Rektaszensions-Beobachtungen Des Mondes

Total Page:16

File Type:pdf, Size:1020Kb

Rektaszensions-Beobachtungen Des Mondes ASTRONOMISCHE NACHRICHTEN. Band 195. Nr. 4658. 2. Rektaszensions - Beobachtungen des Mondes ausgefuhrt am Reichenbachschen Meridiankreise in Gottingen. Von FY. Pingsdorf. Die vorliegende Beobachtungsreihe ist zunachst auf Newcomb reduziert. Alle Durchgange wurden ini allgemeinen Wunsch von Herrn Dr. Meyemann unternommen worden, an denselben 11 Faden genonimen und auf einem alten um ihm Gelegenheit zu geben, durch Parallelbeobachtungen Ausfeldschen Chronographen registriert. Als Reduktions- die Langendifferenz seines Beobachtungsortes Tsingtau gegen methode wurde die Besselsche gewahlt. Die scheinbaren Uhr- Gottingen zu bestimmen. Aufler dem Monde und den Mond- korrektionen und ihre eventuellen Gange wurden natiirlich sternen des Nautical Almanac soilten ferner noch eine Reihe nur aus den Fundamentalsternen bestimmt; die im Nautical hellerer Fundamentalsterne (System Newcomb) beobachtet Almanac angegebenen scheinbaren Orter der Mondsterne werden, die einerseits als Erganzung zu den Mondsternen wurden nicht benutzt. dienen sollten und deshalb auch Herrn Meyemann mitgeteilt In Tabelle I sind die Beobachtungen in moglichst wurden, andererseits es ermoglichen sollten, aus den Beob- kurzer Form zusammengestellt. Die erste Kolumne enthalt achtungen Rektaszensionen des Mondes abzuleiten. Es war den Namen des Sterns nach der Bezeichnungsweise des beabsichtigt, die vorliegende Reihe auch uber das Jahr I 9 I 3 Nautical Almanac bezw. Red. Jahrbuch, die zweite die be- zu erstrecken, urn den vom Reichskolonialamt nach Neu- obachtete Rektaszension, die dritte endlich fur die Funda- kamerun entsandten Expeditionen, denen ein entsprechendes mentalsterne die Differenz Beobachtung - Ephemeride. In Progranim mitgegeben worden war, Gelegenheit zu korre- der am Schlusse stehenden Ubersicht uber die Luftzustande spondierenden Beobachtungen zu geben. Da ich selbst wegen bedeutet I den besten, 4 den schlechtesten Zustand. meiner Berufung an die Sternwarte in Santiago (Chile) den Die Differenzen B - R kann ich zur Bestimmung einer zweiten Teil des Programms nicht mehr erledigen kann, ver- unteren Grenze der Beobachtungsgenauigkeit benutzen, wenn offentliche ich nunmehr die Beobachtungen des Jahres 1912. ich sie lediglich als Fehler der Beobachtung ansehe und auch Als Beobachtungsinstrument diente der 4-zoll. Meridian- die kleinen Gange, die an einzelnen Abenden noch angedeutet kreis von Reichenbach, an dem schon seit Jahren keine sind, unberucksichtigt lasse. Dann ergibt sich aus dem ganzen exakten Ortsbestimmungen mehr ausgefuhrt worden waren. Material als wahrscheinlicher Fehler einer Beobachtung eines Es sollten bei dieser Gelegenheit zugleich Erfahrungen dar- Sterns: f0’048. Schliefle ich von den’ unter sehr un- iiber gesammelt werden, ob sich das Instrument mit nicht giinstigen Umstanden beobachteten Sternen