Differentiation During Lymphoid and Myeloid Cell and Heterogeneous Expression of IRF8 a Reporter Mouse Reveals Lineage-Specific

Total Page:16

File Type:pdf, Size:1020Kb

Differentiation During Lymphoid and Myeloid Cell and Heterogeneous Expression of IRF8 a Reporter Mouse Reveals Lineage-Specific A Reporter Mouse Reveals Lineage-Specific and Heterogeneous Expression of IRF8 during Lymphoid and Myeloid Cell Differentiation This information is current as of September 25, 2021. Hongsheng Wang, Ming Yan, Jiafang Sun, Shweta Jain, Ryusuke Yoshimi, Sanaz Momben Abolfath, Keiko Ozato, William G. Coleman, Jr., Ashley P. Ng, Donald Metcalf, Ladina DiRago, Stephen L. Nutt and Herbert C. Morse III J Immunol 2014; 193:1766-1777; Prepublished online 14 Downloaded from July 2014; doi: 10.4049/jimmunol.1301939 http://www.jimmunol.org/content/193/4/1766 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2014/07/13/jimmunol.130193 Material 9.DCSupplemental References This article cites 63 articles, 36 of which you can access for free at: http://www.jimmunol.org/content/193/4/1766.full#ref-list-1 by guest on September 25, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts Errata An erratum has been published regarding this article. Please see next page or: /content/193/9/4749.full.pdf The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology A Reporter Mouse Reveals Lineage-Specific and Heterogeneous Expression of IRF8 during Lymphoid and Myeloid Cell Differentiation Hongsheng Wang,* Ming Yan,† Jiafang Sun,* Shweta Jain,* Ryusuke Yoshimi,‡ Sanaz Momben Abolfath,* Keiko Ozato,x William G. Coleman, Jr.,† Ashley P. Ng,{,‖ Donald Metcalf,{,‖ Ladina DiRago,{ Stephen L. Nutt,{,‖ and Herbert C. Morse, III* The IFN regulatory factor family member 8 (IRF8) regulates differentiation of lymphoid and myeloid lineage cells by promoting or suppressing lineage-specific genes. How IRF8 promotes hematopoietic progenitors to commit to one lineage while preventing the development of alternative lineages is not known. In this study, we report an IRF8–EGFP fusion protein reporter mouse that revealed previously unrecognized patterns of IRF8 expression. Differentiation of hematopoietic stem cells into oligopotent pro- Downloaded from genitors is associated with progressive increases in IRF8-EGFP expression. However, significant induction of IRF8-EGFP is found in granulocyte–myeloid progenitors and the common lymphoid progenitors but not the megakaryocytic–erythroid progenitors. Surprisingly, IRF8-EGFP identifies three subsets of the seemingly homogeneous granulocyte–myeloid progenitors with an inter- mediate level of expression of EGFP defining bipotent progenitors that differentiation into either EGFPhi monocytic progenitors or EGFPlo granulocytic progenitors. Also surprisingly, IRF8-EGFP revealed a highly heterogeneous pre–pro-B population with a fluorescence intensity ranging from background to 4 orders above background. Interestingly, IRF8–EGFP readily distinguishes http://www.jimmunol.org/ true B cell committed (EGFPint) from those that are noncommitted. Moreover, dendritic cell progenitors expressed extremely high levels of IRF8-EGFP. Taken together, the IRF8-EGFP reporter revealed previously unrecognized subsets with distinct develop- mental potentials in phenotypically well-defined oligopotent progenitors, providing new insights into the dynamic heterogeneity of developing hematopoietic progenitors. The Journal of Immunology, 2014, 193: 1766–1777. ematopoietic stem cells (HSCs) constantly differentiate The plasticity of hematopoietic differentiation has long been into all blood cell lineages via distinct differentiation known and recently was confirmed at single-cell level by Naik et al. H programs. Lineage specification and commitment are (7) using a novel “cellular barcoding” technique. The develop- by guest on September 25, 2021 marked by timely activation of one set of transcription factors mental heterogeneity of lineage progenitor cells has led not only associated with downregulation of other set(s) of transcription to inconsistencies in identifying phenotypes of intermediate stage factors important for alternate cell lineage potential. Although early cells but also to difficulties in positioning the newly found pre- studies led to the proposal that the flow of intermediate cells within cursors in the orderly progression of lineage differentiation path- each lineage is fixed (1, 2), recent evidence suggests otherwise— ways. For example, macrophages are thought to derive from that oligopotent progenitor differentiation is very “plastic,” espe- myeloid progenitors, whereas dendritic cells (DCs) are thought to cially when the host is stressed, by infection for example. This develop from separate pathways originating from either common causes reprogramming of early lymphoid and myeloid progenitors lymphoid progenitors (CLPs) or common myeloid progenitor leading to enhanced development