Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Stages of Fishes in the Western North Atlantic Ocean Volume
ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation. -
First Record of the Reticulated Dragonet, Callionymus Reticulatus
ACTA ICHTHYOLOGICA ET PISCATORIA (2017) 47 (2): 163–171 DOI: 10.3750/AIEP/02098 FIRST RECORD OF THE RETICULATED DRAGONET, CALLIONYMUS RETICULATUS VALENCIENNES, 1837 (ACTINOPTERYGII: CALLIONYMIFORMES: CALLIONYMIDAE), FROM THE BALEARIC ISLANDS, WESTERN MEDITERRANEAN Ronald FRICKE1* and Francesc ORDINES2 1Lauda-Königshofen, Germany 2Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Palma de Mallorca, Spain Fricke R., Ordines F. 2017. First record of the reticulated dragonet, Callionymus reticulatus Valenciennes, 1837 (Actinopterygii: Callionymiformes: Callionymidae), from the Balearic Islands, western Mediterranean. Acta Ichthyol. Piscat. 47 (2): 163–171. Background. The reticulated dragonet, Callionymus reticulatus, was originally described based on a single specimen, the holotype from Malaga, Spain, south-western Mediterranean, probably collected before 1831. The holotype is now disintegrated; the specific characteristics are no longer discernible. The species was subsequently recorded from several north-eastern Atlantic localities (Western Sahara to central Norway), but missing in the Mediterranean. Material and methods. Specimens of C. reticulatus were observed and collected during two cruises in 2014 and 2016 in the Balearic Islands off Mallorca and Menorca. The collected specimens (8 females) have been deposited in the collection of the Hebrew University of Jerusalem (HUJ). All individuals of C. reticulatus were collected from beam trawl samples carried out during the DRAGONSAL0914 in September 2014, and during the MEDITS_ES05_16 bottom trawl survey in June 2016, on shelf and slope bottoms around the Balearic Islands. Both surveys used a ‘Jennings’ beam trawl to sample the epi-benthic communities, which was the main objective of the DRAGONSAL0914 and a complementary objective in the MEDITS_ES05_16. The ‘Jennings’ beam trawl has a 2 m horizontal opening, 0.5 m vertical opening and a 5 mm diamond mesh in the codend. -
Venom Evolution Widespread in Fishes: a Phylogenetic Road Map for the Bioprospecting of Piscine Venoms
Journal of Heredity 2006:97(3):206–217 ª The American Genetic Association. 2006. All rights reserved. doi:10.1093/jhered/esj034 For permissions, please email: [email protected]. Advance Access publication June 1, 2006 Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms WILLIAM LEO SMITH AND WARD C. WHEELER From the Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027 (Leo Smith); Division of Vertebrate Zoology (Ichthyology), American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Leo Smith); and Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Wheeler). Address correspondence to W. L. Smith at the address above, or e-mail: [email protected]. Abstract Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism’s venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step in- volved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on ;1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, .1,200 fishes in 12 clades should be presumed venomous. -
Diet of the Australian Sea Lion (Neophoca Cinerea): an Assessment of Novel DNA-Based and Contemporary Methods to Determine Prey Consumption
Diet of the Australian sea lion (Neophoca cinerea): an assessment of novel DNA-based and contemporary methods to determine prey consumption Kristian John Peters BSc (hons), LaTrobe University, Victoria Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Adelaide (October, 2016) 2 DECLARATION OF ORIGINALITY I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. -
Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E. -
A Preliminary Assessment of the Deepwater Benthic Communities of the Great Australian Bight Marine Park
MMaarriinnee EEnnvviirroonnmmeenntt && EEccoollooggyy A preliminary assessment of the deepwater benthic communities of the Great Australian Bight Marine Park David R. Currie and Shirley J. Sorokin SARDI Publication No. F2011/000526-1 SARDI Research Report Series No. 592 SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 December 2011 Report to the South Australian Department of Environment and Natural Resources and the Commonwealth Department of Sustainability, Environment, Water, Population and Communities A preliminary assessment of the deepwater benthic communities of the Great Australian Bight Marine Park Report to the South Australian Department of Environment and Natural Resources and the Commonwealth Department of Sustainability, Environment, Water, Population and Communities David R. Currie and Shirley J. Sorokin SARDI Publication No. F2011/000526-1 SARDI Research Report Series No. 592 December 2011 Currie, D.R. and Sorokin, S.J. (2011) Deepwater benthos of the GABMP This Publication may be cited as: Currie, D.R. and Sorokin, S.J (2011). A preliminary assessment of the deepwater benthic communities of the Great Australian Bight Marine Park. Report to the South Australian Department of Environment and Natural Resources and the Commonwealth Department of Sustainability, Environment, Water, Population and Communities. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2011/000526- 1. SARDI Research Report Series No. 592. 61pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. -