vier rnit groflerer allzu hohen Kosten wieder soweit herrichten liefie, dafl die Abweichung aus, so ergibt sich der Fehler zu foSo44. an ihm erreichbare Genauigkeit auch modernen Anforderungen Beriicksichtigt man, dafl die Mehrzahl der Beobachtungen einigermaflen genugte. Das Resultat der Beobachtungen in unter ungunstigen aufleren Umstanden und in ziemlich groflen dieser Hinsicht ist, dafl die von dem alten Fraunhoferschen Zenitdistanzen (bis zu 83’) angestellt werden muflte, so kann Objektiv gelieferten Bilder sehr gut sind und die Konstanz man die erreichte Genauigkeit als durchaus befriedigend an- der Aufstellung durchaus befriedigt. Zur Bestimmung des sehen. Azimutes wurden in regelmafligen Zeitintervallen Polsterne In Tabelle I1 sind die aus den Rander- und Krater- beobachtet ; der Kollimationsfehler niuflte durch Niveau und beobachtungen mit Hilfe der betreffenden Epherneriden des Nadir bestimnit werden, da ein Umlegen ohne Erschutterung Berliner Jahrbuchs berechneten Rektaszensionen des Mond- des Instrumentes im jetzigen Zustande nicht nioglich ist. mittelpunktes zusammengestellt. Ebenso stehen dort die aus Ebenso ist eine Bestimmung von Deklinationen vorliiufig nicht der stundlichen Mondephemeride des Nautical Almanac unter moglich, da der Mikroskoptrager auf der Achse sitzt und strenger Berucksichtigung der zweiten Differenzen inter- stark schlottert. polierten Mondorter und die aus meinen Beobachtungen Die Beobachtungen selbst haben arg unter der Un- folgenden Korrektionen. Die funfte Spalte gibt an, ob erster gunst der Witterung zu leiden gehabt, die in der Zeit von oder zweiter Mondrand oder Mosting beobachtet war. Ein einem Jahre nur 26 Mondkulminationen zu beobachten er- Blick auf die Zahlen zeigt, dafl Mosting A gegenuber beiden laubte und auch diese noch durch unruhige Luft, Dunst und Randern um einen erheblichen Betrag zu spat beobachtet Wolken beeintrachtigte. Beim Monde wurden, entsprechend wurde. Bilde ich die Differenzen Rand - Krater, so ergeben dem Hauptzwecke der Arbeit, in erster Linie die Rander beobachtet; an 10 Abenden gelang auch die Beobachtung des Kraters Mosting A. An jedem Abend wurden durch- Marz 27 -0’36 April 27 -0Fg1 Juli 24 -0’67 schnittlich 6 Fundamentalsterne mitgenommen, deren schein- 28 -0.11 Sept. 20 --0.41 bare Orter dem Nautical Almanac entnommen wurden, also 29 -0.33 April Juni 27 -0.20 auf dem Newcombschen System beruhen. Einige wenige Sterne 26 -0.33 wurden dem Berliner Jahrbuche entnommen und rnit den von y. Peters (Veroff. R. I. 33 S. I orff.) ermittelten Werten auf -00116. 2 '9 4658 20 Mittelt man diese Werte, ohne Riicksicht auf den be- Die Durchgangsbeobachtung der Mondrander ist na- obachteten Rand, so erhllt man als systematische Reduktion tiirlich mit einer grol3eren Unsicherheit behaftet, als die eines der Krater- auf die Randbeobachtungen den Wert -0!34. I Stems. Ich schatze den wahrscheinlichen Fehler einer Be- Mai 30 war der seltene Fall eingetreten, dafi beide Rander obachtung auf etwa fo?