CARBONATES and OTHER SALTS in the ATACAMA DESERT and on MARS, and the IMPLICATIONS for the ROLE of LIFE in CARBONATE FORMATION B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rain Shadows
WEB TUTORIAL 24.2 Rain Shadows Text Sections Section 24.4 Earth's Physical Environment, p. 428 Introduction Atmospheric circulation patterns strongly influence the Earth's climate. Although there are distinct global patterns, local variations can be explained by factors such as the presence of absence of mountain ranges. In this tutorial we will examine the effects on climate of a mountain range like the Andes of South America. Learning Objectives • Understand the effects that topography can have on climate. • Know what a rain shadow is. Narration Rain Shadows Why might the communities at a certain latitude in South America differ from those at a similar latitude in Africa? For example, how does the distribution of deserts on the western side of South America differ from the distribution seen in Africa? What might account for this difference? Unlike the deserts of Africa, the Atacama Desert in Chile is a result of topography. The Andes mountain chain extends the length of South America and has a pro- nounced influence on climate, disrupting the tidy latitudinal patterns that we see in Africa. Let's look at the effects on climate of a mountain range like the Andes. The prevailing winds—which, in the Andes, come from the southeast—reach the foot of the mountains carrying warm, moist air. As the air mass moves up the wind- ward side of the range, it expands because of the reduced pressure of the column of air above it. The rising air mass cools and can no longer hold as much water vapor. The water vapor condenses into clouds and results in precipitation in the form of rain and snow, which fall on the windward slope. -
Alluvial Fans in the Death Valley Region California and Nevada
Alluvial Fans in the Death Valley Region California and Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 466 Alluvial Fans in the Death Valley Region California and Nevada By CHARLES S. DENNY GEOLOGICAL SURVEY PROFESSIONAL PAPER 466 A survey and interpretation of some aspects of desert geomorphology UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publications as follows: Denny, Charles Storrow, 1911- Alluvial fans in the Death Valley region, California and Nevada. Washington, U.S. Govt. Print. Off., 1964. iv, 61 p. illus., maps (5 fold. col. in pocket) diagrs., profiles, tables. 30 cm. (U.S. Geological Survey. Professional Paper 466) Bibliography: p. 59. 1. Physical geography California Death Valley region. 2. Physi cal geography Nevada Death Valley region. 3. Sedimentation and deposition. 4. Alluvium. I. Title. II. Title: Death Valley region. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Page Abstract.. _ ________________ 1 Shadow Mountain fan Continued Introduction. ______________ 2 Origin of the Shadow Mountain fan. 21 Method of study________ 2 Fan east of Alkali Flat- ___-__---.__-_- 25 Definitions and symbols. 6 Fans surrounding hills near Devils Hole_ 25 Geography _________________ 6 Bat Mountain fan___-____-___--___-__ 25 Shadow Mountain fan..______ 7 Fans east of Greenwater Range___ ______ 30 Geology.______________ 9 Fans in Greenwater Valley..-----_____. 32 Death Valley fans.__________--___-__- 32 Geomorpholo gy ______ 9 Characteristics of fans.._______-___-__- 38 Modern washes____. -
An Integrated Analysis of the March 2015 Atacama Floods
PUBLICATIONS Geophysical Research Letters RESEARCH LETTER An integrated analysis of the March 2015 10.1002/2016GL069751 Atacama floods Key Points: Andrew C. Wilcox1, Cristian Escauriaza2,3, Roberto Agredano2,3,EmmanuelMignot2,4, Vicente Zuazo2,3, • Unique atmospheric, hydrologic, and 2,3,5 2,3,6 2,3,7,8 2,3 9 geomorphic factors generated the Sebastián Otárola ,LinaCastro , Jorge Gironás , Rodrigo Cienfuegos , and Luca Mao fl largest ood ever recorded in the 1 2 Atacama Desert Department of Geosciences, University of Montana, Missoula, Montana, USA, Departamento de Ingeniería Hidráulica y 3 • The sediment-rich nature of the