Heinz Decker.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Heinz Decker.Pdf Oxygen and the Evolution of Life . Heinz Decker l Kensal E. van Holde Oxygen and the Evolution of Life Professor Dr. Heinz Decker Kensal E. van Holde Institut fu¨r Molekulare Biophysik Distinguished Professor Emeritus Johannes Gutenberg-Universita¨t Mainz Dept of Biochemistry and Biophysics Jakob Welder Weg. 26 Oregon State University 55128 Mainz, Germany Corvallis OR 97331 [email protected] USA [email protected] ISBN 978-3-642-13178-3 e-ISBN 978-3-642-13179-0 DOI 10.1007/978-3-642-13179-0 # Springer Heidelberg Dordrecht London New York # Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover illustration: Different oxygen transport (respiratory) proteins developed after the oxygen concentration increased some billion years ago: earthworm hemoglobin (red), arthropod hemocyanin (scorpion), mollusc hemocyanin (cephalopod) (front cover, clockwise) and the myriapod hemocyanin (back cover); see also Fig. 5.8. The molecules artwork are courtesy of Ju¨rgen Markl, Institute for Zoology, Johannes Gutenberg University Mainz. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Preface This book has a curious history. It evolved, like its subject, from a much simpler beginning. Both the authors have had long-standing common interests in the proteins and processes of oxygen transport in animals. During a sabbatical year that KvH spent in the laboratory of HD, our discussions broadened to encompass the much deeper question as to how oxygen transport, and indeed oxygen utiliza- tion, were related to the evolution of life. As we considered the geological and paleontological evidence, it became clear that changes in the earth’s atmosphere and biological evolution have been, and continue to be, interrelated in complex and fascinating ways. Furthermore, these relationships have important implications for human health and humanity’s future. Thus, the book grew outward from its original focus on oxygen transport, sometimes into areas in which we must confess less confidence than we would like. But, we must ask the reader’s indulgence, for we feel that the fascination of the whole story such that it is vital to try to tell it. One of us (KvH) wishes to express his thanks to the Alexander von Humboldt Foundation, whose generous support allowed the sabbatical in the Decker labora- tory. Later, both started the book at the stimulating environment of the Marine Biological Laboratory at Woods Hole where HD spent his sabbatical. Some readers may find Chapter 1 daunting, with too much dry chemistry. Skip it if you wish! Although we feel that it provides a useful background for the rest of the book, most of the following Chapters can be read intelligently without this material. We would like to thank Dr. Helmut Ko¨nig, Dr. Wolfgang Mu¨ller-Klieser, and Dr. Harald Paulsen (University of Mainz) for critical reading of several parts of the book and Christian Lozanosky for his help with the figures. We also thank Dr. Jutta Lindenborn (Springer) for all her help with the publishing process. We would like to express our thanks to our wives, Ina Decker and (the late) Barbara van Holde for their patience during the past years. Mainz, Germany Heinz Decker Corvallis, OR, USA Kensal E. van Holde v . Contents 1 Oxygen, Its Nature and Chemistry: What Is so Special About This Element? .............................................................. 1 1.1 A Brief Introduction to Oxygen ....................................... 1 1.2 Atomic Structure of Oxygen: Chemical Bonding Potential .......... 2 1.3 The Dioxygen Molecule ............................................... 5 1.4 Reactive Oxygen Species ............................................. 8 1 À* 1.4.1 Superoxide O2 ............................................... 8 1.4.2 Hydrogen peroxide (H2O2) ..................................... 9 1.4.3 Peroxyl radical (ROO*) ......................................... 9 1.5 Ozone ................................................................. 10 1.6 Water ................................................................. 12 1.7 Water Vapor in the Atmosphere ..................................... 15 1.8 Carbon Dioxide ....................................................... 15 1.9 Solubility of Gases in Water ......................................... 16 1.10 Hydrolysis and Dehydration: Central Water Reactions inBiology ........................................................... 16 1.11 Redox Reactions ...................................................... 17 References .. ................................................................ 18 2 A Brief History of Oxygen ................................................ 21 2.1 Cosmic History of the Elements ....................................... 21 2.1.1 The Sun and Solar System ...................................... 24 2.2 Formation of Earth ..................................................... 25 2.3 The Primordial Environment .......................................... 27 2.3.1 Atmosphere of the Early Earth ................................. 27 2.3.2 Water on the Earth’ Surface: The Origin of Oceans ........... 29 2.3.3 The First Greenhouse Effect .................................... 29 2.4 Life: Its Origins and Earliest Development ... ........................ 