOCC7t OOv o'a,'COcococococococr'COaj m(*iff, (*icn(**

(™ mromc\JOm-0C *j f' cv.(\iC\4U.*mocor-r«Ocor,"0%0'0-0 2U co cor*'0'Orrt-oc\i^r\jC7% ^j-Oco a) n j in inm -j ^«r^(flmi*icimm • r-^ cvirvjO^CDr*-^ OOn-*T'*J *Trof,^'r'«rnrr>

op* C' i-i in n" rO>00000 00 cocoajr*-oooocooo CNo^^HcrossQ^ooooooo Or-C^J^cVtX**-**^!^^ *i-.OOOOOOOCO ^-^a^MNiUJ^OiiOOCOC OOC0 wnNCifn^iaJO^O^OO ,—ifiAifntnocoomOiTtfs #-< ^4 <\. rvj cn cr, H i-l

137

i

O O O ua i\j f-» C\J CM »,,- *_4 ^ h to 03 O r*» I"- O* h" --i O ,-• r*. (\i •

ui Sm io nMr^ u-\ u\ ui u> .p T^ v."i ir* 1 ^ ^ ^ ^ ^ ^ K> m in u~. .n m u" if 'J*i u* if> if\ u"» u">

O u^ M oj co OCO'COf->Muit)D.i3h voO>OjJ

O' i) CD i], CO O) Cj Si u. (C CO CO «L CO CO CO o-cro-O'O'fj'a'U'O-o'iaowuiaJoco i^enm^fl'^iPiTirnpirr. (riff (O en (f. mn^m <« m fn m (ft

0Q

|—— vf^CDCDOfO^'NiTiH-Olp^CO^^Jid 2; ^•ON>THCOrir-fnocU [fl .^^ ;";oo«rOi-*o^cy^MO>fnc>^^j- 1H (^ >fl'CMOC>N'flif>ir'inNr^f'ifn(nfiifri

3 Oh^Hl.'MnNCD^O'flOOOOO 0-OCDO'J-C>j(MCONrO-0000000 OMClANMiT'COOON OOOOO OO^mmo-r»rvoooOOO f-*f\jrr, ^•f*. (\jC0sTO^COOOOO r^HIMffiffl^lOO^O M^Jrn^^r^.co^J0'Oooooo^

.-H .-* (\i (\- T3

CQ

, ,' o,o•^nc^O'or-r-^ WcOOu\hO>CO-Oh w n^ o ro ^ J !fl o (M O i\j ro ir> N M il J" ^-<

- 1 1 p-» .. »-H CNJ GO ^1 4: •*. p- m o* o if\ fcT» O O h« CJ f\i J- NO O r*- ca o J r- r- r- r- 0* iH C\j o r- -I r *r iA fH H >H .— t\l rv r* -r -r A an i.l |fi Kf- Irt U* tn tn -4l in in »n ir\ u- m m tn iT> in tn lA m in A tn lA A a lA A in a m ITt m in tn A CD

o u m o -c o -x) -c o a* a* o ci m o a* -o ^r m p ,r s > OO'CrctjOcof^-ccujajcL/^f- r- f* ^ *c -c o < i trnrvJ fMf-tOOO O aoP-f^^O^^;^).o

, , , v cfa-cccot-a. coa.cLCoa)CL^a)cocDcucoco Cj 0>0 0'i>O i7iCiUCl CD Cj fc CO CO C CO rfl ff CfiffifOfTinifnpir'i pr it- m *• n («• C m ft> ,r ff ff ^ ^ cO rn en m rn m rn pr> r<". m en m o

, »nvrcvjmo*CT'-j-mioj-oo''mmvoa^^-rvrr«mmr^-ror''>

, O CD O N ii>rCVi(ja*J, 0'i'OOOCOOOO 0OOQDCNJCD^J-0'^JOOOOOO O ,, C^

O -*. m^-t^.r^r-4rvir"-*rir\oOOOOOOG0 0^rtNia^tnin^-^r\.m^ru>oooooo -< ^-r^r^^rh" rv. co^rOsC OOOCOOGctt »h ft* *Nj ^ MNiU^O^OOOOC O -J ^*-.<\. pr. pr»,caoOACAOO t-tHfymcn^COOiT'Oini- .—< f* tNj C\. ft f^ <- H i\ c\j N

