Levantine Sea Ρ

Total Page:16

File Type:pdf, Size:1020Kb

Levantine Sea Ρ Study and Analysis of Water Masses Formation in the Levantine Sea Geurguess1,2,3 M.S.K., Chantsev2 V.U. 1Nansen International Environmental and Remote Sensing Center, St. Petersburg, Russia. 2Russian State Hydrometeorological University, St. Petersburg, Russia. 3National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt. [email protected] Abstract – The objective of this work is to study and The area of study, which is the Levantine Sea, lies analysis the water mass formation in the Levantine between longitudes 240E and 360E and latitudes 300N and Sea. Convection, salinity and evaporation in the 400N, as shown in Fig. 1. Eastern Mediterranean were studied for the coldest year (1964) and the hottest year (1991). The oceanographic data are selected from the World Ocean 38 Turkey Atlas and http://ingrid.ldeo.Columbia.edu/ site. Results 37 indicate that for the coldest year (1964), the maximum 36 Aegean Sea amount of evaporation is observed in August - Rhodes Cyprus September in the vicinity of Crete Island. The error of 35 salinity ranged between (0 ‰- 0.25 ‰) in the west of Crete Syria Cyprus and close to Syria. The depth of convection was 34 detected in the west of Cyprus down to a depth about 33 Levantine Sea (320 m). While for the hottest year (1991), the maximum amount of evaporation is in August - 32 Libya Egypt September near by Syria. The error of salinity ranged 31 between (0.05 ‰ - 0.3 ‰) near the Egyptian coast and 24 25 26 27 28 29 30 31 32 33 34 35 36 close to Turkey. Location of the depth of convection was detected in the west of Cyprus and the front of Figure 1. Levantine Sea. Turkey down to a depth (240 m). Keywords: Levantine Sea; water mass; convection; water 2. MATERIALS AND METHODS temperature; salinity; evaporation; ERS-1. The Data for water temperature and salinity, in the hottest 1. INTRODUCTION year (1991) and the coldest year (1964), were downloaded from http://ingrid.ldeo.Columbia.edu/NOAA/ NCEP- The formation of water masses in the Mediterranean Sea NCAR. Wind data were collected from ERS-1 satellite. generally slightly differs in general nature from season to The data for wind speed, water temperature and salinity season but can be stable due to predominance were downloaded for 50 stations and 13 depths and northwesterly winds throughout the year (Wust, 1959). covered all the study area. The evaporation was calculated using the fallowing equation: During the summer, The Levantine basin is covered by the Levantine Surface Water (LSW). This water mass is formed by intensive heating and evaporation and has the 0.622 largest salinity and temperature of the entire E = *C * U*(e0 – ea) (1) Mediterranean Sea. Due to general cyclonic circulation of Pa * ρ the Levantine Basin the LSW advects to the Rhodes gyre region and due to its large salinity appears to be the source water for the Levantine Intermediate Water (Nielsen, where E= Evaporation rate; 1912; Hecht et al., 1988; Hecht and Gertman, 2001). Pa= Atmospheric pressure; Moreover, via the Cretan Arc passages, the LSW advects ρ = Air density ; into eastern shelf of the Aegean Sea and participates in U = Wind speed; the intermediate and deep waters formation of the Aegean ea=water-vapor pressure in air ea (ta) above a Sea (Theocharis et al., 1999a,b; Zervakis et al., 2000). plane surface of pure water at varies air temperatures; The aim of the present work is to study and analyze the e0= Saturation water-vapor pressure e0 (tw) freshwater exchange and the instability of surface of the above a plane surface of pure water at varies Levantine Sea in the coldest year (1964) and the hottest water temperatures; year (1991). C = Dalton’s number. The obtained results for evaporation rate were plotted 40 using the MS Excel software. The MS Excel software has 38 been used to calculate inside intra-annual change of the 36 январь 1964 error of salinity determination (surface of the Levantine 34 Sea), with due account of salinity convection and location of the depth of convection. The obtained results were 32 plotted using the Golden Surfer 7.3 software. 