30 2.5 A Billion Years of Life Without Dioxygen: Anaerobic Metabolism ... 32 2.5.1 Some Principles of Metabolism ................................ 32 2.6 The Invention of Photosynthesis ...................................... 35 vii viii Contents 2.7 How Oxygenic Photosynthesis Remodeled the Earth ................. 38 2.7.1 The First Rise of Dioxygen ..................................... 38 2.7.2 Effects on Life: An Ecological Catastrophe? .................. 39 2.7.3 Effects on the Earth ............................................. 40 References .. ................................................................ 41 3 Coping with Oxygen ...................................................... 43 3.1 The Impact of Oxygenation on an Anaerobic World ................. 43 3.2 Production of Reactive Oxygen Species .............................. 44 3.3 Coping with Reactive Oxygen Species ................................ 47 3.3.1 Scavenger Molecules ........................................... 47 3.3.2 Enzymes for Detoxification of ROS ............................ 49 3.3.3 Antioxidant Enzyme Systems .................................. 51 3.4 How to Avoid Reactive Oxygen Species? ............................ 52 3.5 Evolving Defense Strategies ........................................... 53 3.5.1 Aggregation for Defense ........................................ 53 3.5.2 Melanin ......................................................... 54 3.5.3 Oxygen Transport Proteins Prevent Creation of Oxygen Radicals ............................................. 55 3.6 Reactive Oxygen Species as Cellular Signals . ........................ 56 3.7 Dioxygen as a Signal: Oxygen Sensor ................................ 56 3.8 Summary: Reactive Oxygen Species and Life ........................ 57 References .. ................................................................ 58 4 Aerobic Metabolism: Benefits from an Oxygenated World ........... 61 4.1 The Advantage to Being Aerobic ..................................... 61 4.2 Evolution of an Aerobic Metabolism .................................. 62 4.2.1 Special Mechanisms Needed for Aerobic Metabolism ........ 62 4.2.2 When and How Did Aerobes Arise? ... ........................ 63 4.3 Eukaryotes: The Next Step in Evolution .............................. 67 4.3.1 Distinction Between Prokaryotes and Eukaryotes ............. 67 4.3.2 The Symbiotic Hypothesis ...................................... 67 4.4 The Last Great Leap: Multicellular Organisms, “Metazoans” ........ 69 4.4.1 When, Why, and How? ......................................... 69 4.4.2 Collagen and Cholesterin ....................................... 70 4.4.3 Half a Billion Years of Stasis? ................................. 71 4.4.4 Emergence and Extinction of the Ediacaran Fauna ............ 72 4.4.5 The Bilateral Body Plan ........................................ 73 4.4.6 The “Cambrian Explosion”: Fact or Artifact? ................. 74 References .. ................................................................ 76 5 Facilitated Oxygen Transport ............................................ 79 5.1 How to Deliver Dioxygen to Animal Tissues? ...................... 79 5.2 Modes of Delivery .................................................... 80 Contents ix 5.2.1 Diffusion from the Surface .................................... 80 5.2.2 Transport via Blood as a Dissolved Gas .....................
Recommended publications
  • Cometary Panspermia a Radical Theory of Life’S Cosmic Origin and Evolution …And Over 450 Articles, ~ 60 in Nature
    35 books: Cosmic origins of life 1976-2020 Physical Sciences︱ Chandra Wickramasinghe Cometary panspermia A radical theory of life’s cosmic origin and evolution …And over 450 articles, ~ 60 in Nature he combined efforts of generations supporting panspermia continues to Prof Wickramasinghe argues that the seeds of all life (bacteria and viruses) Panspermia has been around may have arrived on Earth from space, and may indeed still be raining down some 100 years since the term of experts in multiple fields, accumulate (Wickramasinghe et al., 2018, to affect life on Earth today, a concept known as cometary panspermia. ‘primordial soup’, referring to Tincluding evolutionary biology, 2019; Steele et al., 2018). the primitive ocean of organic paleontology and geology, have painted material not-yet-assembled a fairly good, if far-from-complete, picture COMETARY PANSPERMIA – cultural conceptions of life dating back galactic wanderers are normal features have argued that these could not into living organisms, was first of how the first life on Earth progressed A SOLUTION? to the ideas of Aristotle, and that this of the cosmos. Comets are known to have been lofted from the Earth to a coined. The question of how from simple organisms to what we can The word ‘panspermia’ comes from the may be the source of some of the have significant water content as well height of 400km by any known process. life’s molecular building blocks see today. However, there is a crucial ancient Greek roots ‘sperma’ meaning more hostile resistance the idea of as organics, and their cores, kept warm Bacteria have also been found high in spontaneously assembled gap in mainstream understanding - seed, and ‘pan’, meaning all.
