Why Do Plants Make Drugs for Humans? 5

Total Page:16

File Type:pdf, Size:1020Kb

Why Do Plants Make Drugs for Humans? 5 pep Pharmacology Education Partnership sites.duke.edu/thePEPproject Why do plants make drugs for humans? 5 A Project Funded by a Science Education Drug Abuse Partnership Award Module 5: Why do plants make drugs for humans? Description of the module What do cocaine, nicotine, caffeine, THC (tetrahydrocannabinol), morphine, and aspirin have in com- mon? They all come from plants. Why would plants make these drugs? How do the compounds get out of the plant to cause actions in the body? Plants are the oldest and most widely used source of medici- nal drugs. Even today, many drugs are still extracted from plants for use as therapeutic agents or for non-medicinal purposes. And, based on knowledge we have gained about drugs derived from plants, pharmaceutical companies can develop new drugs synthetically that have better efficacy and fewer side effects. This module will illustrate some basic plant biology, human biology, and chemistry principles by discuss- ing several properties of drugs obtained from plants. Topics include: 1) a discussion of natural selec- tion, 2) a description of the plant classification of Angiosperms and the difference between monocots and dicots, 3) a description of the alkaloid class of chemicals, 4) types of chemical bonds that enable drugs to bind to their targets (proteins such as receptors, enzymes or transporters), and 5) the role of enzymes in metabolism. Learning objectives: 1. Understand basic plant structure 2. Understand plant classification 3. Understand acid-base chemistry 4. Understand the structural difference between polar and non-polar compounds 5. Understand atomic structure and bonding forces 6. Understand protein function (e.g. enzymes and receptors) 7. Understand that the brain has special areas for different functions and behaviors This module integrates information from the following areas: botany, biology, chemistry, medicine, and business marketing strategy 2 Student Handout What do nicotine, caffeine, cocaine, morphine, THC (tetrahydrocannibinol, the active ingredient in mari- juana) and salicylate have in common? They all come from plants! The chemicals found in plants can have medicinal and non-medicinal uses. For example, the bark of the willow tree contains salicylate, the precursor to aspirin, and the foxglove plant makes digoxin, which is used to treat heart arrhythmias. The non-medicinal use of drugs such as nicotine, caffeine, cocaine, etc. stems from their ability to make a person “feel good”. These drugs have psychoactive effects in the brain, although they can also have non-psychoactive effects in other parts of the body as well. 1. Provide the name of the plants that contain the following drugs: nicotine, cocaine, morphine, THC and salicylate. 2. What is a psychoactive property? 3. Why would plants make compounds that have psychoactive properties? The characteristics of the chemicals found in plants have an important impact in how they are handled by the body. One of the most common forms of active compounds contained in plants is called alka- loids. Nicotine, caffeine, cocaine and morphine are all alkaloids. Alkaloids are synthesized in a plant cell and then stored in vacuoles. In contrast, compounds like THC are not alkaloids; instead they are more like oils. 4. What is an alkaloid? Describe the typical characteristics of its chemical structure. 5. What aspect of the chemical structure of THC gives it its oily character? 6. In what kind of plants are alkaloids found? Where in the plant are alkaloids found? 7. Describe the structure of a vacuole. What does it do inside the cell? In order to be consumed by humans, the drugs contained in plants need to be released from the plant cells. For medicinal or non-medicinal use, drugs are often extracted chemically. But in the case of non-medicinal use, drugs are also obtained by smoking the plant (e.g., tobacco, marijuana, opium) (see Module 1), smoking the extracted compound (e.g., crack cocaine), or chewing the dried leaves (e.g. chewing tobacco or coca leaves). The extraction of drugs, especially alkaloids, from plants is based on their chemical properties (acid-base characteristics) and their solubility in water versus an organic solvent. 8. In what form, charged or uncharged, does an alkaloid exist in the plant? (Hint: if it’s in a vacuole, it’s dissolved in water). 9. To chemically extract a drug from the plant, it must be in its non-polar (uncharged) form. Would one add an acid or a base to do this? Draw an equilibrium reaction of an alkaloid such as morphine in an acidic and in a basic medium. What is involved in the extraction process? 