138

mmc?moftjffOo^ }• O

if *f iTl O ^) HO r-N>C>J'Hs."HO, lfl rn fr |\,i "» rn M H n P1 H H H H M N m m «y * rn rn M f-j r«»—1»—» «—t #- .—« f\j Ou ro -J" - 11 ui it '/> ' ti in ir> in i^ to J c ji io m «t tf\ m tn m m ir. m iTi ^ iti w. rf t -n tf^ to f ^

rnoo-Or^'^J^JO-^^-Or^ -O >n tn if <\j C7* O^CajNhNwtDosajN «C -O O ^ * m f" rr <\j«-t0000CK ajr^r'-^ -o m

c co cr. co uj t) co aj o (D 10 a aj crj a; co COO'CrO'OC'CTO'C ai

CO

*r «rOmo^ir\o-ONOO(\j«fNh» j— co-ooco-oo-J-o^H-rmc^moi^fno

»—i «•*••••«•••••#*•• ^T*ir» (n^

en OOOOMmOocococor»-00000»T -OcomOojcO^O-OOOOOO o^O^o^rococoasr^ooooooO^r^corvjorsJco^rO^oooooo OO-O-fOO'-tcvjcn^rinOOOOO Of^i^fMr^QO'-tcvjrOxrinoooooo #-*f\ion*/-cDfvjoo>rO'000000 •-<{S.'rn>4-No«a3J-0-CCOCOCr*.

r-t i-» o m .—t r~> C\J r\i

rd -a

omojr-iooo> OfnH-oo>OOor*co^i-i <-*aoi>mo*t"i-t'0^oOir»0<-imocDmo ftJ^a)^^H^cDOcno^rcomJ>00'fO> n*rfl^Mh'fMmcof*0'fnorncncnt>H co<> •j'O"--inmo-o»0CT' ht mO(>nco m-i^o*^ocoN>oO'0 , H'rtvioNH iT'iriniPiAifiin^ifiinirmmifiiriir'rsm 00 inu^»ninir\vnintO'Otr'ir»ir»ir»»niriirNtr»»rttf» en

aj i- i v fn

aao >r »< »-t>r*rr^*MOf,,,-f»-ocj'Oi-«f- — <> co-co >oco-<'00-r#-«incoc\)^(vjr*r>.fnfvj o I U> if* »0 r> <-i "gO* c, O<-t-om^Jrno«J0^Jf^Ocof*--0'O^'O

i , ,>rommffT i <0«0<%iOCT r*-'Omin^-T»f mf r~) J*sfHO>Nomifnr>j >r-?>rfnfnfnfr

ONOHinmNCO^ O^OHmfntAjCD^ 0-000 0000 OO-OfiT'OCcoaianr^OOOOOOCO0-000000000 Of^O-Ocom^cocccDr^-OOOOOOO OcuinfncuO^Hr\jnn-rinoOOOOO'-< O C r- -n o — i (\j m /inoooooooco — 1 (vr.jmtf-onfvjcc-rC^'C'OOOOOOCo f-tfs.rr 4r H H (SJ c f'^ccoo^Gi-^OO rl H M l\< N h h m m en rrt

139

j3 im -\ *m o cu) h o m ^j o m m u fs. ^ ^ o —i o» r-4 -r m r-1 r-4 O r- *NJ -O r» rO O 0\J r- r-» «> ^j r- >ti cr «.-» ir» cjj fO ro -j- 43 (^ -r r>J in o ^ j m o «-* to O c o m in o uj -.o »\j

CO y*- eg i> .-« O O m M cj so < in tn m in m m US in m Li m in 10 in m m m ^ in m fMAifi u*> m m m m

p* oomo-jco.-ij-^tnmp-vr-r-m*-i mf^crrns/ u< -^ r" c n ^ vii ir mevjO" 'J PA P". IV.' (\j r-t O O O O O* CU N N >d ^) u^

CfODcCiXiajujcocucL'CCCococaujaoto Q-J^OcroOG^O* CT O a;, m c co it od co pn 1 ,,-. fi<"(fim(Tifrrnr'iffifn(ri|¥|(n(fi m(fl m P" pn m m n" pr. p- rr fr, p,, pn c" mm

CO

j — f^r-««Comincoa'f\jOC7'f\jOr>4mo C3 Offrt^^m^HfnivjOO^OuMnco , M3 U3 ftj CJ i\j , ^ ^ ^ Q (\1 CO ^1 ^ "r N ^ s-) 1*71 00 Nf'lia^f-0'tOo)rgi>NiA*rrt I—| *•»••«••*•••*•»« r—)^"**"*-*Oco^-OintnvrNr*rmcnpnpn U— (MM(\jr\JHnHHHr4HHH,Hri)-t .-H a.