    [Show full text]
  • First Life in Primordial-Planet Oceans: the Biological Big Bang Gibson/Wickramasinghe/Schild First Life in Primordial-Planet Oceans: the Biological Big Bang
    Journal of Cosmology First life in primordial-planet oceans: the biological big bang Gibson/Wickramasinghe/Schild First life in primordial-planet oceans: the biological big bang Carl H. Gibson 1,2 1 University of California San Diego, La Jolla, CA 92093-0411, USA [email protected], http://sdcc3.ucsd.edu/~ir118 N. Chandra Wickramasinghe3,4 3Cardiff Centre for Astrobiology, 24 Llwynypia Road, Lisvane, Cardiff CF14 0SY [email protected] Rudolph E. Schild5,6 5 Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 6 [email protected] Abstract: A scenario is presented for the formation of first life in the universe based on hydro- gravitational-dynamics (HGD) cosmology. From HGD, the dark matter of galaxies is H-He gas dominated planets (primordial-fog-particle PFPs) in million solar mass clumps (protoglobularstar- cluster PGCs), which formed at the plasma to gas transition temperature 3000 K. Stars result from mergers of these hot-gas-planets. Over-accretion causes stars to explode as supernovae that scatter life-chemicals (C, N, O, P, S, Ca, Fe etc.) to other planets in PGC clumps and beyond. These chemicals were first collected gravitationally by merging PFPs to form H-saturated, high-pressure, dense oceans of critical-temperature 647 K water over iron-nickel cores at ~ 2 Myr. Stardust fertil- izes the formation of first life in a cosmic hot-ocean soup kitchen comprised of all planets and their moons in meteoric communication, > 10100 kg in total. Ocean freezing at 273 K slows this biologi- cal big bang at ~ 8 Myr. HGD cosmology confirms that the evolving seeds of life are scattered on intergalactic scales by Hoyle-Wickramasinghe cometary panspermia.
    [Show full text]
  • Evidence to Clinch the Theory of Extraterrestrial Life
    obiolog str y & f A O u o l t a r e n a Chandra Wickramasinghe, Astrobiol Outreach 2015, 3:2 r c u h o J Journal of Astrobiology & Outreach DOI: 10.4172/2332-2519.1000e107 ISSN: 2332-2519 EditorialResearch Article OpenOpen Access Access Evidence to Clinch the Theory of Extraterrestrial Life Chandra Wickramasinghe N1,2,3 1Buckingham Centre for Astrobiology (BCAB), Buckingham University, UK 2Institute for the Study of Panspermia and Astroeconomics, Gifu, Japan 3University of Peradeniya, Peradeniya, Sri Lanka New data may serve to bring about the long overdue paradigm probe) appears to have been finally vindicated, both by the discovery of shift from theories of Earth-centred life to life being a truly cosmic organic molecules on the surface, and more dramatically by the recent phenomenon. The theory that bacteria and viruses similar to those discovery of time-variable spikes in methane observed by the Curiosity on Earth exist in comets, other planets and generally throughout the galaxy was developed as a serious scientific discipline from the early 1980’s [1-4]. Throughout the past three decades this idea has often been Relectivity Spectrum the subject of criticism, denial or even ridicule. Even though many discoveries in astronomy, geology and biology continued to provide supportive evidence for the theory of cosmic life, the rival theory of Earth-centered biology has remained deeply rooted in scientific culture. However, several recent developments are beginning to strain the credibility of the standard point of view. The great abundance of highly complex organic molecules in interstellar clouds [5], the plentiful existence of habitable planets in the galaxy numbering over 100 billion and separated one from another just by a few light years [6], the extreme space-survival properties of bacteria and viruses -make it exceedingly difficult to avoid the conclusion that the entire galaxy is a single connected biosphere.