flood Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile, Centro de Investigación para la Gestión Integrada de resulted from valley-fill erosion rather Desastres Naturales (CIGIDEN), Santiago, Chile, 4University of Lyon, INSA Lyon, CNRS, LMFA UMR5509, Villeurbanne, France, than hillslope unraveling 5Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA, 6Escuela de • Anthropogenic factors increased the fi 7 consequences of the flood and Ingeniería Civil, Ponti cia Universidad Católica de Valparaíso, Valparaíso, Chile, Centro de Desarrollo Urbano Sustentable 8 highlight the need for early-warning (CEDEUS), Santiago, Chile, Centro Interdisciplinario de Cambio Global, Pontificia Universidad Católica de Chile, Santiago, systems Chile, 9Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Santiago, Chile Supporting Information: Abstract In March 2015 unusual ocean and atmospheric conditions produced many years’ worth of • Supporting Information S1 rainfall in a ~48 h period over northern Chile’s Atacama Desert, one of Earth’s driest regions, resulting in Correspondence to: catastrophic flooding. -
Bromine Geochemistry of Salar De Uyuni and Deeper Salt Crusts
... .............. * .. ........, ., ;: ... ... ........ .. ........, ., '_.~' . ...: .. ,... ' :, .. , ._... , .-. ,; ..,. _I. ................. .. ; . ... ............ ~ .. .- ............'. ............ .... , . :.. , *.,:.:-' ' .., '. -. - .. 'c..;..,. CHEMICAL /./da 3-4 GEOLOGY lSCL1lDlNri L ISOTOPE GEOSCIEiYCE ELSEVIER Chemical Geology 167 (2000) 373-392 www.elsevier.com/locate/chemgeo Bromine geochemistry of salar de Uyuni and deeper salt crusts, Central Altiplano, Bolivia I FranGois/Risacher a, Bertrand Fritz i E IRD-Centre de Géochiiliie de Ia Siriface, Fralice CNRS 1 rite Blessig, 67084 Strasboiirg Cedex, France Received 15 August 1999; accepted 13 December 1999 Abstract The salar of Uyuni, in the central Bolivian Altiplano, is probably the largest salt pan in the world (10000 km'). A 121 m deep well drilled in the central salar disclosed a complex evaporitic sequence of 12 salt crusts separated by 11 mud layers. In the lower half of the profile, thick halite beds alternate with thin mud layers. The mud layers thicken upwards and show clear lacustrine features. The thickness of the salt beds decreases markedly from the base upward. The bromine content of the halite ranges from 1.3 to 10.4 mg/kg. The halite does not originate from the evaporation of the dilute inflow waters of the Altiplano, which would lead to Br content of tens of mg/kg. The presence of halite of very low Br content (2 mg/kg) in a gypsum diapir strongly suggests that most of the halite deposited at Uyuni originated from the leaching of ancient salt formations associated with the numerous gypsum diapirs of the Altiplano. The deep and thick halite beds were probably deposited in a playa lake, as suggested by their very low and fairly constant Br content (1.6-2.3 mg/kg) and by the abundance of detrital minerals. -
Environments
EXTREME Environments Deborah Underwood EXTREME Environments Deborah Underwood Contents A World of Extremes 2 Chapter 1: The Coolest Places on Earth 4 Chapter 2: The Driest Desert 16 Chapter 3: Hot Spots 20 Chapter 4: Water, Water Everywhere 28 Chapter 5: The World’s Worst Climate? 36 Chapter 6: Under the Sea 42 Index 48 A World of Extremes Imagine a mountaintop where plumes of ice grow at the rate of one foot every hour, where you can watch a beautiful ice sculpture form over the course of one day. What about a desert where decades pass without rain, and the ground is dry and cracked in a thousand different places. How could anything possibly live there? Imagine winds that gust at speeds of 200 miles per hour. Could you survive out in the open with such winds blasting against you? How about temperatures of more than 130° Fahrenheit? What’s it like trying to survive in such harsh environments? 2 Now try to imagine a place that has never seen the sun’s rays. This is a place where there is nothing but darkness all day, all year round. What sort of creature could live there? Would it look like anything you’ve ever seen before? In this book we’ll visit some of Earth’s most extreme climates. We’ll see why these climates are so difficult to live in, and we’ll also check out some of the amazing creatures that call these places their homes. So grab a heavy coat, some sunscreen, an umbrella, and a big water bottle—we need to be ready for anything! 3 Chapter 1 The Coolest Places on Earth Got your parka zipped up and your gloves on? Good, because the first stop on our extreme climate tour will be one of the coldest places in the world. -