*MCOnTOOOOOOO ocTr-inp-mivjoD-ro-ooooooo in o r- *r o mi a*a3cacOr»oOOOO O c nm co (J co co r- Ooccoo Of**-*ni^coco,-«f\jrnNi-inooooo Oinm^H^^i.-Hrum^ noooooo Wmsfu^cOlNjco^O ^GOCOOO n f**. ^mc5fMa>>ro*oc ocoor* r— »— rHi-^r^mm^coomcJ* i ( <\i rn m o a? o m o fl re

0prt»o m^DO*O^Hr*-cooo>r-0'OroNr-Or»-co>Oi^ OCC}C>H^CMfiinC, NO(110f,1Wtri O"H CH o •-« r- fO o* co r- *£) -O r- a* H ,* (\J O h- *-* >* CO o ^r r- in -n in -O 0* rS N O CM"- <\1 *-l •— f*» •4 ao a* o O »r •* fO f\J r-» •* •H ri t »H -> 9-4 r-l M m ^ m m m in in *n m ^ m in cs in m tn m in in m m in m l" in it in m in m m m m ci in in m m CD

pn >^ir:morvcoj-Ofncotn^-tt>0«J'P'0 r Dc<-op*-j, coaj^:cra»crt7'co*no0'0'-«*p » ^-rnrX*Mfvji-tOO0"Cj'C0P*(---i3^)0>n £> o o a* ao co r- r- cocococDr-r-r-r-'O'O'O'O CO'OOffiJCf'OcoiocoaicouJ'Ococt.a) CJ Oj O O-'CL ODCLCOCOiDlLiiJCOaJCOCCOOO pnrnp*»rnfr' pn m <»» on C f«-»i<"»pnonpr*rri pr* rifr%forrr"fnmpr

J— oasor^^ro-OfHoa-raiuaiO-coorHr- ZT (0'0'0 , i—t vT'j" >rcr»ropomp'>C'' i •«••«•«•••••••••*** £J5 ifti.iHOiDN'OmiP ,r»Prt',n 'T|rr* O vr sTOcor-'Ou'^iniA'»r>rv^m» (V, NftjMrtHHrti4HHHHHHHHrlH O- (\jryNH»-ifHrtHH<-lH«rir«H^HHH

©^inr^*-tcyro®cO>oooooooo O-r-CCOtMOMLO-rOvCOOOOOOOO 00>CnJ»nC7'0*cococo.'1^0000000 o -r <*.' co r< >r o cf/ ^ co h ooooooc-O O-OP^'-'-O'i ^Hpjpn-rmc O O O O O »«h O iio'^r-r-— rur^^-moooooooco pgrn-J-inoDPUCO^rO-GO OOOOCi-T 1^ pupn^rmaj«s.oo -O O) O rf^ O w"\ l r-Mfsipnen.ccaomOmOO H rH ry t\J

140

. < t <

f»^-t(MNrmom'j-0'- m ^-r

r>» tft -vi ir» iT m M^ 1T» tfi iA 1 uA ui o u~ in u^ tfl Li"\ t*~. 1A O IA U" !

#-«ir»«£r--^}u*<*0»-ror,'--o-£-n">trv<\j(y ooocococatJ*ccr- r-*o p"> <** 0*1 f" ro on c^ rn en t^t on c*"> rn rn ca

J— rtlPh-HN^COH^r^'l O ^ -J- »\J CD 2^ <*"iQmOco-0'rcomo»rOr-tf> -Xr-« t—i *•••»••*•••*•••• , <^3 ^>rnccDK'0^i/iin>r^ r*i m