3 10. If a plant is smoked to release a drug, more drug will be volatilized in the smoke if the drug is in its non-polar form. In fact, tobacco companies play a “chemical trick” to in- crease the nicotine in the smoke by keeping the nicotine in the cigarette in its non-polar form. What do the tobacco companies add to the tobacco to do this? Why does this work? How does this help the tobacco companies to sell more cigarettes? Once these drugs get into the body, they travel through the bloodstream and they are delivered to tis- sues, including the brain. To produce their effects, drugs like nicotine, morphine, cocaine, caffeine, and even aspirin bind to specific proteins located on cell membranes or inside cells. These proteins include enzymes, receptors, and transporters. 11. Why would the body have protein targets for drugs that are found in plants? 12. What is an enzyme? What is a receptor? What is a transporter? Indicate which of these proteins is a target for nicotine, cocaine, morphine, caffeine, THC and aspirin. The binding of the drug to the protein involves several types of forces, including electrostatic forces, hy- drogen bonds, and van der Waals forces. There are a few examples of covalent interactions between a drug and its target, but this is rare. One example is nerve gas (see Module 4). 13. How do electrostatic forces, hydrogen bonds and van der Waals forces help the drug to bind to the protein? When the drug molecule approaches the protein, which force oc- curs first? Which force contributes most to the stability of the interaction? 14. Why is it uncommon to find drugs that interact with proteins in a covalent manner? When the drug binds to the protein target, it causes a change in the shape (“conformation”) of the protein. This usually causes something to happen in the cell that then leads to the actual biological response. 15. The conformation of the receptor for nicotine changes when nicotine binds to it. What happens next? What is the biological response that is produced? The last question is a bit tricky. The biological response that is produced will depend on where in the body the receptors for nicotine are found. Receptors for nicotine (also called acetylcholine receptors because acetylcholine, found in the body, binds to them) are found on neurons in many parts of the brain and on muscle cells (also see Module 4). In neurons, nicotine causes electrical impulses to be generated, causing release of neurotransmitters from neuron terminals. In muscles, nicotine causes contraction of the muscle. 16. Where are the protein targets for cocaine found? List 3 biological responses produced by cocaine, depending on where it binds to its target. 17. Where are the protein targets for aspirin found? List 3 biological responses produced by aspirin in three areas of the body. 4 Teacher's Instructional Guide Plants are excellent sources of drugs Many plants contain chemicals that can be used as drugs. For example, cocaine is derived from the coca plant (erythroxylon coca), nicotine from the tobacco plant (nicotiana tabacum), THC (9-tetrahydro- cannibinol) from the marijuana plant (cannabis sativa), morphine from the opium poppy plant (papaver somniferum), and salicylic acid (the precursor to aspirin) from the bark of the willow tree (salix nigra) (Figure 1). In many cases, the active ingredient in the plant affects behavior or mood; this effect in the brain is called a psychoactive effect. Cocaine, nicotine, THC and morphine all have psychoactive properties. On the other hand, aspirin, like salicylic acid, does not have psychoactive properties; its an- algesic effect (reduction of pain) does not involve changes in behavior or mood. Similarly, digoxin, the active ingredient in the foxglove plant, is still used today to treat heart rhythm disturbances and conges- tive heart failure, but it has no psychoactive properties. erythroxylon coca papaver somniferum Cocaine Morphine cannabis sativa THC salix nigra nicotiana tabacum Salicylic acid Nicotine Figure 1. The leaf structure is shown for several plants that contain compounds used as drugs. 5 Why Do Plants Make Drugs? Why would plants make drugs that are used by humans? More specifi cally, why would plants make drugs at all? Perhaps this may be explained by natural selection. The concept of natural selection was proposed by Charles Darwin in the late 1800’s as a cornerstone of his theory of evolution. The theory of natural selection stated that organisms survive by passing on traits that are desirable and promote survival. In the case of plants, they need to ward off predators such as insects to avoid being eaten. Thus, plants developed three types of defenses against predators; 1) nutritional, 2) physical, and 3) chemical. A nutritional defense produced by plants is to contain low nitrogen levels or an unfa- vorable balance of amino acids, making the metabolism diffi cult if the insect eats the plant. Second, plants can have physical characteristics (e.g. thorns) that make them diffi cult to hold, manipulate, and consume by insects. Third, and most relevant to our discussion, a plant can harbor chemicals to ward off insects.