~,jedoch bietet mir das vorliegende voll beleuchtet waren und beobachtet werden konnten, da die Material nicht die Moglichkeit, einen genaueren Wert hier- Tabelle I. Beobachtungen. Stern 1 a beob. I B-R Stern ! u beob. I B--R -~ __.-- ___- 1912 Januar 27. osor K Geminor. o Piscium Ih40m44?23 , - 3 y Geniinor. 48 7.80 a Arietis 2 2 12.11 + I x Geminor. 58 8.06 19 Arietis 8 14.92 1 Mond I I3 13.29 -- 4 9 Arietis hlosting A 9 '5.94 23 + 6 t2Ceti 28.57 32 Cancri Mond I 31 1.26 c Cancri 41 23.89 I 0 40 10.92 p Ceti + 5 a Cancri 53 41.16 10 41 Arietis 44 47.74 - 1 + 2 3'2 048 9 2 24.19 I 47 Arietis 53 2.14 I 29. 54 Arietis 3 3 21.76 I Marz Januar 30. 83 Cancri 9 I4 5.72 j + 2 o Leonis i 36 28.66 I - 2 April 30. z Tauri I 4 36 58.26 + 2 m Leonis 55 35.29 ; + 5 9 Virginis 13 5 '25.18 - 4 L Aurigae \ 51 16.28 i - 2 3443 10 o 56.11 h Virginis . 21.49 ! 59 8.46 B.4C 28 +21°723 I 2 q Leonis 33.76 i + 8 5 Virginis I 30 14.29 I + 3 BAC 1648 15 28.51 5 8 50.82 Mond I ~ ,6 lauri I BAC 4591 ! 42 35.88 I 20 44.46 - 5 Mosting A I l'auri 10 9.96 I z Virginis 1 57 I 1.87 0 5 32 23.99 j + 4 Leonis hlond I I i 44 39.48 I -10 Mond I I 14 -5 5742 6 Leonis 130 Tauri I II 9 21.63 - 3 Mai I. x Aurigae April 25. x Virginis +8 +29O1190 o I Leonis , 9 36 28.37 j + I L Virginis XI 25.56 -. 14 E Geminor. i 38 32.27 I - 5 E 1 ~ - I Leonis 40 52,77 y Virginis 23 41.95 +6 Januar 3 I. Mond I I 50 5.59 I BAC 4814 29 55.19 rt Leonis - I x Aurigae I 6 9 47.34 55 34.95 i p Virginis 38 27.07 -- 7 37 Leonis 10 11 58.73 +29°~~90I '5 35.98 i (I Librae 46 2.35 Leonis iI +5 i 31.47 I p Geminor. I I1 39.33 + 2 I 27 Mosting A 59 0.13 E Geminor. I 38 32.34 +2 April 26. Mond I1 59 58.68 Mond I 28.65 c Librae 75 7 14.00 +I I 41 x Leonis i 9 55 35.13 +I8 I d Geminor. 7 I4 53.39 ' BAC 5023 I1 -5 7 Leonis I0 2 33.58 - 20 1 18.10 59 Geminor. ' I9 6.31 y Librae \ 37 Leonis I I 58.84 30 38.03 +5 e Geminor. i 23 28.71 +5 - ~~"3996 34 12.51 i Leonis I 27 31.48 x Scorpii 53 33.44 -4 hfarz 26. hlond I 44 43.76 - 5 Geminor. I 6 58 54.05 I Mosting A ! 46 1.46 Mai 4. Mond I 1 2 12.98 11 9 29.05 BAC 3837 7 Ophiuchi 17 5 21.76 / +16 d Geminor. 14 52.88 0 I Leonis 19 21.86 +8 I A Ophiuchi 9 58.08 I Geminor. 20 16.67 +6 ,3 Leonis I 44 35.98 .- 5 9 Ophiuchi 16 38.10 - I 4 Geminor. ' 23 28.20 + I0 April 21. d Ophiuchi +I w Geminor. 21 45-90 I Leonis ! 10 44 39.26 26 18.33 x Geminor. - -9 BAC 5909 BAC 38.37 11 9 29.01 Serpentis 32 34.60 +6 g~ Geminor. 48 7.77 F I (r Leonis ! 16 37.44 0 Mosting A 45 22.91 x Geminor. I 58 7.95 -13 c Leonis j I9 21.88 +I0 Mond I1 46 24.41 27. Marz Mond I ~ 36 21.82 y Sagittarii 18 0 10.99 - I1 d Geminor. 7 I4 52,81 0 Mosting A 31 37.94 BAC 6160 6 24.47 e Geminor. 23 28.12 +3 B Virginis 1 46 8.26 +3 d Sagittarii '5 23.30 - 14 w Geminor. 30 31,03 BAC 6270 23 30.08 21 4658 22 ~~ ~ - Stern a beob. B-R Stem a beob. B-R Stern 1 a beob. B-R I ~ ~ OF0 I Mai 30. 050 I Juli 27. 050 I 27 Arietis 2h26m 4?95 3 H.
