First Life: Discovering the Connections Between Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cometary Panspermia a Radical Theory of Life’S Cosmic Origin and Evolution …And Over 450 Articles, ~ 60 in Nature
35 books: Cosmic origins of life 1976-2020 Physical Sciences︱ Chandra Wickramasinghe Cometary panspermia A radical theory of life’s cosmic origin and evolution …And over 450 articles, ~ 60 in Nature he combined efforts of generations supporting panspermia continues to Prof Wickramasinghe argues that the seeds of all life (bacteria and viruses) Panspermia has been around may have arrived on Earth from space, and may indeed still be raining down some 100 years since the term of experts in multiple fields, accumulate (Wickramasinghe et al., 2018, to affect life on Earth today, a concept known as cometary panspermia. ‘primordial soup’, referring to Tincluding evolutionary biology, 2019; Steele et al., 2018). the primitive ocean of organic paleontology and geology, have painted material not-yet-assembled a fairly good, if far-from-complete, picture COMETARY PANSPERMIA – cultural conceptions of life dating back galactic wanderers are normal features have argued that these could not into living organisms, was first of how the first life on Earth progressed A SOLUTION? to the ideas of Aristotle, and that this of the cosmos. Comets are known to have been lofted from the Earth to a coined. The question of how from simple organisms to what we can The word ‘panspermia’ comes from the may be the source of some of the have significant water content as well height of 400km by any known process. life’s molecular building blocks see today. However, there is a crucial ancient Greek roots ‘sperma’ meaning more hostile resistance the idea of as organics, and their cores, kept warm Bacteria have also been found high in spontaneously assembled gap in mainstream understanding - seed, and ‘pan’, meaning all. -
First Life in Primordial-Planet Oceans: the Biological Big Bang Gibson/Wickramasinghe/Schild First Life in Primordial-Planet Oceans: the Biological Big Bang
Journal of Cosmology First life in primordial-planet oceans: the biological big bang Gibson/Wickramasinghe/Schild First life in primordial-planet oceans: the biological big bang Carl H. Gibson 1,2 1 University of California San Diego, La Jolla, CA 92093-0411, USA [email protected], http://sdcc3.ucsd.edu/~ir118 N. Chandra Wickramasinghe3,4 3Cardiff Centre for Astrobiology, 24 Llwynypia Road, Lisvane, Cardiff CF14 0SY [email protected] Rudolph E. Schild5,6 5 Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 6 [email protected] Abstract: A scenario is presented for the formation of first life in the universe based on hydro- gravitational-dynamics (HGD) cosmology. From HGD, the dark matter of galaxies is H-He gas dominated planets (primordial-fog-particle PFPs) in million solar mass clumps (protoglobularstar- cluster PGCs), which formed at the plasma to gas transition temperature 3000 K. Stars result from mergers of these hot-gas-planets. Over-accretion causes stars to explode as supernovae that scatter life-chemicals (C, N, O, P, S, Ca, Fe etc.) to other planets in PGC clumps and beyond. These chemicals were first collected gravitationally by merging PFPs to form H-saturated, high-pressure, dense oceans of critical-temperature 647 K water over iron-nickel cores at ~ 2 Myr. Stardust fertil- izes the formation of first life in a cosmic hot-ocean soup kitchen comprised of all planets and their moons in meteoric communication, > 10100 kg in total. Ocean freezing at 273 K slows this biologi- cal big bang at ~ 8 Myr. HGD cosmology confirms that the evolving seeds of life are scattered on intergalactic scales by Hoyle-Wickramasinghe cometary panspermia. -
NASA Astrobiology Institute 2018 Annual Science Report
A National Aeronautics and Space Administration 2018 Annual Science Report Table of Contents 2018 at the NAI 1 NAI 2018 Teams 2 2018 Team Reports The Evolution of Prebiotic Chemical Complexity and the Organic Inventory 6 of Protoplanetary Disk and Primordial Planets Lead Institution: NASA Ames Research Center Reliving the Past: Experimental Evolution of Major Transitions 18 Lead Institution: Georgia Institute of Technology Origin and Evolution of Organics and Water in Planetary Systems 34 Lead Institution: NASA Goddard Space Flight Center Icy Worlds: Astrobiology at the Water-Rock Interface and Beyond 46 Lead Institution: NASA Jet Propulsion Laboratory Habitability of Hydrocarbon Worlds: Titan and Beyond 60 Lead Institution: NASA Jet Propulsion Laboratory The Origins of Molecules in Diverse Space and Planetary Environments 72 and Their Intramolecular Isotope Signatures Lead Institution: Pennsylvania State University ENIGMA: Evolution of Nanomachines in Geospheres and Microbial Ancestors 80 Lead Institution: Rutgers University Changing Planetary Environments and the Fingerprints of Life 88 Lead Institution: SETI Institute Alternative Earths 100 Lead Institution: University of California, Riverside Rock Powered Life 120 Lead Institution: University of Colorado Boulder NASA Astrobiology Institute iii Annual Report 2018 2018 at the NAI In 2018, the NASA Astrobiology Program announced a plan to transition to a new structure of Research Coordination Networks, RCNs, and simultaneously planned the termination of the NASA Astrobiology Institute -