    [Show full text]
  • A Defense of a Sentiocentric Approach to Environmental Ethics
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 Minding Nature: A Defense of a Sentiocentric Approach to Environmental Ethics Joel P. MacClellan University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Ethics and Political Philosophy Commons Recommended Citation MacClellan, Joel P., "Minding Nature: A Defense of a Sentiocentric Approach to Environmental Ethics. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1433 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Joel P. MacClellan entitled "Minding Nature: A Defense of a Sentiocentric Approach to Environmental Ethics." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Philosophy. John Nolt, Major Professor We have read this dissertation and recommend its acceptance: Jon Garthoff, David Reidy, Dan Simberloff Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) MINDING NATURE: A DEFENSE OF A SENTIOCENTRIC APPROACH TO ENVIRONMENTAL ETHICS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Joel Patrick MacClellan August 2012 ii The sedge is wither’d from the lake, And no birds sing.
    [Show full text]
  • Primordial Planets, Comets and Moons Foster Life in the Cosmos
    Primordial planets, comets and moons foster life in the cosmos Carl H. Gibsona*, N. Chandra Wickramasingheb and Rudolph E. Schildc a UCSD, La Jolla, CA, 92093-0411, USA; b Cardiff Univ., Cardiff, UK; c Harvard, Cambridge, MA, USA ABSTRACT A key result of hydrogravitational dynamics cosmology relevant to astrobiology is the early formation of vast numbers of hot primordial-gas planets in million-solar-mass clumps as the dark matter of galaxies and the hosts of first life. Photon viscous forces in the expanding universe of the turbulent big bang prevent fragmentations of the plasma for mass scales smaller than protogalaxies. At the plasma to gas transition 300,000 years after the big bang, the 107 decrease in kinematic viscosity ν explains why ~3x107 planets are observed to exist per star in typical galaxies like the Milky Way, not eight or nine. Stars form by a binary accretional cascade from Earth-mass primordial planets to progressively larger masses that collect and recycle the stardust chemicals of life produced when stars overeat and explode. The astonishing complexity of molecular biology observed on Earth is possible to explain only if enormous numbers of primordial planets and their fragments have hosted the formation and wide scattering of the seeds of life virtually from the beginning of time. Geochemical and biological evidence suggests that life on Earth appears at the earliest moment it can survive, in highly evolved forms with complexity requiring a time scale in excess of the age of the galaxy. This is quite impossible within standard cold-dark-matter cosmology where planets are relatively recent, rare and cold, completely lacking mechanisms for intergalactic transport of life forms.
    [Show full text]
  • Cause of Cambrian Explosion - Terrestrial Or Cosmic?
    Progress in Biophysics and Molecular Biology xxx (2018) 1e21 Contents lists available at ScienceDirect Progress in Biophysics and Molecular Biology journal homepage: www.elsevier.com/locate/pbiomolbio Cause of Cambrian Explosion - Terrestrial or Cosmic? * Edward J. Steele a, j, , Shirwan Al-Mufti b, Kenneth A. Augustyn c, Rohana Chandrajith d, John P. Coghlan e, S.G. Coulson b, Sudipto Ghosh f, Mark Gillman g, Reginald M. Gorczynski h, Brig Klyce b, Godfrey Louis i, Kithsiri Mahanama j, Keith R. Oliver k, Julio Padron l, Jiangwen Qu m, John A. Schuster n, W.E. Smith o, Duane P. Snyder b, Julian A. Steele p, Brent J. Stewart a, Robert Temple q, Gensuke Tokoro o, Christopher A. Tout r, Alexander Unzicker s, Milton Wainwright b, j, Jamie Wallis b, Daryl H. Wallis b, Max K. Wallis b, John Wetherall t, D.T. Wickramasinghe u, J.T. Wickramasinghe b, N. Chandra Wickramasinghe b, j, o, Yongsheng Liu v, w a CY O'Connor ERADE Village Foundation, Piara Waters, WA, Australia b Buckingham Centre for Astrobiology, University of Buckingham, UK c Center for the Physics of Living Organisms, Department of Physics, Michigan Technological University, Michigan, United States d Department of Geology, University of Peradeniya, Peradeniya, Sri Lanka e University of Melbourne, Office of the Dean, Faculty Medicine, Dentistry and Health Sciences, 3rd Level, Alan Gilbert Building, Australia f Metallurgical & Materials Engineering IIT, Kanpur, India g South African Brain Research Institute, 6 Campbell Street, Waverly, Johannesburg, South Africa h University Toronto