Recommended publications
  • The Evening Sky Map a DECEMBER 2018 N
    I N E D R I A C A S T N E O D I T A C L E O R N I G D S T S H A E P H M O O R C I . Z N O n i f d o P t o ) l a h O N r g i u s , o Z l t P h I C e r o N R ( I o r R r O e t p h C H p i L S t D E E a g r i . H ( B T F e O h T NORTH D R t h N e M e E s A G X O U e A H m M C T i . I n P i N d S L E E m P Z “ e E A N Dipper t e H O NORTHERN HEMISPHERE o M T R r T The Big The N Y s H h . E r o ” E K Alcor & e w ) t W S . s e . T u r T Mizar l E U p W C B e R e a N l W D k b E s T u T MAJOR W H o o The Evening Sky Map A DECEMBER 2018 n E C D O t FREE* EACH MONTH FOR YOU TO EXPLORE, LEARN & ENJOY THE NIGHT SKY URSA S e L h K h e t Y E m R d M A n o A a r Thuban S SKY MAP SHOWS HOW P Get Sky Calendar on Twitter n T 1 i n C A 3 E g R M J http://twitter.com/skymaps O Sky Calendar – December 2018 o d B THE NIGHT SKY LOOKS U M13 f n O N i D “ f L D e T DRACO A o c NE O I t I e T EARLY DEC PM T 8 m P t S i 3 Moon near Spica (morning sky) at 9h UT.
    [Show full text]
  • Explore the Universe Observing Certificate Second Edition
    RASC Observing Committee Explore the Universe Observing Certificate Second Edition Explore the Universe Observing Certificate Welcome to the Explore the Universe Observing Certificate Program. This program is designed to provide the observer with a well-rounded introduction to the night sky visible from North America. Using this observing program is an excellent way to gain knowledge and experience in astronomy. Experienced observers find that a planned observing session results in a more satisfying and interesting experience. This program will help introduce you to amateur astronomy and prepare you for other more challenging certificate programs such as the Messier and Finest NGC. The program covers the full range of astronomical objects. Here is a summary: Observing Objective Requirement Available Constellations and Bright Stars 12 24 The Moon 16 32 Solar System 5 10 Deep Sky Objects 12 24 Double Stars 10 20 Total 55 110 In each category a choice of objects is provided so that you can begin the certificate at any time of the year. In order to receive your certificate you need to observe a total of 55 of the 110 objects available. Here is a summary of some of the abbreviations used in this program Instrument V – Visual (unaided eye) B – Binocular T – Telescope V/B - Visual/Binocular B/T - Binocular/Telescope Season Season when the object can be best seen in the evening sky between dusk. and midnight. Objects may also be seen in other seasons. Description Brief description of the target object, its common name and other details. Cons Constellation where object can be found (if applicable) BOG Ref Refers to corresponding references in the RASC’s The Beginner’s Observing Guide highlighting this object.