18 20 22 24 26 28 30 32 34 36 40 38 36 3. RESULTS & DISCUSION февраль 1964 34 32 Evaporation analysis: 18 20 22 24 26 28 30 32 34 36 40 Ovchinnikov (1976), using long-term climatic data, 38 founded that the evaporation reached its maximum values 36 in September and December and a minimum in May. март 1964 34 In the present work, the maximum amount of evaporation 32 for the coldest year (1964) was observed in August - -6 18 20 22 24 26 28 30 32 34 36 September in the vicinity of Crete Island (7.5*10 40 2 kg/m .sec). While, the minimum amount was in February 38 in the same area (0.5*10-6 kg/m2.sec). For the hottest year 36 (1991), the maximum amount of evaporation was апрель 1964 observed in August - September near by Syria in August 34 -5 2 (1.0*10 kg/m .sec). While, the minimum amount was in 32 April close to Turkey in April (1.0*10-6 kg/m2.sec). 18 20 22 24 26 28 30 32 34 36 Salinity analysis: Figure 2. Error of Salinity for the coldest year (1964) {Jan., Feb., Mar. and Apr.}. Said (1985) suggested that in a cold winter the formation of Levantine intermediate water mass occurs nearly everywhere in the Levantine Sea excepting the southern 40 and extreme eastern parts while in mild winter the 38 formation occurs only at the centers of the cyclonic gyre 36 of the Levantine Sea and north of Crete. январь 1964 34 For the coldest year (1964), the annual change of error of 32 salinity, as we see in Fig.2 and the convection, as we see 18 20 22 24 26 28 30 32 34 36 in Fig. 3 on the surface of Levantine Sea, showed that in 40 January, the error of salinity ranged between (0 ‰- 38 0.25‰) in the west of Cyprus and close to Syria 36 respectively, the maximum range was detected next to февраль 1964 Syria and Turkey, the location of depth of convection was 34 detected in the west of Cyprus down to a depth about 32 (320m). The convection was detected also in the west of 18 20 22 24 26 28 30 32 34 36 40 Cyprus in February, These depth was (220m), the maximum change of an error of salinity was (0.1‰) in the 38 36 west of Cyprus. Allocation of depth of convection март 1964 increased in March in the same area (320m), and the 34 change of an error of salinity was (0.1‰) in the west of 32 Cyprus. In April, the error of salinity ranged between 18 20 22 24 26 28 30 32 34 36 (0.05‰ - 0.2‰) in the east of Rhodes, the convection not 40 founded. From May to December change of an error of 38 salinity on the surface of Levantine Sea did not exceed 36 апрель 1964 0.25‰, and the convection not founded. 34 While for the hottest year (1991), the annual change of 32 error of salinity, as we see in Fig. 4 and the convection, as 18 20 22 24 26 28 30 32 34 36 we see in Fig. 5 on the surface of Levantine Sea, showed that in January, the error of salinity ranged between Figure 3. Distribution of convection for the coldest year (0.05‰ - 0.25‰) in the area adjacent to the Egyptian (1964) {Jan, Feb, Mar and Apr.}. coast and in front of Syria respectively. Location of depth of convection was detected in the west 40 of Cyprus down to a depth (180m). In February, the 38 36 convection was detected also in the west of Cyprus, The январь 1991 depth was (180m), the maximum change of error of 34 salinity was (0.3‰) in the front of Turkey. Allocation of 32 depth of convection increased in March in the same area 18 20 22 24 26 28 30 32 34 36 (240m), and the change of an error of salinity was 40 (0.15‰) in the west of Cyprus. In April, the error of 38 salinity ranged between (0.02‰ - 0.18‰) in the front of 36 февраль 1991 Libya and in the front of Turkey respectively, the depth of convection was detected in the west of Cyprus about 34 (180m). From May to November change in error of 32 salinity did not exceed 0.35‰, and the convection not 18 20 22 24 26 28 30 32 34 36 founded. While in December, the error of salinity ranged 40 between (0.25‰ -0.6‰), in the front of Egypt and in the 38 front of Turkey respectively, the depth of convection was 36 март 1991 detected in the west of Cyprus and the front of Turkey 34 (240m). 32 Recent changes of water mass characteristics in the 18 20 22 24 26 28 30 32 34 36 Levantine Sea have considerably influenced the Eastern 40 Mediterranean circulation. A combination of salinity 38 increase and temperature variation during 1964-1991 36 апрель 1991 caused massive formation of dense water and strong 34 outflow towards the deep and bottom parts of the Eastern 32 Mediterranean. 18 20 22 24 26 28 30 32 34 36 40 38 40 36 38 декабрь 1991 34 36 январь 1991 34 32 32 18 20 22 24 26 28 30 32 34 36 18 20 22 24 26 28 30 32 34 36 40 Figure 5.