of myeloid lineage cells but (CMPs) (1, 8–11). However, it was recently found that macro- curbed production of lymphoid lineage cells (3–6). phage–DC progenitors (MDPs) with a phenotype of CD117+ *Virology and Cellular Immunology Section, Laboratory of Immunogenetics, Na- Victoria (to A.P.N.), and the Victorian State Government Operational Infrastructure. tional Institute of Allergy and Infectious Diseases, National Institutes of Health, S.L.N. was supported by an Australian Research Council Future fellowship. Rockville, MD 20852; †Laboratory of Biochemistry and Genetics, National Institute H.W. designed, directed and performed experiments, analyzed data, and wrote the of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, paper; M.Y., J.S., S.J., R.Y., S.M.A., A.P.N., D.M., and L.D. designed and performed Bethesda, MD 20892; ‡Department of Internal Medicine and Clinical Immunology, experiments; A.P.N. wrote the paper; K.O., W.G.C., S.L.N. and H.C.M. directed the Yokohama City University Graduate School of Medicine, Yokohama 236-0004, x research; and H.C.M. steered the research, analyzed data, and wrote the paper. Japan; Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; {Walter Address correspondence and reprint requests to Dr. Herbert C. Morse, III, and and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; and Dr. Hongsheng Wang, National Institute of Allergy and Infectious Diseases, National ‖Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852. E-mail addresses: Australia [email protected] (H.C.M.) and [email protected] (H.W.) Received for publication July 22, 2013. Accepted for publication June 10, 2014. The online version of this article contains supplemental material. This work was supported by the Intramural Research Program of the National In- Abbreviations used in this article: 7AAD, 7-aminoactinomycin D; B6, C57BL/6J; stitutes of Health’s National Institute of Allergy and Infectious Diseases (to H.W., BM, bone marrow; CDP, common DC progenitor; CLP, common lymphoid progen- J.S., S.J., S.M.A., and H.C.M.), the National Institute of Child Health and Human itor; CMP, common myeloid progenitor; DC, dendritic cell; Flt3L, Flt3 ligand; Fr., Development (to R.Y. and K.O.), and the National Institute of Diabetes and Digestive fraction; GMP, granulocyte–monocyte progenitor; HSC, hematopoietic stem cell; and Kidney Diseases (to M.Y. and W.G.C.). A.P.N., L.D., and D.M. were supported IRF8, IFN regulatory factor family member 8; MDP, macrophage–DC progenitor; by Program Grant 1016647 and Independent Research Institutes Infrastructure Sup- MEP, megakaryocyte–erythroid progenitor; pDC, plasmacytoid DC; PreGM, pre- port Scheme Grant 361646 from the Australian National Health and Medical Re- granulocyte–macrophage; qPCR, quantitative real-time PCR; SCF, stem cell factor; search Council. This work was also supported by the Carden fellowship (to D.M.) WT, wild-type. from the Cancer Council of Victoria, a Cure Cancer Australia/Leukaemia Foundation Australia postdoctoral fellowship and a Lions fellowship from the Cancer Council of www.jimmunol.org/cgi/doi/10.4049/jimmunol.1301939 The Journal of Immunology 1767 + CX3CR1 can give rise to both macrophages and DCs (12). These Clonogenic colony assays findings suggest that most, if not all, well-characterized progenitor Cultures were performed with sorted populations using semisolid agar populations are heterogeneous at the clonal level, even though cultures in 1-ml volumes of 0.3% agar in IMDM containing 20% v/v they appear to have a homogeneous phenotype by certain criteria. newborn calf serum using cytokine stimuli as previously described (26), Most of our current knowledge of how blood cells are made incubated for 7 d in a fully humidified atmosphere of 5% CO2 in air. came from studies of transcription factors. One of a series of tran- Cultures were fixed, dried onto glass slides, and stained for acetylcholin- esterase and then with Luxol fast blue and hematoxylin
Recommended publications
  • Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells Carola E
    Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells Carola E. Dehler, Katherine Lester, Giulia Della Pelle, Luc Jouneau, Armel Houel, Catherine Collins, Tatiana Dovgan, This information is current as Radek Machat, Jun Zou, Pierre Boudinot, Samuel A. M. of September 26, 2021. Martin and Bertrand Collet J Immunol published online 29 May 2019 http://www.jimmunol.org/content/early/2019/05/28/jimmun ol.1801376 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/05/28/jimmunol.180137 Material 6.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 29, 2019, doi:10.4049/jimmunol.1801376 The Journal of Immunology Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells Carola E. Dehler,* Katherine Lester,† Giulia Della Pelle,‡ Luc Jouneau,‡ Armel Houel,‡ Catherine Collins,† Tatiana Dovgan,*,† Radek Machat,‡,1 Jun Zou,*,2 Pierre Boudinot,‡ Samuel A.