Reflections ...Gordon
Reflections . Gordon Ada Life as a Biochemist Coming to Grips with Viruses Foreword It must be hard for recent graduates in many biological disciplines to appreciate what the frontiers of our knowledge were 50 years ago. The author majored in Biochemistry at the University of Sydney during the war and in 1948, joined the staff of the Walter and Eliza Hall Institute (WEHI) officially to help establish new biophysical techniques (moving boundary electrophoresis and ultracentrifugation), but spent most of the time doing research on virus-related topics. Macfarlane Burnet, a famous virologist, had become the Director of the Institute in 1942. This account describes some of the relevant biochemical findings made during the period 1948-60. Discovering the Secrets of the Influenza Virus The 1918-19 influenza pandemic killed at least 20 million people, more than the combined casualties of the two World Wars. Burnet, part way through his medical course at Melbourne University when it reached Australia, fortunately suffered only a mild infection, but the global and local effects remained a strong memory. On becoming Director of WEHI, and concerned that a similar pandemic might soon occur, he decided to make a determined effort to understand how the influenza virus infected and replicated inside cells and caused disease. Virtually all non-clinical scientists in the Institute were to become involved in this task. When I arrived in 1948, there were two other biochemists - Henry Holden, who earlier had achieved fame in the UK in elucidating the structure of haemoglobin, and Alfred Gottschalk (see Box 1), a carbohydrate specialist, who had escaped from Nazi Germany and joined the Institute in 1942. -
Evidence to Clinch the Theory of Extraterrestrial Life
obiolog str y & f A O u o l t a r e n a Chandra Wickramasinghe, Astrobiol Outreach 2015, 3:2 r c u h o J Journal of Astrobiology & Outreach DOI: 10.4172/2332-2519.1000e107 ISSN: 2332-2519 EditorialResearch Article OpenOpen Access Access Evidence to Clinch the Theory of Extraterrestrial Life Chandra Wickramasinghe N1,2,3 1Buckingham Centre for Astrobiology (BCAB), Buckingham University, UK 2Institute for the Study of Panspermia and Astroeconomics, Gifu, Japan 3University of Peradeniya, Peradeniya, Sri Lanka New data may serve to bring about the long overdue paradigm probe) appears to have been finally vindicated, both by the discovery of shift from theories of Earth-centred life to life being a truly cosmic organic molecules on the surface, and more dramatically by the recent phenomenon. The theory that bacteria and viruses similar to those discovery of time-variable spikes in methane observed by the Curiosity on Earth exist in comets, other planets and generally throughout the galaxy was developed as a serious scientific discipline from the early 1980’s [1-4]. Throughout the past three decades this idea has often been Relectivity Spectrum the subject of criticism, denial or even ridicule. Even though many discoveries in astronomy, geology and biology continued to provide supportive evidence for the theory of cosmic life, the rival theory of Earth-centered biology has remained deeply rooted in scientific culture. However, several recent developments are beginning to strain the credibility of the standard point of view. The great abundance of highly complex organic molecules in interstellar clouds [5], the plentiful existence of habitable planets in the galaxy numbering over 100 billion and separated one from another just by a few light years [6], the extreme space-survival properties of bacteria and viruses -make it exceedingly difficult to avoid the conclusion that the entire galaxy is a single connected biosphere. -
Ames Research Center
Research and Technology NASA Ames Research Research and Technology Ames Research Center National Aeronautics and Space Administration Ames Research Center Moffett Field, California NASA TM-112195 Foreword The mission of NASA Ames Research Center is to research, develop, verify, and transfer advanced aeronautics, space, and related technologies; to advance and communicate scientific knowledge and understanding of the universe, the solar system, and the Earth; and to enable the development of space for human enterprise. Empha- sis is placed on information systems technologies for aeronautics and space applications; on aviation operations systems; and on the discipline of astrobiology, the study of life in the universe encompassing the Earth, space, and life sciences. This report highlights the challenging work accomplished during fiscal year 1996 by Ames research scientists, engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U. S. leadership in aeronautics and space research and technology development. The accomplishments span the range of goals of NASA’s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space, and Mission to Planet Earth. The primary purpose of this report is to communicate information—to inform our stakeholders, customers, and partners, and the people of the United States about the scope and diversity of Ames’ mission, the nature of Ames’ research and technology activities, and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is making to improve the quality of life for our citizens and the economic position of the United States in the world marketplace. -