    [Show full text]
  • The Observer's Handbook for 1912
    T he O bservers H andbook FOR 1912 PUBLISHED BY THE ROYAL ASTRONOMICAL SOCIETY OF CANADA E d i t e d b y C. A, CHANT FOURTH YEAR OF PUBLICATION TORONTO 198 C o l l e g e St r e e t Pr in t e d fo r t h e So c ie t y 1912 T he Observers Handbook for 1912 PUBLISHED BY THE ROYAL ASTRONOMICAL SOCIETY OF CANADA TORONTO 198 C o l l e g e St r e e t Pr in t e d fo r t h e S o c ie t y 1912 PREFACE Some changes have been made in the Handbook this year which, it is believed, will commend themselves to observers. In previous issues the times of sunrise and sunset have been given for a small number of selected places in the standard time of each place. On account of the arbitrary correction which must be made to the mean time of any place in order to get its standard time, the tables given for a particualar place are of little use any­ where else, In order to remedy this the times of sunrise and sunset have been calculated for places on five different latitudes covering the populous part of Canada, (pages 10 to 21), while the way to use these tables at a large number of towns and cities is explained on pages 8 and 9. The other chief change is in the addition of fuller star maps near the end. These are on a large enough scale to locate a star or planet or comet when its right ascension and declination are given.
    [Show full text]
  • Instrumental Methods for Professional and Amateur
    Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A.
    [Show full text]
  • Downloads/ Astero2007.Pdf) and by Aerts Et Al (2010)
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. i Fundamental Properties of Solar-Type Eclipsing Binary Stars, and Kinematic Biases of Exoplanet Host Stars Richard J. Hutcheon Submitted in accordance with the requirements for the degree of Doctor of Philosophy. Research Institute: School of Environmental and Physical Sciences and Applied Mathematics. University of Keele June 2015 ii iii Abstract This thesis is in three parts: 1) a kinematical study of exoplanet host stars, 2) a study of the detached eclipsing binary V1094 Tau and 3) and observations of other eclipsing binaries. Part I investigates kinematical biases between two methods of detecting exoplanets; the ground based transit and radial velocity methods. Distances of the host stars from each method lie in almost non-overlapping groups. Samples of host stars from each group are selected. They are compared by means of matching comparison samples of stars not known to have exoplanets. The detection methods are found to introduce a negligible bias into the metallicities of the host stars but the ground based transit method introduces a median age bias of about -2 Gyr.
    [Show full text]
  • December 2014 BRAS Newsletter
    December, 2014 Next Meeting: December 8th at 7PM at the HRPO Artist rendition of the Philae lander from the ESA's Rosetta mission. Click on the picture to go see the latest info. What's In This Issue? Astro Short- Mercury: Snow Globe Dynamo? Secretary's Summary Message From HRPO Globe At Night Recent Forum Entries Orion Exploration Test Flight Event International Year of Light 20/20 Vision Campaign Observing Notes by John Nagle Mercury: Snow Globe Dynamo? We already knew Mercury was bizarre. A planet of extremes, during its day facing the sun, its surface temperature tops 800°F —hot enough to melt lead—but during the night, the temperature plunges to -270°F, way colder than dry ice. Frozen water may exist at its poles. And its day (from sunrise to sunrise) is twice as long as its year. Now add more weirdness measured by NASA’s recent MESSENGER spacecraft: Mercury’s magnetic field in its northern hemisphere is triple its strength in the southern hemisphere. Numerical models run by postdoctoral researcher Hao Cao, working in the lab of Christopher T. Russell at UC Los Angeles, offer an explanation: inside Mercury’s molten iron core it is “snowing,” and the resultant convection is so powerful it causes the planet’s magnetic dynamo to break symmetry and concentrate in one hemisphere. “Snowing” inside Mercury With a diameter only 40 percent greater than the Moon’s, Mercury is the smallest planet in the solar system (now that Pluto was demoted). But its gravitational field is more than double the Moon’s.