OrOr-*C74 «r^rcvjmsrmcoooo Nrir>u"Nrh-oto^rO'00oooo r- ^H «NJ [\J 03

CQ Oc*jf\jajOo4»rm^or*ir»ococDcoco%o»-* Jf»NCOOUllAfw ^U,l>OP*M^flO, iH

*-4 CSJ m «-» o >0 >Q -O

j—t •j- •& O (^ c** (Vi (\i i-4 r** ^H «— <— »-i t\j (\j c*n -r u"\ If. m rr (\j <\< <\J Cj .— *H r* *~i r-i F\j rj m irv m tf* ^~i tr> u"\ ir\ UT\ m in U"* m m u"n it- IT\ to ir> tr» lO U-H lt\ tn u*\ u-. u-» aj 3 CD qo aa cd ac 03 ao o* cT, o*o, r*r*ta ^r»-^o*o^ oco^-i-'i—oo-o-aor-r-oO'i.^i^;

a1 (LdJOjccajajii/dococDCDajtooococo rn (" fn ?*•. <*n (**. r^ m n"- rn rn en h"» m m mm m

9n^ Oaor-*Oirsii"»>r-3r'vr>rcncr:in^-j'4- mfi n.'nm

O*ocoo-*r<\ico»r0'00ooooooo OOM^rcc:-OCC>TOJJOC»OCOOO 09^^^03(0(60^0 00 00 Cir^^r^Ovrcnascor^froocooc' OC*f^iTiOO(\jrr, cir\ooooooca> oi-Tirr^ou&vr c^oooooooac i—*-»f\.mrrt^coo»f*Omoo h » (M w tfl m r-t »-. (NJ fW fii

141

1 1 1

o* r- ao rj o »~< M tvj -1- t^ m *d tr \ r- ^h m o* »i' u^ o t o j] m h in o« f \ o h o (VjHaHcO^^iN-rooHiatuivj

GJ CT nT ~* co •O *0 sf ivj to 1 1 o O o h in u% n •J" -* cu r- r- i-- O h v; h O u"\ t\< fv. -H -^ ^-* *-* *-. PJ j m n m P*. ff\ CVI (V f\J (\j ,—. ,-* »-< ,-* #-i nj m m •J" in in in k^ j> tfMT' in tn *n in. ^ m m m lf\ tm U"\ m IT tf\ in m m m un m m in tn tft

l c(J OH^| l^>MH^Jlfl^^p1H nu'ih-J^iniJ-ON^^^^rjff' ooooooooocr co n n -o ^ in CD ID .C uD a £fl O) ib X O ^ .I) (C a) J iT'OiG'O'O'O'^trcpoaJtLcuijaiiU 'iViflfninMtrifiifnrPio^fOfOtnrfl

1 , fVJ^OinOW^HCDOCDOlMmO S- — , * ocoa*oc\j-j-in«-*r --o#-«a)r»> -0*0 22T m Q i> cd P* ^Hino^^J^^^H ai ._ HOaDON^in^^^-j-rtmfiiti £ Q. (VjWNHHwMHHHHriHHHrt a; > o

o«vo-ir»ocoaj%rc^oooooo O^caOsTCv. co j- O 45 OOOOOO pinHNO-rococoh-ooooO 0>C(V'0*^HOcoaQJ?f^OO<~'000

, i OHo ^Nwpjrfl>rmcoooo vj(\J UM^-src^ooooC'P-- A3 «-» «-t f\J OT CO O CD •'-. \£S a» m^ryff'n". >ocoCinOfi h h n. <\

CD

CT'vTOsOmOO'OOOO^Or-f^cOOrH or*-r-»cj'r-o*i-t'rroooN'OOaDmvO O-vTOHfOiOOQIVJCOiflCUin ^>incor\j^^(\j^i>fH

O f- f\; O GO -O -0 O .0 O C7* t-4 ^ (M OMO t\j i\j r- -r c\i cr r- •O O ^Ch 7^0 h» ^ t\i *-' 1— »-H •—* r m m m X* in in m m n m in w> m m u"> in m m m in m in in in in m in m in u-» w* m m in m in