    [Show full text]
  • A Molecular Switch from STAT2-IRF9 to ISGF3 Underlies Interferon-Induced Gene Transcription
    ARTICLE https://doi.org/10.1038/s41467-019-10970-y OPEN A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription Ekaterini Platanitis 1, Duygu Demiroz1,5, Anja Schneller1,5, Katrin Fischer1, Christophe Capelle1, Markus Hartl 1, Thomas Gossenreiter 1, Mathias Müller2, Maria Novatchkova3,4 & Thomas Decker 1 Cells maintain the balance between homeostasis and inflammation by adapting and inte- grating the activity of intracellular signaling cascades, including the JAK-STAT pathway. Our 1234567890():,; understanding of how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. Here, we use an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)-induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and IFN-γ cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA. 1 Max Perutz Labs (MPL), University of Vienna, Vienna 1030, Austria. 2 Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria. 3 Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria. 4 Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria.
    [Show full text]
  • Partner-Regulated Interaction of IFN Regulatory Factor 8 with Chromatin Visualized in Live Macrophages
    Partner-regulated interaction of IFN regulatory factor 8 with chromatin visualized in live macrophages Leopoldo Laricchia-Robbio*, Tomohiko Tamura*, Tatiana Karpova†, Brian L. Sprague†, James G. McNally†, and Keiko Ozato*‡ *Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753; and †Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055 Edited by Laurie H. Glimcher, Harvard School of Public Health, Boston, MA, and approved August 18, 2005 (received for review May 17, 2005) IFN regulatory factor (IRF) 8 is a transcription factor that directs protein–protein interactions on fluorescence recovery have not macrophage differentiation. By fluorescence recovery after pho- been extensively studied. Moreover, many FRAP studies so far tobleaching, we visualized the movement of IRF8-GFP in differen- reported are qualitative, lacking quantitative insight into the tiating macrophages. Recovery data fitted to mathematical models chromatin-binding events. More recent efforts to fit FRAP data revealed two binding states for IRF8. The majority of IRF8 was to mathematical models begin to provide a clearer knowledge on highly mobile and transiently interacted with chromatin, whereas the property of FRAP mobility (16, 17). a small fraction of IRF8 bound to chromatin more stably. IRF8 IRF8, a member of the IFN regulatory factor (IRF) family, is mutants that did not stimulate macrophage differentiation a key factor that guides the development of macrophages (18). showed a faster recovery, revealing little interaction with chro- We previously established an in vitro model system where matin. A macrophage activation signal by IFN-␥͞LPS led to a global IRF8Ϫ/Ϫ myeloid progenitor cells called Tot2 differentiate into slowdown of IRF8 movement, leading to increased chromatin macrophages upon IRF8 introduction (19).