    [Show full text]
  • Geobiology, Lecture Notes 3
    Geobiology Lecture 3 The story so far: Our solar system formed from a disc of dust and gas about 4.6 billion years ago. Some of the components, especially elements larger than iron incl. radionuclides, were formed in earlier massive star systems (Supernovae) that exploded and spewed debris into the interstellar medium. Dense, less volatile materials (metals, silicate minerals) accumulated closer to the sun and accreted in violent collisions to form molten (rocky) planets. More volatile substances (eg ices) accumulated at the outer edges The inner planets, and especially the Earth, cooled and differentiated early. We now recognise this in the separation of core, mantle and crust. Earth’s oversized moon formed as a result of a late impact with a Mars-sized planet Volatile materials not lost during the accretion process, combined with some material from comets and other impactors, to form an early hydrosphere and atmosphere Earth cooled more slowly than other inner planets (eg Mars) and is tectonically active due to interior heat generation by radioactivity. This activity has contributed to retention of the atmosphere and hydrosphere. 1 Geobiology 2011 Lecture 3 Theories pertaining to the Origin of Life John Valley: Elements Magazine Vol 2 #4 Early Earth 2 Life Magazine cover from December 8, 1952 removed due to copyright restrictions. Valley, John W. "Early Earth." Elements 2, no. 4 (2006): 201-204. 3 Timescales 1: The Hadean Timeline for the first billion years of Earth history. Key events are shown along with oxygen isotope ratios (d18O) of zircons from igneous rocks and their U–Pb age.
    [Show full text]
  • The Astrobiological Case for Our Cosmic Ancestry
    International Journal of Astrobiology 9 (2): 119–129 (2010) 119 doi:10.1017/S1473550409990413 f Cambridge University Press 2010 The astrobiological case for our cosmic ancestry Chandra Wickramasinghe Cardiff Centre for Astrobiology, Cardiff University, 2 North Road, Cardiff CF10 3DY, UK e-mail: [email protected] Abstract: With steadily mounting evidence that points to a cosmic origin of terrestrial life, a cultural barrier prevails against admitting that such a connection exists. Astronomy continues to reveal the presence of organic molecules and organic dust on a huge cosmic scale, amounting to a third of interstellar carbon tied up in this form. Just as the overwhelming bulk of organics on Earth stored over geological timescales are derived from the degradation of living cells, so it seems likely that interstellar organics in large measure also derive from biology. As we enter a new decade – the year 2010 – a clear pronouncement of our likely alien ancestry and of the existence of extraterrestrial life on a cosmic scale would seem to be overdue. Received 20 November 2009, accepted 10 December 2009, first published online 29 January 2010 Key words: interstellar biochemicals, interstellar dust, origin of life, panspermia. Introduction inevitably distributed on a galaxy-wide scale. The transfers take place due to gravitational perturbations of the Oort . What constitutes unequivocal proof that life on our planet cloud of comets as the Solar System periodically encounters is inextricably linked to the wider cosmos? molecular clouds during its 240 My orbit around the centre of . What constitutes proof that ‘alien’ life similar to ours ex- the galaxy (Napier 2004; Wallis & Wickramasinghe 2004; ists at our very doorstep in the Solar System and beyond? Wickramasinghe et al.