239 January 2015 S SEAMAP ENVIRONMENTAL and BIOLOGICAL ATLAS of the GULF of MEXICO, 2013
environmental and biological atlas of p the gulf of mexico 2013 a m a e gulf states marine fisheries commission number 239 january 2015 s SEAMAP ENVIRONMENTAL AND BIOLOGICAL ATLAS OF THE GULF OF MEXICO, 2013 Edited by Jeffrey K. Rester Gulf States Marine Fisheries Commission Manuscript Design and Layout Ashley P. Lott Gulf States Marine Fisheries Commission GULF STATES MARINE FISHERIES COMMISSION January 2015 Number 239 This project was supported in part by the National Oceanic and Atmospheric Administration, National Marine Fisheries Service, under State/Federal Project Number NA11NMF4350028. GULF STATES MARINE FISHERIES COMMISSION COMMISSIONERS ALABAMA N. Gunter Guy, Jr. Senator R.L. “Bret” Allain, II Alabama Department of Conservation 600 Main Street, Suite 1 and Natural Resources Franklin, LA 70538 64 North Union Street Montgomery, AL 36130-1901 Campo “Camp” Matens 4554 Emory Avenue Steve McMillan Baton Rouge, LA 70808 P.O. Box 337 Bay Minette, AL 36507 MISSISSIPPI Jamie Miller, Executive Director Chris Nelson Mississippi Department of Marine Resources Bon Secour Fisheries, Inc. 1141 Bayview Avenue P.O. Box 60 Biloxi, MS 39530 Bon Secour, AL 36511 Senator Brice Wiggins FLORIDA 1501 Roswell Street Nick Wiley, Executive Director Pascagoula, MS 39581 FL Fish and Wildlife Conservation Commission 620 South Meridian Street Joe Gill, Jr. Tallahassee, FL 32399-1600 Joe Gill Consulting, LLC 910 Desoto Street Senator Thad Altman Ocean Springs, MS 39566-0535 State Senator, District 24 6767 North Wickham Road, Suite 211 TEXAS Melbourne, FL 32940 Carter Smith, Executive Director Texas Parks and Wildlife Department Michael Hansen 4200 Smith School Road 393 Cooperwood Road Austin, TX 78744 Crawfordville, FL 32327 Troy B. -
Description of Key Species Groups in the East Marine Region
Australian Museum Description of Key Species Groups in the East Marine Region Final Report – September 2007 1 Table of Contents Acronyms........................................................................................................................................ 3 List of Images ................................................................................................................................. 4 Acknowledgements ....................................................................................................................... 5 1 Introduction............................................................................................................................ 6 2 Corals (Scleractinia)............................................................................................................ 12 3 Crustacea ............................................................................................................................. 24 4 Demersal Teleost Fish ........................................................................................................ 54 5 Echinodermata..................................................................................................................... 66 6 Marine Snakes ..................................................................................................................... 80 7 Marine Turtles...................................................................................................................... 95 8 Molluscs ............................................................................................................................ -
Below the Mesophotic C
www.nature.com/scientificreports OPEN Below the Mesophotic C. C. Baldwin1, L. Tornabene2 & D. R. Robertson3 Mesophotic coral ecosystems, which occur at depths of ~40 to 150 m, have received recent scientifc attention as potential refugia for organisms inhabiting deteriorating shallow reefs. These ecosystems merit research in their own right, as they harbor both depth-generalist species and a distinctive reef-fsh Received: 31 August 2017 fauna. Reef ecosystems just below the mesophotic are globally underexplored, and the scant recent literature that mentions them often suggests that mesophotic ecosystems transition directly into Accepted: 12 February 2018 those of the deep sea. Through submersible-based surveys in the Caribbean Sea, we amassed the most Published: xx xx xxxx extensive database to date on reef-fsh diversity between ~40 and 309 m at any single tropical location. Our data reveal a unique reef-fsh assemblage living between ~130 and 309 m that, while taxonomically distinct from shallower faunas, shares strong evolutionary afnities with them. Lacking an existing name for this reef-faunal zone immediately below the mesophotic but above the deep aphotic, we propose “rariphotic.” Together with the “altiphotic,” proposed here for the shallowest reef-faunal zone, and the mesophotic, the rariphotic is part of a depth continuum of discrete faunal zones of tropical reef fshes, and perhaps of reef ecosystems in general, all of which warrant further study in light of global declines of shallow reefs. Studies of deep tropical-reef ecosystems have surged during the past decade1–10. This is due in part to the global decline of shallow coral reefs having sparked interest in the potential for deep reefs to act as refugia for shallow-water organisms stressed by warming surface waters or deteriorating reefs. -