<* inmirm^*->^-40oO'aJU'^o<7''0«*, ro r>OOOOHiOO, >i> COinM(7<0>4'NO ccoca;cccoaoa*0'Cra*P,-r-^r*-0'0'OsO O0i-*f-*,-ir-tOOv7, CDr-f--*:«0«0«C o iLCDXa m i^i m tr rr, m(n i«rA(f (A

rt'00<-i^'min>fo«J'a>nJ>'nJr**N(nN ^~c r*co(v.o%r'\jmon.om-j'^ncocDO.-»r»- s «-< , tZ (Ni0m^rr*-omooo«oroocor -'0'43^0-0 7* X C C30CQP*C\jCO*0<\JO'r»4130n~0

jd r- -o. (\j*-*0, cor-OinmNrj'^rn^r",-o^ifOn-* J^J o ^irm-r^vf^^infliiftiflm £-j

0(M>r<-Oajcc-J'0>OOOCOOOOO O cu O (\j -O vf CE3«l*OvOOOOOOOO o *v c: -j-r^^crccinr-oooooooo 0^mr>H<£ia:cOfi3NQOO OOCO

Caimmcoocvm-j-tnoooooooco O r^ rn c ^ »» (vjf»»«rinoocc-OC«-* %rm^r-oa>srO'COOOOOOOoo \r«>inNO(n>jo 000000 O *; rtF>(\jfnmxcucinoinoo nHN(nf«*OCOOiA.OinN •-«•-*

142

i 1 i

s- <--> j- I co cm o i*- <^ i> r- o 03 -r > o n s* i^j i^ li u& l\l (\j h vf H O <-i I m O h h cn in o *-i o -» O m -f a? *-* c*i o *-* -x? i- .-t c* ro -r .-» o cy i-o t** r» r- i^ r> »h m »-* co '« "H Co 0"> »ti -r W.TIO o :o r- o •O -O ^c cr >r,pj f\l WW N H r> ^ H H M - in ir in in <\j cm rj —4 ^H r~i — •«M — .— f» <\i ro m r*^ in lt, in L- i ui in tn m in *n »n m in ^ if u™> m IT' IT* m m if* m in in in m

»f n l^jr^^^fn^^|cur--oo-oo O0'Ot>0, Q'0'(?l>C0C0C0OOC0fl0 ,_1 1 »"*"' 1 *** ,-r. r» r*l r»> f* ,-rt |T1 fO CI f' '' f ^ cococococDnDCOoaxDarajajcD 4 tn c** ro c* <*^ (*" oi h~ ^ p"> **"• c*"> c* r*i r^ n^

CO

C J* -~* ."- *t >;OiOTs cO'*i'OrocO - s- "^ o h n m ai -r O tt) ro c/ I ^ ^ y^ m in >r C7- -jt o- ir* -h co -o cm o T*- *c O \n *r v/ t—i ••••*•••••••*•• -c -0 m t\ ^mmmm O s. f^N co co **- V? c tn in in »r >r *r mmmro a. aj -a E uaj OM>r«<3 o co co-4-o-xjoooooo 0) O -r «0 ao fM O CO O* C ^O O O O O O O « <" O ^ > t/ a os o O G O O O Q

'~' i^j f"i -J' ,r o o h cr n ^ m * o o o o , Ouj'OjsrCro'CMc*i ru. OOOOO r- f*- co o m cr> ~r c-oooooor- r- co c c<^ CH O tf* O M « « H \' l*l(" " U) O io 0" M H tSJ (Ni ora

m O n n(; ^ ^ t\j oj f^j O O O" 'O ri co m -o -j- »*.j en s -r en in m r- c o »-i -l- O fi i*"! rs CQ

(M m o (J1 CO i^~ j^. o t0 ^~ C ,--1 ^,- fM o i— •M CM r»j r\_ _ ,-- i-H r-« ^-t ^-j -•- ^' r.i OJ O^ -^ u- L*\ IT* If UT u*» if- tn If u^ u> u"\ u^ u*» k:", m i»i m -'I O

0) I-. o O O — O J^ r .* C7 (f> r i fr .1 - I-- o O «-« *+ ** f-* r-* o '> O* ot> t"~ ?-* <1 :J ~0 «JD %0 Cr f_ r- r- ! o ,c. (O o o. C C f a O Cr O* U O C U> 03 C3 aj uj OC ±'< .'^ to »-> n r f ci i** pi c fl m f ci ^ ; ni r^ fl c» m

fc^fSSSSSSSSSSSCSSSS p"t j m j- a u" « O "NJ Cr N ''1 O uj «t -O re o VjJ cu cj P"- «o -o o u". -^ ~r ^* »f m prt »^ '^ f^ i^ o a.