Constraining Prebiotic Chemistry Through a Better Understanding of Earth’S Earliest Environments
Constraining prebiotic chemistry through a better understanding of Earth’s earliest environments Timothy W. Lyons (University of California, Riverside), Phone: 951-827-3106, Email: [email protected] Co-authors: Karyn Rogers (Rensselaer Polytechnic Institute), Ramanarayanan Krishnamurthy (Scripps Research Institute), Loren Williams (Georgia Institute of Technology), Simone Marchi (Southwest Research Institute), Edward Schwieterman (Univ. of California, Riverside), Dustin Trail (Univ. of Rochester), Noah Planavsky (Yale Univ.), Christopher Reinhard (Georgia Institute of Technology) Co-signatories: Vladimir Airapetian (NASA GSFC/American Univ.), Jan Amend (Univ. of Southern California), Ariel Anbar (Arizona State Univ.), Jose Aponte (NASA GSFC/Catholic Univ. of America), Giada Arney (NASA GSFC), Laura Barge (NASA Jet Propulsion Laboratory, California Institute of Technology), Steven Benner (Foundation for Applied Molecular Evolution), Roy Black (Univ. of Washington), Dennis Bong (Ohio State Univ.), Donald Burke-Aguero (Univ. of Missouri), Jeffrey Catalano (Washington Univ.), David Catling (Univ. of Washington), George Cody (Carnegie Institution for Science), Jason Dworkin (NASA GSFC), Jamie Elsila (NASA GSFC), Paul Falkowski (Rutgers Univ.), Daniel Glavin (NASA GSFC), Heather Graham (NASA GSFC/Catholic Univ. of America), Nicholas Hud (Georgia Institute of Technology), James Kasting (Penn State Univ.), Sarah Keller (Univ. of Washington), Jun Korenaga (Yale Univ.), Ravi Kumar Kopparapu (NASA GSFC), Susan Lang (Univ. of South Carolina), -
A Defense of a Sentiocentric Approach to Environmental Ethics
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 Minding Nature: A Defense of a Sentiocentric Approach to Environmental Ethics Joel P. MacClellan University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Ethics and Political Philosophy Commons Recommended Citation MacClellan, Joel P., "Minding Nature: A Defense of a Sentiocentric Approach to Environmental Ethics. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1433 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Joel P. MacClellan entitled "Minding Nature: A Defense of a Sentiocentric Approach to Environmental Ethics." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Philosophy. John Nolt, Major Professor We have read this dissertation and recommend its acceptance: Jon Garthoff, David Reidy, Dan Simberloff Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) MINDING NATURE: A DEFENSE OF A SENTIOCENTRIC APPROACH TO ENVIRONMENTAL ETHICS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Joel Patrick MacClellan August 2012 ii The sedge is wither’d from the lake, And no birds sing. -
Primordial Planets, Comets and Moons Foster Life in the Cosmos
Primordial planets, comets and moons foster life in the cosmos Carl H. Gibsona*, N. Chandra Wickramasingheb and Rudolph E. Schildc a UCSD, La Jolla, CA, 92093-0411, USA; b Cardiff Univ., Cardiff, UK; c Harvard, Cambridge, MA, USA ABSTRACT A key result of hydrogravitational dynamics cosmology relevant to astrobiology is the early formation of vast numbers of hot primordial-gas planets in million-solar-mass clumps as the dark matter of galaxies and the hosts of first life. Photon viscous forces in the expanding universe of the turbulent big bang prevent fragmentations of the plasma for mass scales smaller than protogalaxies. At the plasma to gas transition 300,000 years after the big bang, the 107 decrease in kinematic viscosity ν explains why ~3x107 planets are observed to exist per star in typical galaxies like the Milky Way, not eight or nine. Stars form by a binary accretional cascade from Earth-mass primordial planets to progressively larger masses that collect and recycle the stardust chemicals of life produced when stars overeat and explode. The astonishing complexity of molecular biology observed on Earth is possible to explain only if enormous numbers of primordial planets and their fragments have hosted the formation and wide scattering of the seeds of life virtually from the beginning of time. Geochemical and biological evidence suggests that life on Earth appears at the earliest moment it can survive, in highly evolved forms with complexity requiring a time scale in excess of the age of the galaxy. This is quite impossible within standard cold-dark-matter cosmology where planets are relatively recent, rare and cold, completely lacking mechanisms for intergalactic transport of life forms. -
Cause of Cambrian Explosion - Terrestrial Or Cosmic?