The Impact of ENSO in the Atacama Desert and Australian Arid Zone: Exploratory Time-Series Analysis of Archaeological Records
Chungara, Revista de Antropología Chilena ISSN: 0716-1182 [email protected] Universidad de Tarapacá Chile Williams, Alan; Santoro, Calogero M.; Smith, Michael A.; Latorre, Claudio The impact of ENSO in the Atacama desert and Australian arid zone: exploratory time-series analysis of archaeological records Chungara, Revista de Antropología Chilena, vol. 40, 2008, pp. 245-259 Universidad de Tarapacá Arica, Chile Available in: http://www.redalyc.org/articulo.oa?id=32609903 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative The impact of ENSO in the Atacama Desert and Australian arid zone:Volumen Exploratory 40 Número time-series Especial, analysis… 2008. Páginas 245-259245 Chungara, Revista de Antropología Chilena THE IMPACT OF ENSO IN THE ATACAMA DESERT AND AUSTRALIAN ARID ZONE: EXPLORATORY TIME-SERIES ANALYSIS OF ARCHAEOLOGICAL RECORDS1 EL IMPACTO DE ENSO EN EL DESIERTO DE ATACAMA Y LA ZONA ÁRIDA DE AUSTRALIA: ANÁLISIS EXPLORATORIOS DE SERIES TEMPORALES ARQUEOLÓGICAS Alan Williams2, Calogero M. Santoro3, Michael A. Smith4, and Claudio Latorre5 A comparison of archaeological data in the Atacama Desert and Australian arid zone shows the impact of the El Niño-Southern Oscillation (ENSO) over the last 5,000 years. Using a dataset of > 1400 radiocarbon dates from archaeological sites across the two regions as a proxy for population change, we develop radiocarbon density plots, which are then used to explore the responses of these prehistoric populations to ENSO climatic variability. -
Long Term Atmospheric Deposition As the Source of Nitrate and Other Salts in the Atacama Desert, Chile
Geochimica et Cosmochimica Acta, Vol. 68, No. 20, pp. 4023-4038, 2004 Copyright © 2004 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/04 $30.00 ϩ .00 doi:10.1016/j.gca.2004.04.009 Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions 1, 2 1 GREG MICHALSKI, *J.K.BÖHLKE and MARK THIEMENS 1Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093-0356, USA 2United States Geological Survey, 431 National Center, Reston, VA 20192, USA (Received August 19, 2003; accepted in revised form April 7, 2004) Abstract—Isotopic analysis of nitrate and sulfate minerals from the nitrate ore fields of the Atacama Desert in northern Chile has shown anomalous 17O enrichments in both minerals. ⌬17O values of 14–21 ‰ in nitrate and0.4to4‰insulfate are the most positive found in terrestrial minerals to date. Modeling of atmospheric processes indicates that the ⌬17O signatures are the result of photochemical reactions in the troposphere and stratosphere. We conclude that the bulk of the nitrate, sulfate and other soluble salts in some parts of the Atacama Desert must be the result of atmospheric deposition of particles produced by gas to particle conversion, with minor but varying amounts from sea spray and local terrestrial sources. Flux calculations indicate that the major salt deposits could have accumulated from atmospheric deposition in a period of 200,000 to 2.0 M years during hyper-arid conditions similar to those currently found in the Atacama Desert. -
Ncomms8100.Pdf