O -O c? O -r .M .n -r o O O O O O O O O u o e O f- fl O fM f" c.-) u> CD N- O Cj OOOOO g Z S 3 ? ^ x « « ^= o o o o o a • •*•••••-••« • » • * O cm O a) ot m .\j cr, ^- m o O << '": C C' —i r-- CD cu o i^l co -J- o <: o o o o O o -J" l.l u^ r-i H it rvi Ol i*l »*-' CU O O r- H r i M N Al r+ r-t (V CM f*^ <*>

143

LIST OF REFERENCES

1. Armanda, M. Z. , 1969. "Water Exchange Between the Adriatic and the

Eastern Mediterranean." Deep Sea Research . 16 :p. 171-178.

2. Carter, T. G., Flanagan, J. P., Jones, C. R., Marchant, F. L.,

Murchison, R. R. , Rebman, J. A., Sylvester, J. C, and Whitney, J. C, 1972. "A new bathymetric chart and physiography of the Mediterranean

Sea." In: D. J. Stanley (editor), The Mediterranean Sea . Dowden, Hutchinson, and Ross, Stroudsburg, PA, p. 1-23.

3. Comninakis, P. E. and Papazachos, B. C, 1972. "Seismicity of the eastern Mediterranean and some tectonic features of the Mediterranean

ridge." Geological Society of America Bulletin . 83: p. 1093-1102.

4. Emelyanov, E. M., 1972. "Principal types of recent bottom sediments in the Mediterranean Sea: their mineralogy and geochemistry." In:

D. J. Stanley (editor), The Mediterranean Sea . Dowden, Hutchinson, and Ross, Stroudsburg, PA, p. 355-386.

5. Emery, K. 0., Heezen, B. C, and Allan, T. D., 1966. "Bathymetry of

the eastern Mediterranean Sea." Deep Sea Research . 13: p. 173-192.

6. Engel , I., 1967. "Currents in the eastern Mediterranean." Inter-

national Hydrographic Review . XLIV, no. 2, p. 23-40.

7. Engel, I., 1968. "Vertical hydrographic sections of the eastern

Mediterranean." International Hydrographic Review . XLV, no. 1, p. 167-175.

8. Goncharov, V. P. and Mikhailov, 0. V., 1964. "New data on the bottom

relief of the Mediterranean." Deep Sea Research . 11 : p. 625-628.

9. Horn, D. R. , Horn, B. M. , and Delach, M. N., 1968. "Correlation be- tween acoustical and other physical properties of deep-sea cores."

Journal of Geophysical Research . 73: no. 6, p. 1939-1957.

10. Keller, G. H. and Lambert, D. N., 1972. "Geotechnical properties of submarine sediments, Mediterranean Sea." In: D. J. Stanley (editor),

The Mediterranean Sea . Dowden, Hutchinson, and Ross, Stroudsburg, PA, p. 25-36.

11. Lacombe, H. and Tchernia, P., 1972. "Caracteres hydrologiques et circulation des eaux en Mediterranee." In: D. J. Stanley (editor),

The Mediterranean Sea . Dowden, Hutchinson, and Ross, Stroudsburg, PA, p. 25-36.

12. Morcos , S. A., 1972. "Sources of Mediterranean intermediate water in the Levantine Sea." In: A. L. Gordon (editor), Studies in Physi-

cal Oceanography . Gordon and Breach, New York, p. 185-206.

144

13. Moskalenko, L. V. and Ovchinnikov, I. M. , 1965. "The water masses of the Mediterranean Sea." In: Basic Features of the Geological Structure of the Hydrologic Regime and Biology of the Mediterranean

Sea . U. S. Naval Oceanographic Office, Washington, D. C, p. 202- 206.

14. Nielsen, N. J., 1912. "Hydrography of the Mediterranean and adjacent waters." Rap. Dan. Oceanogr. Exped. Medit ., I, p. 77-192.

15. Oceanographic Atlas of the North Atlantic Ocean, 1963, U. S. Naval Oceanographic Office, Washington, D. C.

16. Ovchinnikov, I. M. and Fedoseyev, A. F. , 1968. "The horizontal circu- lation of the water of the Mediterranean Sea during the summer and winter seasons." In: Basic Features of the Geological Structure of

the Hydrologic Regime and Biology of the Mediterranean Sea . U. S. Naval Oceanographic Office, Washington, D. C.