    [Show full text]
  • About the Authors
    http://www.glos.ac.uk/gdn/origins/life/index.htm The Origin of Life Hugh Rollinson University of Gloucestershire August 2001 Funded by the National Subject Centre for Geography, Earth & Environmental Sciences ‘Earth Science Small Learning & Teaching Award’ Table of Contents About the Author – Hugh Rollinson .............................................................................1 Introduction..................................................................................................................2 1 Steps to the Formation of Life .................................................................................2 Step 1: A Biotic Synthesis ............................................................................. 3 Step 2: Pre-biotic Synthesis........................................................................... 4 Step 3: Synthesis of Proteins and Nucleic Acids ........................................... 4 Step 4: Synthesis of a Process of Replication ............................................... 5 Step 5: Formation of a Simple Cell ................................................................ 5 Step 6: Energy for Sustaining Unicellular Life................................................ 5 Postscript: The Cosmic Ancestry of Organic Matter............................................ 6 2 Evidences for the Earliest Life on Earth ..................................................................7 2.1 The Earth's Oldest Rocks.................................................................. 7 2.2 Chemical Signals of
    [Show full text]
  • Dna Sequencing and Predictions of the Cosmic Theory of Life
    Accepted for publication in Astrophysics and Space Science DNA SEQUENCING AND PREDICTIONS OF THE COSMIC THEORY OF LIFE N. Chandra Wickramasinghe Buckingham Centre for Astrobiology, The University of Buckingham, Buckingham MK18 1EG, UK; Email: [email protected] Abstract The theory of cometary panspermia, developed by the late Sir Fred Hoyle and the present author argues that life originated cosmically as a unique event in one of a great multitude of comets or planetary bodies in the Universe. Life on Earth did not originate here but was introduced by impacting comets, and its further evolution was driven by the subsequent acquisition of cosmically derived genes. Explicit predictions of this theory published in 1979-1981, stating how the acquisition of new genes drives evolution, are compared with recent developments in relation to horizontal gene transfer, and the role of retroviruses in evolution. Precisely-stated predictions of the theory of cometary panspermia are shown to have been verified. Keywords: Cometary panspermia, horizontal gene transfer, viruses, evolution. 1. Introduction A scientific theory has value only if it can make testable predictions. Falsifiability, according to fulfilment or otherwise of predictions, is the essence of the process by which a convergence to an objective truth can be achieved. The cometary panspermia hypothesis developed in the period 1977-1981 by Fred Hoyle and the author challenged the prevailing dogma of an origin of life in a “warm little pond” on Earth. The enormous complexity of life at a molecular genetic level prompted us to question this hypothesis on probabilistic grounds. The greatest enigma of biology – the origin of life – is in our view more likely to be resolved if we go to comets, a connected set of “warm little poinds” numbering ~ 1022 comets in our galaxy alone.
    [Show full text]
  • Mapping Disciplinary Relationships in Astrobiology: 2001-2012
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 2014 Mapping disciplinary relationships in Astrobiology: 2001-2012 Jason W. Cornell Western Washington University Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geography Commons Recommended Citation Cornell, Jason W., "Mapping disciplinary relationships in Astrobiology: 2001-2012" (2014). WWU Graduate School Collection. 387. https://cedar.wwu.edu/wwuet/387 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Mapping Disciplinary Relationships in Astrobiology: 2001 - 2012 By Jason W. Cornell Accepted in Partial Completion Of the Requirements for the Degree Master of Science Kathleen L. Kitto, Dean of the Graduate School ADVISORY COMMITTEE Chair, Dr. Gigi Berardi Dr. Linda Billings Dr. David Rossiter ! ! MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permission from the owner of any third party copyrighted material included in these files. I acknowledge that I retain ownership rights to the copyright of this work, including but not limited to the right to use all or part of this work in future works, such as articles or books.
    [Show full text]
  • Extraterrestrial Life and Censorship
    EXTRATERRESTRIAL LIFE AND CENSORSHIP N. Chandra Wickramasinghe Cardiff Centre for Astrobiology, Llwynypia Road, Cardiff CF14 0SY, UK E mail: [email protected] Abstract In this article I chronicle a series of landmark events, with which I was personally involved, that relate to the development of the theory of cosmic life. The interpretation of events offered here might invite a sense of incredulity on the part of the reader, but the facts themselves are unimpeachable in regard to their authenticity. Of particular interest are accounts of interactions between key players in an unfolding drama connected with the origins of life. Attempts to censor evidence incompatible with the cosmic life theory are beginning to look futile and a long-overdue paradigm shift may have to be conceded. Keywords: Dark Matter; Planet Formation: Cosmic structure; Astrobiology 1 1. Introduction The ingress of alien microbial life onto our planet, whether dead or alive should not by any rational argument be perceived as a cause for concern. This is particularly so if, as appears likely, a similar process of microbial injection has continued throughout geological time. Unlike the prospect of discovering alien intelligence which might be justifiably viewed with apprehension, the humblest of microbial life-forms occurring extraterrestrially would not constitute a threat. Neither would the discovery of alien microbes impinge on any issues of national sovereignty or defence, nor challenge our cherished position as the dominant life- form in our corner of the Universe. Over the past three decades we have witnessed a rapid growth of evidence for extraterrestrial microbial life. Along with it has grown a tendency on the part of scientific establishments to deny or denounce the data or even denigrate the advocates of alien life.
    [Show full text]