    [Show full text]
  • Full Curriculum Vitae
    Jason Thomas Wright—CV Department of Astronomy & Astrophysics Phone: (814) 863-8470 Center for Exoplanets and Habitable Worlds Fax: (814) 863-2842 525 Davey Lab email: [email protected] Penn State University http://sites.psu.edu/astrowright University Park, PA 16802 @Astro_Wright US Citizen, DOB: 2 August 1977 ORCiD: 0000-0001-6160-5888 Education UNIVERSITY OF CALIFORNIA, BERKELEY PhD Astrophysics May 2006 Thesis: Stellar Magnetic Activity and the Detection of Exoplanets Adviser: Geoffrey W. Marcy MA Astrophysics May 2003 BOSTON UNIVERSITY BA Astronomy and Physics (mathematics minor) summa cum laude May 1999 Thesis: Probing the Magnetic Field of the Bok Globule B335 Adviser: Dan P. Clemens Awards and fellowships NASA Group Achievement Award for NEID 2020 Drake Award 2019 Dean’s Climate and Diversity Award 2012 Rock Institute Ethics Fellow 2011-2012 NASA Group Achievement Award for the SIM Planet Finding Capability Study Team 2008 University of California Hewlett Fellow 1999-2000, 2003-2004 National Science Foundation Graduate Research Fellow 2000-2003 UC Berkeley Outstanding Graduate Student Instructor 2001 Phi Beta Kappa 1999 Barry M. Goldwater Scholar 1997 Last updated — Jan 15, 2021 1 Jason Thomas Wright—CV Positions and Research experience Associate Department Head for Development July 2020–present Astronomy & Astrophysics, Penn State University Director, Penn State Extraterrestrial Intelligence Center March 2020–present Professor, Penn State University July 2019 – present Deputy Director, Center for Exoplanets and Habitable Worlds July 2018–present Astronomy & Astrophysics, Penn State University Acting Director July 2020–August 2021 Associate Professor, Penn State University July 2015 – June 2019 Associate Department Head for Diversity and Equity August 2017–August 2018 Astronomy & Astrophysics, Penn State University Visiting Associate Professor, University of California, Berkeley June 2016 – June 2017 Assistant Professor, Penn State University Aug.
    [Show full text]
  • Macrocosmo.Com Ano I - Edição Nº 10 – Setembro De 2004
    A PRIMEIRA REVISTA ELETRÔNICA BRASILEIRA EXCLUSIVA DE ASTRONOMIA revista macroCOSMO.com Ano I - Edição nº 10 – Setembro de 2004 A EXPLORAÇÃO RUSSA DE Marte XXX.a Reunião Semana Nacional de Anual da SAB Ciência e Tecnologia revista macroCOSMO.com Ano I - Edição nº 10–Setembro de 2004 Editorial A exploração do espaço através de sondas Redação interplanetárias, possibilitou ao homem novas e [email protected] fascinantes descobertas sobre a planetologia do nosso Sistema Solar. Diretor Editor Chefe De todos os planetas conhecidos até hoje, Hemerson Brandão [email protected] Marte é o mais semelhante à Terra, e o único em que o homem espera pisar num futuro próximo. Desse modo, é para ele que são direcionadas a maioria das Diagramadores missões exploratórias atuais. Através dessas Rodolfo Saccani [email protected] maravilhas tecnológicas automáticas, foi possível Sharon Camargo responder dúvidas que permeavam a cabeça dos [email protected] cientistas há muito tempo, como por exemplo a Hemerson Brandão [email protected] presença de leitos de rios secos, erroneamente interpretados como canais artificiais, no início do WebMaster século passado. Hemerson Brandão Nos últimos 30 anos, o sobrevôo e [email protected] posteriormente pouso de sondas americanas em solo marciano, ampliaram nosso olhar sobre a morfologia Redatores do planeta vermelho. Em contrapartida, a então União Audemário Prazeres Soviética, que manteve-se na vanguarda da conquista [email protected] Hélio “Gandhi” Ferrari do espaço durante a Guerra Fria, vêm desde esta [email protected] época, contabilizando inúmeros fracassos na corrida Laércio F. Oliveira para Marte. Seja por falta de recursos financeiros, [email protected] Marco Valois desenvolvimento tecnológico ineficiente ou pura [email protected] maré de azar, os russos ainda tentam, até hoje, Naelton M.