    [Show full text]
  • An Immunoevasive Strategy Through Clinically-Relevant Pan-Cancer Genomic and Transcriptomic Alterations of JAK-STAT Signaling Components
    bioRxiv preprint doi: https://doi.org/10.1101/576645; this version posted March 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An immunoevasive strategy through clinically-relevant pan-cancer genomic and transcriptomic alterations of JAK-STAT signaling components Wai Hoong Chang1 and Alvina G. Lai1, 1Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, United Kingdom Since its discovery almost three decades ago, the Janus ki- Although cytokines are responsible for inflammation in nase (JAK)-signal transducer and activator of transcription cancer, spontaneous eradication of tumors by endoge- (STAT) pathway has paved the road for understanding inflam- nous immune processes rarely occurs. Moreover, the matory and immunity processes related to a wide range of hu- dynamic interaction between tumor cells and host immu- man pathologies including cancer. Several studies have demon- nity shields tumors from immunological ablation, which strated the importance of JAK-STAT pathway components in overall limits the efficacy of immunotherapy in the clinic. regulating tumor initiation and metastatic progression, yet, the extent of how genetic alterations influence patient outcome is far from being understood. Focusing on 133 genes involved in Cytokines can be pro- or anti-inflammatory and are inter- JAK-STAT signaling, we found that copy number alterations dependent on each other’s function to maintain immune underpin transcriptional dysregulation that differs within and homeostasis(3).
    [Show full text]
  • Role of Perforin-2 in Regulating Type I Interferon Signaling
    https://www.scientificarchives.com/journal/journal-of-cellular-immunology Journal of Cellular Immunology Review Article Role of Perforin-2 in Regulating Type I Interferon Signaling Gregory V Plano, Noula Shembade* Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center Miller School of Medicine, University of Miami, Miami, FL 33136, USA *Correspondence should be addressed to Noula Shembade; [email protected] Received date: November 21, 2020, Accepted date: February 02, 2021 Copyright: © 2021 Plano G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Sepsis is a systemic inflammatory response caused by a harmful host immune reaction that is activated in response to microbial infections. Infection-induced type I interferons (IFNs) play critical roles during septic shock. Type I IFNs initiate their biological effects by binding to their transmembrane interferon receptors and initiating the phosphorylation and activation of tyrosine kinases TYK2 and JAK1, which promote phosphorylation and activation of STAT molecules. Type I IFN-induced activation of JAK/STAT pathways is a complex process and not well understood. Improper regulation of type I IFN responses can lead to the development of infectious and inflammation-related diseases, including septic shock, autoimmune diseases, and inflammatory syndromes. This review is mainly focused on the possible mechanistic roles of the transmembrane Perforin-2 molecule in the regulation of type I IFN- induced signaling. Keywords: JAK/STAT, Interferons, TYK2, STATs, Perforin-2, IFNAR1, IFNAR2 and Signaling Introduction and activator of transcription 2), respectively, under normal physiological conditions [4,5].
    [Show full text]
  • Transcription Factor IRF8 Directs a Silencing Programme for TH17 Cell Differentiation
    ARTICLE Received 17 Aug 2010 | Accepted 13 Apr 2011 | Published 17 May 2011 DOI: 10.1038/ncomms1311 Transcription factor IRF8 directs a silencing programme for TH17 cell differentiation Xinshou Ouyang1, Ruihua Zhang1, Jianjun Yang1, Qingshan Li1, Lihui Qin2, Chen Zhu3, Jianguo Liu4, Huan Ning4, Min Sun Shin5, Monica Gupta6, Chen-Feng Qi5, John Cijiang He1, Sergio A. Lira1, Herbert C. Morse III5, Keiko Ozato6, Lloyd Mayer1 & Huabao Xiong1 TH17 cells are recognized as a unique subset of T helper cells that have critical roles in the pathogenesis of autoimmunity and tissue inflammation. Although OR Rγt is necessary for the generation of TH17 cells, the molecular mechanisms underlying the functional diversity of TH17 cells are not fully understood. Here we show that a member of interferon regulatory factor (IRF) family of transcription factors, IRF8, has a critical role in silencing TH17-cell differentiation. Mice with a conventional knockout, as well as a T cell-specific deletion, of the Irf8 gene exhibited more efficient TH17 cells. Indeed, studies of an experimental model of colitis showed that IRF8 deficiency resulted in more severe inflammation with an enhanced TH17 phenotype. IRF8 was induced steadily and inhibited TH17-cell differentiation during TH17 lineage commitment at least in part through its physical interaction with RORγt. These findings define IRF8 as a novel intrinsic transcriptional inhibitor of TH17-cell differentiation. 1 Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, New York 10029, USA. 2 Department of Pathology, Mount Sinai School of Medicine, New York, New York 10029, USA.