ARTICLE Received 14 Jul 2014 | Accepted 1 Apr 2015 | Published 11 May 2015 DOI: 10.1038/ncomms8100 Evidence for photochemical production of reactive oxygen species in desert soils Christos D. Georgiou1, Henry J. Sun2, Christopher P. McKay3, Konstantinos Grintzalis1, Ioannis Papapostolou1, Dimitrios Zisimopoulos1, Konstantinos Panagiotidis1, Gaosen Zhang4, Eleni Koutsopoulou5, George E. Christidis6 & Irene Margiolaki1 The combination of intense solar radiation and soil desiccation creates a short circuit in the biogeochemical carbon cycle, where soils release significant amounts of CO2 and reactive nitrogen oxides by abiotic oxidation. Here we show that desert soils accumulate metal superoxides and peroxides at higher levels than non-desert soils. We also show the photo- generation of equimolar superoxide and hydroxyl radical in desiccated and aqueous soils, respectively, by a photo-induced electron transfer mechanism supported by their mineralogical composition. Reactivity of desert soils is further supported by the generation of hydroxyl radical via aqueous extracts in the dark. Our findings extend to desert soils the photogeneration of reactive oxygen species by certain mineral oxides and also explain previous studies on desert soil organic oxidant chemistry and microbiology. Similar processes driven by ultraviolet radiation may be operating in the surface soils on Mars. 1 Department of Biology, University of Patras, Patras 26504, Greece. 2 Desert Research Institute, Las Vegas, Nevada 89119, USA. 3 NASA Ames Research Center, Moffett Field, California 94035, USA. 4 Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 73000, China. 5 Laboratory of Electron Microscopy and Microanalysis, University of Patras, Patras 26500, Greece. 6 Department of Mineral Resources Engineering, Technical University of Crete, Chania 73100, Greece. -
Atmospheric Deposition Across the Atacama Desert, Chile Compositions, Source Distributions, and Interannual Comparisons
Chemical Geology 525 (2019) 435–446 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Atmospheric deposition across the Atacama Desert, Chile: Compositions, source distributions, and interannual comparisons T ⁎ Jianghanyang Lia, Fan Wangb,c, , Greg Michalskia,d, Benjamin Wilkinsd a Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA b School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China c Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China d Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA ARTICLE INFO ABSTRACT Editor: Donald Porcelli Hyper-arid areas such as the Atacama Desert accumulated significant amounts of insoluble dust and soluble salts Keywords: from the atmosphere, providing minable salt deposits as well as mimicking the surface processes on Mars. The Atacama Desert deposition rates, compositions and sources, however, were poorly constrained. Especially, the variabilities of Atmospheric deposition atmospheric deposition in the Atacama Desert corresponding to a changing climate were unassessed. In this Interannual comparison work, the atmospheric depositions collected using dust traps across a west-east elevation gradient in the Sulfur isotopes Atacama (~23°S) from 1/2/2010 to 12/31/2011 were analyzed and compared to previous results in 2007–2009. The insoluble dust deposition rates in our sampling period were significantly higher than those of 2007–2009 in most dust traps, which was attributed to the changes in wind, highlighting the importance of long-term mon- itoring of insoluble dust fluxes. -
Desert-2.Pdf
Desert Contens Top Ten Facts PG 1 front cover 1 All Deserts are all different but they all have low amounts of rain PG 2 contens 2 Deserts normally have less than 40 CM a year 3 The Sahara desert is in Northern Africa and is over 12 different countries PG 3 top ten facts 4 Sahara desert is the largest desert in the Earth PG 4 whether and climate 5 Only around 20% of the Deserts on Earth are covered in sand 6 Around one third of the Earth's surface is covered in Desert PG 5 desert map 7 The largest cold Desert on Earth is Antarctica PG 6 animals and people that live there 8 Located in South America, the Atacama Desert is the driest place in the world PG 7 what grows there 9 Lots of animals live in Deserts such as the wild dog 10 The Arabian Desert in the Middle East is the second largest hot desert on Earth but is substantially smaller than the Sahara. This is a list of the deserts in Wether And Climate the world Arabian Desert. ... Kalahari Desert. ... Wether Mojave Desert. ... Sonoran Desert. ... Chihuahuan Desert. ... This is a map showing Deserts are usually very, very dry. Even the wettest deserts get less than ten Thar Desert. ... the deserts in the world inches of precipitation a year. In most places, rain falls steadily throughout the Gibson Desert. year. But in the desert, there may be only a few periods of rains per year with a lot of time between rains. -