    [Show full text]
  • Quantization of Planetary Systems and Its Dependency on Stellar Rotation Jean-Paul A
    Quantization of Planetary Systems and its Dependency on Stellar Rotation Jean-Paul A. Zoghbi∗ ABSTRACT With the discovery of now more than 500 exoplanets, we present a statistical analysis of the planetary orbital periods and their relationship to the rotation periods of their parent stars. We test whether the structure of planetary orbits, i.e. planetary angular momentum and orbital periods are ‘quantized’ in integer or half-integer multiples with respect to the parent stars’ rotation period. The Solar System is first shown to exhibit quantized planetary orbits that correlate with the Sun’s rotation period. The analysis is then expanded over 443 exoplanets to statistically validate this quantization and its association with stellar rotation. The results imply that the exoplanetary orbital periods are highly correlated with the parent star’s rotation periods and follow a discrete half-integer relationship with orbital ranks n=0.5, 1.0, 1.5, 2.0, 2.5, etc. The probability of obtaining these results by pure chance is p<0.024. We discuss various mechanisms that could justify this planetary quantization, such as the hybrid gravitational instability models of planet formation, along with possible physical mechanisms such as inner discs magnetospheric truncation, tidal dissipation, and resonance trapping. In conclusion, we statistically demonstrate that a quantized orbital structure should emerge naturally from the formation processes of planetary systems and that this orbital quantization is highly dependent on the parent stars rotation periods. Key words: planetary systems: formation – star: rotation – solar system: formation 1. INTRODUCTION The discovery of now more than 500 exoplanets has provided the opportunity to study the various properties of planetary systems and has considerably advanced our understanding of planetary formation processes.
    [Show full text]
  • The Observer's Handbook for 1921
    T he O bserver's H andbook FOR 1921 PUBLISHED BY The Royal Astronomical Society of Canada E d it e d b y C. A. CHANT. THIRTEENTH YEAR OF PUBLICATION TORONTO 198 College Street Printed for the Society 1921 1921 CALENDAR 1921 T he O bserver's H andbook FOR 1921 PUBLISHED BY The Royal Astronomical Society of Canada TORONTO 198 College Street Printed for the Society 1921 CONTENTS Preface 3 Anniversaries and Festivals - - - - 3 Symbols and Abbreviations - - - - 4 Solar and Sidereal Time - - - - - 5 Ephemeris of the Sun ------ 6 Occultations of Fixed Stars by the Moon - - 8 Times of Sunrise and Sunset - - - - 8 Planets for the Year - - - - - 22 Eclipses for 1921 - - - - - 27 The Sky and Astronomical Phenomena for each Month - 28 Eclipses, etc., of Jupiter’s Satellites - - - 52 Meteors and Shooting Stars - - - - 54 Elements of the Solar System - - - 55 Satellites of the Solar System - - - - 56 Double Stars, with a short list - - - 57 Variable Stars, with a short list - - - 59 Distances of the Stars - - - - 61 Geographical Positions of Some Points in Canada - 63 Index --------64 PREFACE The H a n d b o o k for 1921 follows the same lines as that for 1920. The chief difference is in the omission of the extended table giving the distance, velocities, and other information regarding certain fixed stars; and the substitution of a fuller account of the planets for the year, with maps of their paths. As in the last issue, the brief descriptions of the constellations and the star maps are not included, since fuller information is available in a better form and at a reasonable price in many publica­ tions, such as: Young’s Uranography (price 72c.), Upton’s Star Atlas ($3.00) and McKready’s Beginner's Star Book (about $3.50.) To those mentioned in the body of the book; to Mr.