SEDAR31-RD43- VERSAR Oil and Gas Platform Biological Assessment.Pdf
Literature Search and Data Synthesis of Biological Information for Use in Management Decisions Concerning Decommissioning of Offshore Oil and Gas Structures in the Gulf of Mexico Versar, Inc. SEDAR31-RD43 16 August 2012 1 2 3 4 5 6 LITERATURE SEARCH AND DATA SYNTHESIS 7 OF BIOLOGICAL INFORMATION FOR USE IN 8 MANAGEMENT DECISIONS 9 CONCERNING DECOMMISSIONING OF 10 OFFSHORE OIL AND GAS STRUCTURES 11 IN THE GULF OF MEXICO 12 13 Contract # 1435-01-05-39082 14 DRAFT 15 16 17 18 19 20 21 22 23 DRAFT 24 LITERATURE SEARCH AND 25 DATA SYNTHESIS 26 OF BIOLOGICAL INFORMATION 27 FOR USE IN MANAGEMENT DECISIONS 28 CONCERNING DECOMMISSIONING 29 OF OFFSHORE OIL AND 30 GAS STRUCTURES 31 IN THE GULF OF MEXICO 32 33 Contract # 1435-01-05-39082 34 35 36 37 38 39 Prepared for 40 41 Minerals Management Service 42 381 Elden Street, MS 2100 43 Herndon, Virginia 20170 44 45 46 47 48 Prepared by 49 50 Versar, Inc. 51 9200 Rumsey Road 52 Columbia, Maryland 21045 53 54 55 56 57 58 February 2008 59 60 FOREWORD 61 62 63 This report is the product of a Project Team effort lead by Versar, Inc. under Contract 64 No. 1435-01-05-39082 from the Minerals Management Service, U.S. Department of Interior. 65 Versar Project Managers over the term of the contract included Drs. Jon V0lstad, Edward 66 Weber, and William Richkus. Versar had responsibility for overall project coordination, 67 literature search and acquisition, synthesis and preparation of background information, 68 integration of individual contributions from the team Principal Investigators, and summarizing 69 research needs. -
Mcmillan NZ Fishes Vol 2
New Zealand Fishes Volume 2 A field guide to less common species caught by bottom and midwater fishing New Zealand Aquatic Environment and Biodiversity Report No. 78 ISSN 1176-9440 2011 Cover photos: Top – Naked snout rattail (Haplomacrourus nudirostris), Peter Marriott (NIWA) Centre – Red pigfish (Bodianus unimaculatus), Malcolm Francis. Bottom – Pink maomao (Caprodon longimanus), Malcolm Francis. New Zealand fishes. Volume 2: A field guide to less common species caught by bottom and midwater fishing P. J McMillan M. P. Francis L. J. Paul P. J. Marriott E. Mackay S.-J. Baird L. H. Griggs H. Sui F. Wei NIWA Private Bag 14901 Wellington 6241 New Zealand Aquatic Environment and Biodiversity Report No. 78 2011 Published by Ministry of Fisheries Wellington 2011 ISSN 1176-9440 © Ministry of Fisheries 2011 McMillan, P.J.; Francis, M.P.; Paul, L.J.; Marriott, P.J; Mackay, E.; Baird, S.-J.; Griggs, L.H.; Sui, H.; Wei, F. (2011). New Zealand fishes. Volume 2: A field guide to less common species caught by bottom and midwater fishing New Zealand Aquatic Environment and Biodiversity Report No.78. This series continues the Marine Biodiversity Biosecurity Report series which ended with MBBR No. 7 in February 2005. CONTENTS PAGE Purpose of the guide 4 Organisation of the guide 4 Methods used for the family and species guides 5 Data storage and retrieval 7 Acknowledgments 7 Section 1: External features of fishes and glossary 9 Section 2: Guide to families 15 Section 3: Guide to species 31 Section 4: References 155 Index 1 – Alphabetical list of family -
View/Download
SYNGNATHIFORMES (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 5.0 - 29 June 2021 Order SYNGNATHIFORMES (part 2 of 2) Suborder DACTYLOPTEROIDEI Family DACTYLOPTERIDAE Flying Gurnards 2 genera · 7 species Dactyloptena Jordan & Richardson 1908 daktylos, finger; ptenos, winged, presumably referring to large, wing-like pectoral fins supported by finger-like rays, similar to the fingers of bat wings Dactyloptena gilberti Snyder 1909 in honor of ichthyologist Charles Henry Gilbert (1859-1928), Stanford University Dactyloptena macracantha (Bleeker 1855) macro-, long or large; acantha, spine, presumably referring to single elongate spine anterior to continuous part of spinous dorsal fin Dactyloptena orientalis (Cuvier 1829) eastern, presumably referring to its occurrence east (Coromandel coast, India, eastern Indian Ocean) of Dactylopterus volitans, its presumed (and only known) congener at the time Dactyloptena papilio Ogilby 1910 butterfly, allusion not explained, perhaps referring to wing-like pectoral fins that resemble a butterfly’s (when seen from above) Dactyloptena peterseni (Nyström 1887) in honor of Julius W. Petersen, director of a telegraph company in Nagasaki, Japan, where he collected type Dactyloptena tiltoni Eschmeyer 1997 in honor of Thomas Tilton (San Francisco, California, USA), for the Tilton family’s support of the research activities of the California Academy of Sciences Dactylopterus Lacepède 1801 daktylos, finger; pterus, fin, referring to large, wing-like pectoral fins supported