Physical Map Unit
AfricaAnnabelle ate apples in the purple poppies. © 2015Physical Thomas Teaching Tools Map Annabelle ate apples in the purple poppies. © 2015 Thomas TeachingUnit Tools Thanks for Your Purchase! I hope you and your students enjoy this product. If you have any questions, you may contact me at [email protected]. © 2015 Thomas Teaching Tools © 2015 Thomas Teaching Tools Terms of Use This teaching resource includes one single-teacher classroom license. Photocopying this copyrighted product is permissible only for one teacher for single classroom use and for teaching purposes only. Duplication of this resource, in whole or in part, for other individuals, teachers, schools, institutions, or for commercial use is strictly forbidden without written permission from the author. This product may not be distributed, posted, stored, displayed, or shared electronically, digitally, or otherwise, without written permission of the author, MandyAnnabelle Thomas. ate Copying apples any in thepart purple of this poppies. product and placing it on the internet in any form (even a personal/classroom website) is strictly forbidden© 2015 Thomas and is a Teaching violation Toolsof the Digital Millennium Copyright Act (DMCA). You may purchase additional licenses at a reduced price on the “My Purchases”Annabelle page of TpTate ifapples you wish in the to purpleshare withpoppies. your fellow teachers, department, or school. If you have any questions, you may contact me© 2015 at [email protected] Thomas Teaching Tools . Thanks for downloading this product! I hope you and your students enjoy this resource. Feedback is greatly appreciated. Please fee free to contact me if you have any questions. My TpT Store: https://www.teacherspayteachers.com/Store/Tho mas-Teaching-Tools © 2015 Thomas Teaching Tools © 2015 Thomas Teaching Tools Teaching Notes Planning Suggestions This map unit is a great addition to any study of Africa. -
Bonneville Salt Flats Brenda B
The Sedimentary Record The Making of a Perfect Racetrack at the Bonneville Salt Flats Brenda B. Bowen1,2*, Jeremiah Bernau1, Evan L. Kipnis1, Jory Lerback1, Lily Wetterlin1, and Betsy Kleba3 1Geology and Geophysics, University of Utah, Salt Lake City, UT, USA 2Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, USA 3Lab & Operations, Exact Sciences, Salt Lake City, UT, USA *[email protected], 115 S 1460 E, Salt Lake City, UT, 84112-0102, (801) 585-5326 THE STORY OF THE SALT human presence— a century of racing, mining, and It is a unique experience being out on the salt at the recreation; and now, additionally, mitigation and adaptation Bonneville Salt Flats. The sun seems a bit too bright as light of diverse stakeholder communities reacting to the ever- reflects off the cubic halite crystals that cover the stark saline changing conditions. ground (Figure 1). There is a sense of isolation and vastness The Bonneville Salt Flats (BSF) is a perennial salt pan with the curvature of the earth visible on the horizon. There that spans over ~75 km2 adjacent to the Utah–Nevada is a profound silence. The only sound on some hot, dry days border (Figure 2). The extension of the Basin and Range is the crackling of halite crystals as they precipitate from lays the tectonic framework for the development of shallow brines. Void of any macro flora or fauna, the salt flat interbasinal playas, like the Bonneville Salt Flats, where ecosystem is only apparent in thin layers of bright green or groundwater flowpaths focus discharge and concentrate pink halite below the surface, or the insects that are trapped solutes in springs rimming playa boundaries (Gardner in the growing salt.