Progress in Biophysics and Molecular Biology xxx (2018) 1e21 Contents lists available at ScienceDirect Progress in Biophysics and Molecular Biology journal homepage: www.elsevier.com/locate/pbiomolbio Cause of Cambrian Explosion - Terrestrial or Cosmic? * Edward J. Steele a, j, , Shirwan Al-Mufti b, Kenneth A. Augustyn c, Rohana Chandrajith d, John P. Coghlan e, S.G. Coulson b, Sudipto Ghosh f, Mark Gillman g, Reginald M. Gorczynski h, Brig Klyce b, Godfrey Louis i, Kithsiri Mahanama j, Keith R. Oliver k, Julio Padron l, Jiangwen Qu m, John A. Schuster n, W.E. Smith o, Duane P. Snyder b, Julian A. Steele p, Brent J. Stewart a, Robert Temple q, Gensuke Tokoro o, Christopher A. Tout r, Alexander Unzicker s, Milton Wainwright b, j, Jamie Wallis b, Daryl H. Wallis b, Max K. Wallis b, John Wetherall t, D.T. Wickramasinghe u, J.T. Wickramasinghe b, N. Chandra Wickramasinghe b, j, o, Yongsheng Liu v, w a CY O'Connor ERADE Village Foundation, Piara Waters, WA, Australia b Buckingham Centre for Astrobiology, University of Buckingham, UK c Center for the Physics of Living Organisms, Department of Physics, Michigan Technological University, Michigan, United States d Department of Geology, University of Peradeniya, Peradeniya, Sri Lanka e University of Melbourne, Office of the Dean, Faculty Medicine, Dentistry and Health Sciences, 3rd Level, Alan Gilbert Building, Australia f Metallurgical & Materials Engineering IIT, Kanpur, India g South African Brain Research Institute, 6 Campbell Street, Waverly, Johannesburg, South Africa h University Toronto -
Rosalind Franklin and the Discovery of the Double Helix
University of Calgary PRISM: University of Calgary's Digital Repository Conferences History of Medicine Days 2009 Recognition, Integrity, and the "Secret of Life": Rosalind Franklin and the Discovery of the Double Helix Vanderpool, Julian Cambridge Scholars Publishing Vanderpool, J. "Recognition, Integrity, and the 'Secret of Life': Rosalind Franklin and the Discovery of the Double Helix". The Proceedings of the 18th Annual History of Medicine Days, March 6th and 7th, 2009 University of Calgary, Faculty of Medicine, Calgary, AB. p. 227-246 http://hdl.handle.net/1880/48970 journal article Downloaded from PRISM: https://prism.ucalgary.ca RECOGNITION, INTEGRITY, AND THE “SECRET OF LIFE”: ROSALIND FRANKLIN AND THE DISCOVERY OF THE DOUBLE HELIX JULIAN VANDERPOOL SUMMARY: The discovery of the enigmatic structure of DNA was one of the greatest scientific discoveries of the 20th century. In April 1953, James Watson (b. 1928) and Francis Crick (1916-2004), discovered the molecular structure of DNA and published their findings in Nature. A major breakthrough in understanding the structure of DNA, however, came from Rosalind Franklin (1920-1958) who provided a photograph of DNA’s double helical structure. Watson himself said that when he saw the photo, “my mouth fell open, and my pulse began to race.” This paper examines Rosalind Franklin’s contributions to the discovery of DNA’s structure, and considers what the modern scientific and medical community can learn from her life and research. It will use biographies of Rosalind Franklin, written by Anne Sayre and Brenda Maddox, as well as her original research data available from the National Library of Medicine. -
A Search for Amino Acids and Nucleobases in the Martian Meteorite Roberts Massif 04262 Using Liquid Chromatography-Mass Spectrometry
https://ntrs.nasa.gov/search.jsp?R=20150001268 2020-01-04T14:26:43+00:00Z Meteoritics & Planetary Science 48, Nr 5, 786–795 (2013) doi: 10.1111/maps.12103 A search for amino acids and nucleobases in the Martian meteorite Roberts Massif 04262 using liquid chromatography-mass spectrometry Michael P. CALLAHAN1*, Aaron S. BURTON2, Jamie E. ELSILA1, Eleni M. BAKER3, Karen E. SMITH4, Daniel P. GLAVIN1, and Jason P. DWORKIN1 1National Aeronautics and Space Administration Goddard Space Flight Center and The Goddard Center for Astrobiology, Greenbelt, Maryland 20771, USA 2NASA Postdoctoral Program Administered by Oak Ridge Associated Universities, Greenbelt, Maryland 20771, USA 3Bullis School, 10601 Falls Road, Potomac, Maryland 20854, USA 4Department of Geosciences and Penn State Astrobiology Research Center, Pennsylvania State University, 220 Deike Building, University Park, Pennsylvania 16802, USA *Corresponding author. E-mail: [email protected] (Received 14 October 2012; revision accepted 30 January 2013) Abstract–The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography-mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot-water extracts with high relative abundances of b-alanine and c-amino-n-butyric acid.