    [Show full text]
  • Identification of Differentially Expressed Genes in Human Breast
    www.impactjournals.com/oncotarget/ Oncotarget, 2018, Vol. 9, (No. 2), pp: 2475-2501 Research Paper Identification of differentially expressed genes in human breast cancer cells induced by 4-hydroxyltamoxifen and elucidation of their pathophysiological relevance and mechanisms Qi Fang1, Shuang Yao2, Guanghua Luo2 and Xiaoying Zhang2 1Department of Breast Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China 2Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China Correspondence to: Xiaoying Zhang, email: [email protected] Guanghua Luo, email: [email protected] Keywords: breast cancer; MCF-7; 4-hydroxyl tamoxifen; STAT1; STAT2 Received: June 05, 2017 Accepted: December 13, 2017 Published: December 20, 2017 Copyright: Fang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT While tamoxifen (TAM) is used for treating estrogen receptor (ER)a-positive breast cancer patients, its anti-breast cancer mechanisms are not completely elucidated. This study aimed to examine effects of 4-hydroxyltamoxifen (4-OH- TAM) on ER-positive (ER+) breast cancer MCF-7 cell growth and gene expression profiles. MCF-7 cell growth was inhibited by 4-OH-TAM dose-dependently with IC50 of 29 μM. 332 genes were up-regulated while 320 genes were down-regulated. The mRNA levels of up-regulated genes including STAT1, STAT2, EIF2AK2, TGM2, DDX58, PARP9, SASH1, RBL2 and USP18 as well as down-regulated genes including CCDN1, S100A9, S100A8, ANXA1 and PGR were confirmed by quantitative real-time PCR (qRT- PCR).
    [Show full text]
  • Vs. BCR-ABL-Positive Cells to Interferon Alpha
    Schubert et al. Journal of Hematology & Oncology (2019) 12:36 https://doi.org/10.1186/s13045-019-0722-9 RESEARCH Open Access Differential roles of STAT1 and STAT2 in the sensitivity of JAK2V617F- vs. BCR-ABL- positive cells to interferon alpha Claudia Schubert1, Manuel Allhoff2, Stefan Tillmann1, Tiago Maié2, Ivan G. Costa2, Daniel B. Lipka3, Mirle Schemionek1, Kristina Feldberg1, Julian Baumeister1, Tim H. Brümmendorf1, Nicolas Chatain1† and Steffen Koschmieder1*† Abstract Background: Interferon alpha (IFNa) monotherapy is recommended as the standard therapy in polycythemia vera (PV) but not in chronic myeloid leukemia (CML). Here, we investigated the mechanisms of IFNa efficacy in JAK2V617F- vs. BCR-ABL-positive cells. Methods: Gene expression microarrays and RT-qPCR of PV vs. CML patient PBMCs and CD34+ cells and of the murine cell line 32D expressing JAK2V617F or BCR-ABL were used to analyze and compare interferon-stimulated gene (ISG) expression. Furthermore, using CRISPR/Cas9n technology, targeted disruption of STAT1 or STAT2, respectively, was performed in 32D-BCR-ABL and 32D-JAK2V617F cells to evaluate the role of these transcription factors for IFNa efficacy. The knockout cell lines were reconstituted with STAT1, STAT2, STAT1Y701F, or STAT2Y689F to analyze the importance of wild-type and phosphomutant STATs for the IFNa response. ChIP-seq and ChIP were performed to correlate histone marks with ISG expression. Results: Microarray analysis and RT-qPCR revealed significant upregulation of ISGs in 32D-JAK2V617F but downregulation in 32D-BCR-ABL cells, and these effects were reversed by tyrosine kinase inhibitor (TKI) treatment. Similar expression patterns were confirmed in human cell lines, primary PV and CML patient PBMCs and CD34+ cells, demonstrating that these effects are operational in patients.