Recommended publications
  • Data Structure
    Data structure – Water The aim of this document is to provide a short and clear description of parameters (data items) that are to be reported in the data collection forms of the Global Monitoring Plan (GMP) data collection campaigns 2013–2014. The data itself should be reported by means of MS Excel sheets as suggested in the document UNEP/POPS/COP.6/INF/31, chapter 2.3, p. 22. Aggregated data can also be reported via on-line forms available in the GMP data warehouse (GMP DWH). Structure of the database and associated code lists are based on following documents, recommendations and expert opinions as adopted by the Stockholm Convention COP6 in 2013: · Guidance on the Global Monitoring Plan for Persistent Organic Pollutants UNEP/POPS/COP.6/INF/31 (version January 2013) · Conclusions of the Meeting of the Global Coordination Group and Regional Organization Groups for the Global Monitoring Plan for POPs, held in Geneva, 10–12 October 2012 · Conclusions of the Meeting of the expert group on data handling under the global monitoring plan for persistent organic pollutants, held in Brno, Czech Republic, 13-15 June 2012 The individual reported data component is inserted as: · free text or number (e.g. Site name, Monitoring programme, Value) · a defined item selected from a particular code list (e.g., Country, Chemical – group, Sampling). All code lists (i.e., allowed values for individual parameters) are enclosed in this document, either in a particular section (e.g., Region, Method) or listed separately in the annexes below (Country, Chemical – group, Parameter) for your reference.
    [Show full text]
  • Invading the Mediterranean Sea: Biodiversity Patterns Shaped by Human Activities
    ORIGINAL RESEARCH ARTICLE published: 30 September 2014 MARINE SCIENCE doi: 10.3389/fmars.2014.00032 Invading the Mediterranean Sea: biodiversity patterns shaped by human activities Stelios Katsanevakis 1*, Marta Coll 2, Chiara Piroddi 1, Jeroen Steenbeek 3, Frida Ben Rais Lasram 4, Argyro Zenetos 5 and Ana Cristina Cardoso 1 1 Water Resources Unit, Institute for Environment and Sustainability, Joint Research Centre, Ispra, Italy 2 Institut de Recherche pour le Développement, UMR EME 212, Centre de Recherche Halieutique Méditerranéenne et Tropicale, Sète, France 3 Ecopath International Initiative Research Association, Barcelona, Spain 4 Unité de Recherche Ecosystèmes et Ressources Aquatiques UR03AGRO1, Institut National Agronomique de Tunisie, Tunis, Tunisia 5 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Agios Kosmas, Greece Edited by: Human activities, such as shipping, aquaculture, and the opening of the Suez Canal, Christos Dimitrios Arvanitidis, have led to the introduction of nearly 1000 alien species into the Mediterranean Sea. Hellenic Centre for Marine We investigated how human activities, by providing pathways for the introduction of alien Research, Greece species, may shape the biodiversity patterns in the Mediterranean Sea. Richness of Red Reviewed by: Melih Ertan Çinar, Ege University, Sea species introduced through the Suez Canal (Lessepsian species) is very high along the 2 Turkey eastern Mediterranean coastline, reaching a maximum of 129 species per 100 km ,and Salud Deudero, Instituto Español de declines toward the north and west. The distribution of species introduced by shipping is Oceanografia, Spain strikingly different, with several hotspot areas occurring throughout the Mediterranean Christos Dimitrios Arvanitidis, Hellenic Centre for Marine basin.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • A Preliminary Global Assessment of the Status of Exploited Marine Fish and Invertebrate Populations