17. Pollak, M. J., 1951. "The sources of the deep water of the eastern

Mediterranean Sea." Journal of Marine Research , X, 1.

18. Schieferdecker, A. A. G., 1959. Geological Nomenclature . Gorinchem. J. Noorduijn en zoon N.V.

19. Sverdrup, H. U. , Johnson, M. W., and Fleming, R. H., 1942. The

Oceans . Prentice-Hall, N. J., p. 643.

20. Swanson, B. K. , 1966. Oceanography for Long Range Sonar Systems , Part I. U. S. Naval Oceanographic Office.

21. Urick, R. J., 1967. Principles of Underwater Sound for Engineers . McGraw-Hill, p. 155.

22. Venkatarathnam, K. and Ryan, W. B. F. , 1971. "Dispersal patterns of clay minerals in the sediments of the eastern Mediterranean Sea."

Marine Geology , 11, p. 261-282.

23. Wong, H. K. and Zarudzki , E. F. K., 1969. "Thickness of unconsoli- dated sediments in the eastern Mediterranean Sea." Geological Society

of America Bulletin , 80: p. 2611-2614.

24. Wlist, G., 1951. "On the vertical circulation of the Mediterranean

Sea." Journal of Geophysical Research , 77, no. 6, p. 3261-3271.

145

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2 Cameron Station Alexandria, Virginia 22314

2. Library, Code 0142 2 Naval Postgraduate School Monterey, California 93940

3. LCDR. A. B. Chace 1 Department of Oceanography, Code 63 Naval Postgraduate School Monterey, California 93940

4. Prof. W. C. Thompson 1 Department of Oceanography, Code 68 Naval Postgraduate School Monterey, California 93940

5. Nazim Cubukcu 3 Ziya Erdem Sokak No. 20/2 yes ilkoy- ISTANBUL-TURKEY

6. Commanding Officer 1 Fleet Numerical Weather Central Monterey, California 93940

7. Commanding Officer 1 Naval Environmental Prediction Research Facility Monterey, California 93940

8. Department of the Navy 1 Commander Oceanographic System Pacific Box 1390 Pearl Harbor, Hawaii 96860

9. Department of Oceanography, Code 68 3 Naval Postgraduate School Monterey, California 93940

10. Department of Oceanography Library 1 University of Washington Seattle, Washington 98105

11. Department of Oceanography Library 1 Oregon State University Corvallis, Oregon 97331

146

,

12. Director 1 Naval Oceanography and Meteorology National Space Technology Laboratories NSTL Station, Mississippi 39529

13. Deniz Kuvvetleri Komutanligi 3 Personel egitim Sb.Mudurlugu Ankara, TURKEY

14. Dz. Kuvvetleri Seyir ve Hidrografi Dairesi Bsk. 3 Cubuklu, Istanbul TURKEY

15. Orta-Dogu Teknik Universitesi 1 Ankara TURKEY

16. Istanbul Teknik Universitesi 1 Taskisla, Istanbul TURKEY

17. Library, Code 3330 1 Naval Oceanographic Office Washington, D. C. 20373

18. NORDA 1 NSTL Station, Mississippi 39529

19. Oceanographer of the Navy, Code N-45 1 Hoffman Building No. 2 200 Stovall Street Alexandria, Virginia 22332

20. Office of Naval Research 1 Code 410 NORDA NSTL Station, Mississippi 39529

21. SIO Library 1 University of California, San Diego P. 0. Box 2367 La Jolla, California 92037

22. Dr. Robert E. Stevenson 1 Scientific Liaison Office, ONR Scripps Institution of Oceanography La Jolla, California 92037

147

-

if/" 8 *'

Thesis 178 24 C.bukcu °56 'c.l Acoustical ocean- ograp^ of the levgn _

2 6H.0 6-1 *

Thesis : 78056 C92H Cubukcu c.l Acoustical, ocean- ography or the Levan- tine Sea. lhesC924

Acoustical oceanography of the Levantine

II!!!

II III llllllllllilllllMIIIIMl 3 2768 002 09819 6 DUDLEY KNOX LIBRARY