    [Show full text]
  • A Dual Cis-Regulatory Code Links IRF8 to Constitutive and Inducible Gene Expression in Macrophages
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages Alessandra Mancino,1,3 Alberto Termanini,1,3 Iros Barozzi,1 Serena Ghisletti,1 Renato Ostuni,1 Elena Prosperini,1 Keiko Ozato,2 and Gioacchino Natoli1 1Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy; 2Laboratory of Molecular Growth Regulation, Genomics of Differentiation Program, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA The transcription factor (TF) interferon regulatory factor 8 (IRF8) controls both developmental and inflammatory stimulus-inducible genes in macrophages, but the mechanisms underlying these two different functions are largely unknown. One possibility is that these different roles are linked to the ability of IRF8 to bind alternative DNA sequences. We found that IRF8 is recruited to distinct sets of DNA consensus sequences before and after lipopolysaccharide (LPS) stimulation. In resting cells, IRF8 was mainly bound to composite sites together with the master regulator of myeloid development PU.1. Basal IRF8–PU.1 binding maintained the expression of a broad panel of genes essential for macrophage functions (such as microbial recognition and response to purines) and contributed to basal expression of many LPS-inducible genes. After LPS stimulation, increased expression of IRF8, other IRFs, and AP-1 family TFs enabled IRF8 binding to thousands of additional regions containing low-affinity multimerized IRF sites and composite IRF–AP-1 sites, which were not premarked by PU.1 and did not contribute to the basal IRF8 cistrome.
    [Show full text]
  • C/Ebpα Is an Essential Collaborator in Hoxa9/Meis1-Mediated Leukemogenesis
    C/EBPα is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis Cailin Collinsa, Jingya Wanga, Hongzhi Miaoa, Joel Bronsteina, Humaira Nawera, Tao Xua, Maria Figueroaa, Andrew G. Munteana, and Jay L. Hessa,b,1 aDepartment of Pathology, University of Michigan, Ann Arbor, MI 48109; and bIndiana University School of Medicine, Indianapolis, IN 46202 Edited* by Louis M. Staudt, National Institutes of Health, Bethesda, MD, and approved May 19, 2014 (received for review February 12, 2014) Homeobox A9 (HOXA9) is a homeodomain-containing transcrip- with Hoxa9. In addition, C/EBP recognition motifs are enriched tion factor that plays a key role in hematopoietic stem cell expan- at Hoxa9 binding sites. sion and is commonly deregulated in human acute leukemias. A C/EBPα is a basic leucine-zipper transcription factor that plays variety of upstream genetic alterations in acute myeloid leukemia a critical role in lineage commitment during hematopoietic dif- −/− (AML) lead to overexpression of HOXA9, almost always in associ- ferentiation (18). Whereas Cebpa mice show complete loss of ation with overexpression of its cofactor meis homeobox 1 (MEIS1). the granulocytic compartment, recent work shows that loss of α A wide range of data suggests that HOXA9 and MEIS1 play a syn- C/EBP in adult HSCs leads to both an increase in the number ergistic causative role in AML, although the molecular mechanisms of functional HSCs and an increase in their proliferative and leading to transformation by HOXA9 and MEIS1 remain elusive. In repopulating capacity (19, 20). Conversely, CEBPA overexpression can promote transdifferentiation of a variety of fibroblastic cells to this study, we identify CCAAT/enhancer binding protein alpha (C/ the myeloid lineage and can induce monocytic differentiation in EBPα) as a critical collaborator required for Hoxa9/Meis1-mediated α MLL-fusion protein-mediated leukemias (21, 22).
    [Show full text]
  • Test Summary Flyer-NGS Panels.Pub