    A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS June 30 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria. L.D. Palomares, Rainer Froese, Brittany Derrick, Simon-Luc Nöel, Gordon Tsui Jessika Woroniak Daniel Pauly A report prepared by the Sea Around Us for OCEANA June 30, 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria L.D. Palomares1, Rainer Froese2, Brittany Derrick1, Simon-Luc Nöel1, Gordon Tsui1, Jessika Woroniak1 and Daniel Pauly1 CITE AS: Palomares MLD, Froese R, Derrick B, Nöel S-L, Tsui G, Woroniak J, Pauly D (2018) A preliminary global assessment of the status of exploited marine fish and invertebrate populations. A report prepared by the Sea Around Us for OCEANA. The University of British Columbia, Vancouver, p. 64. 1 Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver BC V6T1Z4 Canada 2 Helmholtz Centre for Ocean Research GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany TABLE OF CONTENTS Executive Summary 1 Introduction 2 Material and Methods 3 − Reconstructed catches vs official catches 3 − Marine Ecoregions vs EEZs 3 − The CMSY method 5 Results and Discussion 7 − Stock summaries reports 9 − Problematic stocks and sources of bias 14 − Stocks in the countries where OCEANA operates 22 − Stock assessments on the Sea Around Us website 31 − The next steps 32 Acknowledgements 33 References 34 Appendices I. List of marine ecoregions by EEZ 37 II. Summaries of number of stock by region and 49 by continent III.
    [Show full text]
  • Sepietta Neglecta Naef, 1916 Fig
    176 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1 Sepietta neglecta Naef, 1916 Fig. 255 Sepietta neglecta Naef, 1916, Pubblicazioni della Stazione Zoologica di Napoli, 1: 9 [type locality: Tyrrhenian Sea]. Frequent Synonyms: None. Misidentifications: None. FAO Names: En – Elegant bobtail squid; Fr – Sépiole élégante; Sp – Sepieta elegante. bursa copulatrix (after Naef, 1923) dorsal arms of male mantle cavity of female (hectocotylus) Fig. 255 Sepietta neglecta Diagnostic Features: Fins rounded, bluntly pointed laterally rather than curved; short, do not exceed length of mantle anteriorly or posteriorly. Hectocotylus present, left dorsal arm modified: proximal end with fleshy pad formed from enlarged and/or fused sucker pedicels; copulatory apparatus a dome-shaped lobe medially and short, pointed, horn with smaller papilla between these; horn of copulatory apparatus slightly recurved, but does not form a small hole; base of hectocotylus proximal to fleshy pad with 4 normal suckers (not modified); dorsal row of suckers distal to copulatory apparatus with first 3 or 4 suckers markedly enlarged; arm broad, spoon-like. Tentacles very thin, delicate. Club with 16 uniform-sized suckers in transverse rows. Female bursa copulatrix large (extends posteriorly beyond gill insertion). Light organs absent. Size: Up to 33 mm mantle length. Geographical Distribution: Northeastern Atlantic and Mediterranean Sea: southern coast of Norway and Orkney Islands to Morocco; eastern and western Mediterranean Sea (Ligurian Sea, Strait of Sicily, Adriatic Sea, north Aegan Sea, Sea of Marmara and Levantine Sea) (Fig. 256). Habitat and Biology: Sepietta neglecta lives preferentially on muddy substrates at depths ranging between 25 and 475 m. It is often associated with Rossia macrosoma and Sepietta oweniana.Itspawns continuously throughout the year.