    [Show full text]
  • Transits of Mercury, 1605–2999 CE
    Appendix A Transits of Mercury, 1605–2999 CE Date (TT) Int. Offset Date (TT) Int. Offset Date (TT) Int. Offset 1605 Nov 01.84 7.0 −0.884 2065 Nov 11.84 3.5 +0.187 2542 May 17.36 9.5 −0.716 1615 May 03.42 9.5 +0.493 2078 Nov 14.57 13.0 +0.695 2545 Nov 18.57 3.5 +0.331 1618 Nov 04.57 3.5 −0.364 2085 Nov 07.57 7.0 −0.742 2558 Nov 21.31 13.0 +0.841 1628 May 05.73 9.5 −0.601 2095 May 08.88 9.5 +0.326 2565 Nov 14.31 7.0 −0.599 1631 Nov 07.31 3.5 +0.150 2098 Nov 10.31 3.5 −0.222 2575 May 15.34 9.5 +0.157 1644 Nov 09.04 13.0 +0.661 2108 May 12.18 9.5 −0.763 2578 Nov 17.04 3.5 −0.078 1651 Nov 03.04 7.0 −0.774 2111 Nov 14.04 3.5 +0.292 2588 May 17.64 9.5 −0.932 1661 May 03.70 9.5 +0.277 2124 Nov 15.77 13.0 +0.803 2591 Nov 19.77 3.5 +0.438 1664 Nov 04.77 3.5 −0.258 2131 Nov 09.77 7.0 −0.634 2604 Nov 22.51 13.0 +0.947 1674 May 07.01 9.5 −0.816 2141 May 10.16 9.5 +0.114 2608 May 13.34 3.5 +1.010 1677 Nov 07.51 3.5 +0.256 2144 Nov 11.50 3.5 −0.116 2611 Nov 16.50 3.5 −0.490 1690 Nov 10.24 13.0 +0.765 2154 May 13.46 9.5 −0.979 2621 May 16.62 9.5 −0.055 1697 Nov 03.24 7.0 −0.668 2157 Nov 14.24 3.5 +0.399 2624 Nov 18.24 3.5 +0.030 1707 May 05.98 9.5 +0.067 2170 Nov 16.97 13.0 +0.907 2637 Nov 20.97 13.0 +0.543 1710 Nov 06.97 3.5 −0.150 2174 May 08.15 3.5 +0.972 2644 Nov 13.96 7.0 −0.906 1723 Nov 09.71 13.0 +0.361 2177 Nov 09.97 3.5 −0.526 2654 May 14.61 9.5 +0.805 1736 Nov 11.44 13.0 +0.869 2187 May 11.44 9.5 −0.101 2657 Nov 16.70 3.5 −0.381 1740 May 02.96 3.5 +0.934 2190 Nov 12.70 3.5 −0.009 2667 May 17.89 9.5 −0.265 1743 Nov 05.44 3.5 −0.560 2203 Nov
    [Show full text]
  • Extrasolar Planets and Their Host Stars
    Kaspar von Braun & Tabetha S. Boyajian Extrasolar Planets and Their Host Stars July 25, 2017 arXiv:1707.07405v1 [astro-ph.EP] 24 Jul 2017 Springer Preface In astronomy or indeed any collaborative environment, it pays to figure out with whom one can work well. From existing projects or simply conversations, research ideas appear, are developed, take shape, sometimes take a detour into some un- expected directions, often need to be refocused, are sometimes divided up and/or distributed among collaborators, and are (hopefully) published. After a number of these cycles repeat, something bigger may be born, all of which one then tries to simultaneously fit into one’s head for what feels like a challenging amount of time. That was certainly the case a long time ago when writing a PhD dissertation. Since then, there have been postdoctoral fellowships and appointments, permanent and adjunct positions, and former, current, and future collaborators. And yet, con- versations spawn research ideas, which take many different turns and may divide up into a multitude of approaches or related or perhaps unrelated subjects. Again, one had better figure out with whom one likes to work. And again, in the process of writing this Brief, one needs create something bigger by focusing the relevant pieces of work into one (hopefully) coherent manuscript. It is an honor, a privi- lege, an amazing experience, and simply a lot of fun to be and have been working with all the people who have had an influence on our work and thereby on this book. To quote the late and great Jim Croce: ”If you dig it, do it.
    [Show full text]