    Cancer‐related Mutaon Analysis Next Generaon Gene Sequencing for Myeloid Tesng Assay Summary IU Health Molecular Pathology Laboratory now offers high throughput sequencing for hot spot mutations found in clinically relevant cancer genes. In addition to a general panel of 54 genes, selected panels have been developed for a more tai- lored application in specific cancers. Comparing to single gene assay, these panels offer a more comprehensive and eco- nomic way to assess prognosis and/or treatment options for cancer patients at the initial diagnosis or at the relapse. Orderable Name: Use IU Health Molecular Pathology requisition; Call 317.491.6417 for requisition. Panels include: AML Mutations by NGS ASXL1, CEBPA, DNMT3A, ETV6/TEL, FLT3, HRAS, IDH1, IDH2, KIT, KRAS, MLL, NPM1, NRAS, PHF6, RUNX1, TET2, TP53, WT1 MDS Mutations by NGS ASXL1, ATRX, BCOR, BCORL1, ETV6/TEL, DNMT3A, EZH2, GNAS, IDH1, IDH2, RUNX1, SF3B1, SRSF2, TET2, TP53, U2AF1, ZRSR2 CML Mutations by NGS ABL1 MPN Mutations by NGS ASXL1, BRAF, CALR, CSF3R, EZH2, IKZF1, JAK2, JAK3, KDM6A, KIT, MPL, PDGRA, SETBP1, TET2 CMML Mutations by NGS ASXL1, CBL, CBLB, CBLC, EZH2, RUNX1, TET2, TP53, SRSF2 JMML Mutations by NGS CBL, CBLB, CBLC, HRAS, KRAS, NRAS, PTPN11 ALL Mutations by NGS ABL1, CSF3R, FBXW7, IKZF1, JAK3, KDM6A, NOTCH1 CLL Mutations by NGS MYD88, NOTCH1, SF3B1, TP53 Lymphoma/Myeloma Mutations by NGS BRAF, CDKN2A, CSF3R, FBXW7, HRAS, KRAS, MYD88, NOTCH1, NRAS, SF3B1,TP53 Hematopoietic Neoplasms Mutations by NGS ABL1, ASXL1, ATRX, BCOR, BCORL1, BRAF, CALR, CBL, CBLB, CBLC,CDKN2A, CEBPA, CSF3R, CUX1, DNMT3A, ETV6/TEL, EZH2, FBXW7, FLT3, GATA1, GATA2, GNAS, HRAS, IDH1, IDH2, IKZF1,JAK2, JAK3, KDM6A, KIT, KRAS, MLL, MPL, MYD88, NOTCH1, NPM1, NRAS, PDGFRA, PHF6, PTEN, PTPN11, RAD21, RUNX1,SETBP1, SF3B1, SMC1A, SMC3, SRSF2, STAG2, TET2, TP53, U2AF1, WT1, ZRSR2 Clinical Utility: This test is useful for the assessment of prognosis and/or treatment options for cancer patients at the initial diagnosis or at the relapse.
    [Show full text]
  • Table S1. Complete Gene Expression Data from Human Diabetes RT² Profiler™ PCR Array Receptors, Transporters & Channels* A
    Table S1. Complete gene expression data from Human Diabetes RT² Profiler™ PCR Array Position Unigene GenBank Symbol Description FC Average Ct Receptors, Transporters & Channels* NGT GDM A01 Hs,5447 NM_000352 ABCC8 ATP-binding cassette, sub-family C (CFTR/MRP), member 8 0.93 35.00 35.00 A04 0Hs,2549 NM_000025 ADRB3 Adrenergic, beta-3-, receptor 0.88 34.92 35.00 A07 Hs,1307 NM_000486 AQP2 Aquaporin 2 (collecting duct) 0.93 35.00 35.00 A09 30Hs,5117 NM_001123 CCR2 Chemokine (C-C motif) receptor 2 1.00 26.28 26.17 A10 94Hs,5916 396NM_006139 CD28 CD28 molecule 0.81 34.51 34.71 A11 29Hs,5126 NM_001712 CEACAM1 Carcinoembryonic antigen-related cell adhesion molecule 1 1.31 26.08 25.59 B01 82Hs,2478 NM_005214 CTLA4 (biliaryCytotoxic glycoprotein) T-lymphocyte -associated protein 4 0.53 30.90 31.71 B11 24Hs,208 NM_000160 GCGR Glucagon receptor 0.93 35.00 35.00 C01 Hs,3891 NM_002062 GLP1R Glucagon-like peptide 1 receptor 0.93 35.00 35.00 C07 03Hs,6434 NM_000201 ICAM1 Intercellular adhesion molecule 1 0.84 28.74 28.89 D02 47Hs,5134 NM_000418 IL4R Interleukin 4 receptor 0.64 34.22 34.75 D06 57Hs,4657 NM_000208 INSR Insulin receptor 0.93 35.00 35.00 E05 44Hs,4312 NM_006178 NSF N-ethylmaleimide-sensitive factor 0.48 28.42 29.37 F08 79Hs,2961 NM_004578 RAB4A RAB4A, member RAS oncogene family 0.88 20.55 20.63 F10 69Hs,7287 NM_000655 SELL Selectin L 0.97 23.89 23.83 F11 56Hs,3806 NM_001042 SLC2A4 Solute carrier family 2 (facilitated glucose transporter), member 4 0.77 34.72 35.00 F12 91Hs,5111 NM_003825 SNAP23 Synaptosomal-associated protein, 23kDa 3.90
    [Show full text]