    [Show full text]
  • Eastern Mediterranean)
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 11: 413-423 (2011) DOI: 10.4194/trjfas.2011.0311 Distribution of the Demersal Fishes on the Continental Shelves of the Levantine and North Aegean Seas (Eastern Mediterranean) Çetin Keskin1,*, Cemal Turan2, Deniz Ergüden2 1 Istanbul University, Faculty of Fisheries, Marine Biology Department, Ordu St. No: 200, 34470 Istanbul, Turkey. 2 Mustafa Kemal University, Faculty of Fisheries, Fisheries Genetics Laboratory, 31220, Iskenderun, Hatay, Turkey. * Corresponding Author: Tel.: +90. 212 4555700/16414; Fax: +90. 212 5140379; Received 10 December 2010 E-mail: [email protected] Accepted 28 February 2011 Abstract The aim of this study was to investigate the distribution patterns of demersal fishes on the continental shelves of the north-eastern Levantine and north-eastern Aegean seas. Fish samples were collected by bottom trawl. A total of 29 hauls were carried out, 15 hauls between 43 to 121 m depth in the north-eastern Levantine Sea and 14 hauls between 65 to 100 m depth in 2 the north-eastern Aegean Sea. The total trawled area for both region was 1.87 km . Cluster analysis and non-metric multidimensional scaling were applied to identify hauls grouping. Among 114 fish species found, 84 were recorded in the north-eastern Levantine Sea and 64 in the north-eastern Aegean Sea. Fifty species were found exclusively from the north- eastern Levantine Sea, 30 species exclusively from the north-eastern Aegean Sea and 34 species were shared by the two areas. The Lessepsian migrants, Upeneus moluccensis, Equulites klunzingeri, Saurida undosquamis, and the indigenous species Pagellus erythrinus were the most common species of fish assemblage in the north-eastern Levantine Sea.
    [Show full text]
  • New Records of Non-Indigenous Molluscs from the Eastern Mediterranean Sea
    BioInvasions Records (2018) Volume 7, Issue 3: 245–257 Open Access DOI: https://doi.org/10.3391/bir.2018.7.3.05 © 2018 The Author(s). Journal compilation © 2018 REABIC Research Article New records of non-indigenous molluscs from the eastern Mediterranean Sea Jan Steger1,*, Martina Stockinger1, Angelina Ivkić1,2, Bella S. Galil3 and Paolo G. Albano1 1Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria 2Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands 3The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 69978, Israel Author e-mails: [email protected] (JS), [email protected] (MS), [email protected] (AI), [email protected] (BSG), [email protected] (PGA) *Corresponding author Received: 15 June 2018 / Accepted: 11 July 2018 / Published online: 2 August 2018 Handling editor: Fred Wells Abstract We report new findings of non-indigenous Indo-Pacific molluscs from shallow water habitats off Israel, Greece and Egypt, eastern Mediterranean Sea. The bivalves Pillucina vietnamica Zorina, 1978 and Alveinus miliaceus (Issel, 1869) were collected from sandy bottoms off Israel, whereas Gregariella cf. ehrenbergi (Issel, 1869) was recovered from a buoy originating from Port Said, Egypt, and stranded on the Israeli coast. The three species are first records for the Mediterranean Sea. Additionally, we report range extensions for several gastropods: Varicopeza pauxilla (A. Adams, 1855) is recorded from Israel, Phidiana militaris (Alder and Hancock, 1864) from southern Israel (Ashqelon), and Viriola cf. bayani Jousseaume, 1884 from Israel and Crete. Shells and valves of an unidentified lucinid bivalve morphologically distinct from any known Mediterranean species were found along the Israeli Mediterranean shore.
    [Show full text]
  • Mediterranean Marine Science
    Mediterranean Marine Science Vol. 21, 2020 New Alien Mediterranean Biodiversity Records 2020 BARICHE MICHEL Department of Biology, American University of Beirut, PO Box 11-0236, Beirut 1107 2020 AL-MABRUK SARA Zoology Department, Faculty of Science, Omar Al-Mokhtar University, El Bayda ATEŞ MARIA AYCA Russian State University for Humanities, Moscow BÜYÜK ADNAN Tekirova Mah. 7005 sok. No 37 Kemer, Antalya CROCETTA FABIO Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli DRITSAS MICHAIL 189 00 Salamina, Attica EDDE DIALA Department of Biology, American University of Beirut, PO Box 11-0236, Beirut 1107 2020 FORTIČ ANA Marine Biology Station, National Institute of Biology, Fornače 41, 6300 Piran GAVRIIL ELISSAVET Institute of Marine Biological Resources and Inland waters, Hellenic Centre for Marine Research, P.O. Box 712, 19013, Anavissos GEROVASILEIOU VASILIS Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003 Heraklion GÖKOĞLU MEHMET Akdeniz University, Faculty of Fisheries, Antalya HUSEYINOGLU FATIH Biosphere Research Center, Istanbul, Turkey University of Kyrenia, Cyprus KARACHLE PARASKEVI Institute of Marine Biological Resources and Inland waters, Hellenic Centre for Marine Research, P.O. Box 712, 19013, Anavissos KLEITOU PERIKLIS Marine and Environmental http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 07/05/2020 10:27:49 | Research (MER) Lab Ltd, 202 Amathountos Avenue, Marina Gardens, Block B, Offices 13-14, Limassol 4533 TERBIYIK KURT TUBA Department of Marine Sciences, Faculty of Fisheries, Çukurova University, 01330, Sarıçam, Adana LANGENECK JOACHIM Department of Biology, University of Pisa, via Derna 1, 56126 Pisa LARDICCI CLAUDIO Department of Earth Sciences, University of Pisa, via Santa Maria 53, 56126 Pisa LIPEJ LOVRENC Marine Biology Station, National Institute of Biology, Fornače 41, 6300 Piran PAVLOUDI CHRISTINA Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O.
