Arxiv:2010.07641V1 [Quant-Ph] 15 Oct 2020 Regime
Quantum experiments with microscale particles James Millen Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom∗ Benjamin A. Stickler Faculty of Physics, University of Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany and QOLS, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom Quantum theory is incredibly successful, explaining the microscopic world with great accuracy, from the behaviour of subatomic particles to chemical reactions to solid-state electronics. There is not a single experimental finding challenging its predictions, and ever more quantum phenomena are exploited in technology, including interferometric sensing and quantum cryptography. In order to explore novel applications and test the validity of quantum physics at the macroscale researchers strive to prepare ever heavier and bigger objects in quantum superpositions. Experiments with levitated microscale particles are about to push this quest into uncharted waters. Time INTRODUCTION Section I: Levitation (optical, electrical, magnetic) Despite the incredible successes of quantum theory over the last 100 years, debates continue as to its univer- sal validity. Applying the predictions of quantum the- Section II: Cooling ory to macroscopic objects has always puzzled physicists (cavity, feedback, other) and philosophers alike [1]. While decoherence theories can explain the emergence of classicality [2], the fun- damental question remains as to whether basic quan- Section III: Interference tum phenomena, such as the archetypal superposition (grating, trapped, discrete principle, are universally valid [3]. This has been fa- system, rotational) mously acknowledged by Anthony Leggett, admitting that `by day, you would see me sitting at my desk solv- Figure 1. Macroscopic quantum interference experiments re- ing Schr¨odinger'sequation' while at night he is convinced quire three stages of particle manipulation: levitation, cool- that `at some point between the atom and the human ing, and interference/detection.
[Show full text]