    [Show full text]
  • Producing a High Resolution Digital Bathymetry for European Sea Basins
    EMODnet Hydrography - Seabed Mapping - Bathymetry projects Producing a high resolution digital bathymetry for European sea basins In December 2007 the European Parliament and Council adopted the Marine Strategy • water depth in gridded form on a DTM grid of a quarter a minute of longitude and Framework Directive (MSFD) which aims to achieve environmentally healthy marine latitude waters by 2020. This Directive includes an initiative for an overarching European Marine option to view QC parameters of individual DTM cells and references to source data Observation and Data Network (EMODnet). • • option to download DTM tiles in different formats: ESRI ASCII, XYZ, CSV, NetCDF (CF), The EMODnet Hydrography - Seabed Mapping - Bathymetry projects made good GeoTiff and SD for Fledermaus 3D viewer software progress in developing the EMODnet Hydrography portal to provide overview and access to • option for users to create their Personal Layer and to upload multibeam available bathymetric survey datasets and to generate an harmonised digital bathymetry survey ASCII datasets for automatic processing into personal DTMs following the for Europe’s sea basins. Up till July 2013 more than 9100 bathymetric survey datasets, EMODNet standards managed by 15 data centres from 9 countries and originated from 127 institutes, have been gathered and populated in the EMODnet Hydrography Data Discovery and Access service, The NetCDF (CF) DTM files are fit for use in a special 3D Viewer software package which adopting SeaDataNet standards. These datasets have been used as input for analysing and is based on the existing open source NASA World Wind JSK application. It has been generating the EMODnet digital terrain model (DTM), for the following sea basins: developed in the frame of the EU FP7 Geo-Seas project (another sibling of SeaDataNet for marine geological and geophysical data) and is freely available.
    [Show full text]
  • New Records of Alien Species on the Levantine Coast of Turkey
    Aquatic Invasions (2006) Volume 1, Issue 2: 84-90 DOI 10.3391/ai.2006.1.2.6 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Research article New records of alien species on the Levantine coast of Turkey 1* 2 1 3 Melih Ertan Çinar , Murat Bilecenoglu , Bilal Öztürk and Alp Can 1Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100 Bornova, Izmir, Turkey 2Adnan Menderes University, Faculty of Arts and Sciences, Department of Biology, 09010 Aydin, Turkey 3Ankara University, Faculty of Medicine, Department of Histology and Embryology, 06100 Sihhiye, Ankara, Turkey *Corresponding author E-mail: [email protected] Received 7 June 2006; accepted in revised form 14 June 2006 Abstract Zoobenthic investigations carried out along the Turkish Levantine coast resulted in identification of nine previously unrecorded alien species: Macrorhynchia philippina (Hydrozoa), Oculina patagonica (Anthozoa), Branchiomma luctuosum (Polychaeta), Aplysia dactylomela (Gastropoda), Synaptula reciprocans (Echinodermata), Phallusia nigra, Pyura (=Herdmania) momus, Symplegma brakenhielmi (Tunicata) and Parupeneus forsskali (Osteichthyes). Except for the shipping-transported O. patagonica, which originated in the Atlantic Ocean, the species are recognized as Erythrean aliens that entered the Mediterranean through the Suez Canal. Some ecological and distributional details are briefly discussed. Key words: Levantine Sea, Turkey, alien species, Erythrean invasion Introduction Material and Methods According to a recently prepared inventory of The material was collected and photographed at alien species along the Turkish coasts (Çinar et 9 shallow water stations (0-5 m) located along al. 2006), 202, of a total of 263 alien species the Levantine coast of Turkey (Figure 1).
    [Show full text]
  • The Limit of the Sea: the Bathyal Fauna of the Levantine Sea*
    sm68s3063-13 7/2/05 20:09 Página 63 SCI. MAR., 68 (Suppl. 3): 63-72 SCIENTIA MARINA 2004 MEDITERRANEAN DEEP-SEA BIOLOGY. F. SARDÀ, G. D’ONGHIA, C.-Y. POLITOU and A. TSELEPIDES (eds.) The limit of the sea: the bathyal fauna of the Levantine Sea* BELLA S. GALIL National Institute of Oceanography, Israel Oceanographic and Limnological Research, P.O.B. 8030, Haifa 31080, Israel. E-mail: [email protected] SUMMARY: In the present study, the fish, molluscs, crustaceans and echinoderms collected at depths between 734 and 1558 m during a series of cruises conducted between 1988 and 1999 off the coast of Israel, supplemented by a photographic sur- vey carried out southwest of Cyprus at a depth of 2900 m, were analysed. The main objectives were to determine the faunal composition of the bathybenthic assemblages in the southeastern Levantine Sea, and to compare them with the western Mediterranean assemblages in order to elucidate whether general trends in their bathymetric distribution and population den- sity may be related to environmental/geographic factors. Considering the sampling effort, the diverse gear used and the extended period of sampling, we may assume that the low number of species and specimens recorded actually reflects a low- diversity, low-density deep water fauna. The faunal scarcity may cause a different parcelling of the populations which is reflected in bathymetric distributions that in many cases extend to greater depths than in the Western Mediterranean. The Levantine bathybenthos is composed of autochthonous, self-sustaining populations of opportunistic, eurybathic species that have settled there following the last sapropelic event.
    [Show full text]
  • A Reconstruction of Turkey's Marine Fisheries Catches (1950-2010)
    Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net Doi: http://dx.doi.org/10.12681/mms.414 From bonito to anchovy: a reconstruction of Turkey’s marine fisheries catches (1950-2010) A. ULMAN1, Ş. BEKIŞOĞLU2, M. ZENGIN3, S. KNUDSEN4, V. ÜNAL5, C. MATHEWS6, S. HARPER1, D. ZELLER1 and D. PAULY1 1 Sea Around Us Project, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, B.C., V6T 1Z4, Canada 2 Agricultural Engineer, Refik Belendir Sokak No:122/1, 06540 Çankaya, Ankara, Turkey 3 Central Fisheries Research Institute, Ministry of Agriculture and Rural Affairs (MARA), P.O. Box 129, 61001, Trabzon, Turkey 4 Department of Social Anthropology, University of Bergen, Fosswinckelsgt. 6, N-5020 Bergen, Norway 5 Faculty of Fisheries, Eğe University, Rectorate Gençlik Cad. No 12, 35040 Bornova, Izmir, Turkey 6 Fisheries Management and Planning Consultant, Northfield House, Chelselbourne, Dorset, DT2 7NT, England Corresponding author: [email protected] Handling Editor: Stelios Katsanevakis Received: 26 October 2012; Accepted: 11 March 2013; Published on line: 12 June 2013 Abstract Turkey’s marine fisheries catches were estimated for the 1950-2010 time period using a reconstruction approach, which es- timated all fisheries removals, including unreported landings, recreational landings and discards. We added these estimates to the ‘official’ data, as reported in TURKSTAT, which are also available from the United Nations’ Food and Agriculture Organization (FAO). The total reconstructed catch for the 1950-2010 time period (inclusive of the reported data) is approximately 30 million t, or 63% more than the 18.4 million t of reported data.
    [Show full text]