Recommended publications
  • Hallucinogens - LSD, Peyote, Psilocybin, and PCP
    Hallucinogens - LSD, Peyote, Psilocybin, and PCP Hallucinogenic compounds found in some • Psilocybin (4-phosphoryloxy-N,N- plants and mushrooms (or their extracts) dimethyltryptamine) is obtained from have been used—mostly during religious certain types of mushrooms that are rituals—for centuries. Almost all indigenous to tropical and subtropical hallucinogens contain nitrogen and are regions of South America, Mexico, and classified as alkaloids. Many hallucinogens the United States. These mushrooms have chemical structures similar to those of typically contain less than 0.5 percent natural neurotransmitters (e.g., psilocybin plus trace amounts of acetylcholine-, serotonin-, or catecholamine- psilocin, another hallucinogenic like). While the exact mechanisms by which substance. hallucinogens exert their effects remain • PCP (phencyclidine) was developed in unclear, research suggests that these drugs the 1950s as an intravenous anesthetic. work, at least partially, by temporarily Its use has since been discontinued due interfering with neurotransmitter action or to serious adverse effects. by binding to their receptor sites. This DrugFacts will discuss four common types of How Are Hallucinogens Abused? hallucinogens: The very same characteristics that led to • LSD (d-lysergic acid diethylamide) is the incorporation of hallucinogens into one of the most potent mood-changing ritualistic or spiritual traditions have also chemicals. It was discovered in 1938 led to their propagation as drugs of abuse. and is manufactured from lysergic acid, Importantly, and unlike most other drugs, which is found in ergot, a fungus that the effects of hallucinogens are highly grows on rye and other grains. variable and unreliable, producing different • Peyote is a small, spineless cactus in effects in different people at different times.
    [Show full text]
  • Methyl Salicylate and Menthol | Memorial Sloan Kettering Cancer Center
    PATIENT & CAREGIVER EDUCATION Methyl Salicylate and Menthol This information from Lexicomp® explains what you need to know about this medication, including what it’s used for, how to take it, its side effects, and when to call your healthcare provider. Brand Names: US AMPlify Relief MM [OTC]; BenGay [OTC]; Calypxo HP [OTC]; Capasil [OTC]; Icy Hot [OTC]; Kwan Loong Pain Relieving [OTC]; Precise [OTC]; Salonpas Arthritis Pain [OTC]; Salonpas Jet Spray [OTC]; Salonpas Massage Foam [OTC]; Salonpas Pain Relief Patch [OTC]; Thera-Gesic Plus [OTC]; Thera-Gesic [OTC] What is this drug used for? It is used to ease muscle and joint aches and pain. What do I need to tell my doctor BEFORE I take this drug? If you have an allergy to aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) like ibuprofen or naproxen. If you are allergic to this drug; any part of this drug; or any other drugs, foods, or substances. Tell your doctor about the allergy and what signs you had. If your skin is damaged or has open wounds. Do not put on damaged skin or open wounds. If you are taking any other NSAID. If you are taking a salicylate drug like aspirin. If you are pregnant, plan to become pregnant, or get pregnant while taking this drug. This drug may cause harm to an unborn baby if taken at 20 weeks or later Methyl Salicylate and Menthol 1/7 in pregnancy. If you are between 20 to 30 weeks of pregnancy, only take this drug if your doctor has told you to. Do not take this drug if you are more than 30 weeks pregnant.
    [Show full text]
  • Poison Prevention Packaging: a Guide for Healthcare Professionals
    PPooiissoonn PPrreevveennttiioonn PPaacckkaaggiinngg:: AA GGuuiiddee FFoorr HHeeaalltthhccaarree PPrrooffeessssiioonnaallss REVISED 2005 CPSC 384 US. CONSUMER PRODUCT SAFETY COMMISSION, WASHINGTON, D.C. 20207 THIS BROCHURE BROUGHT TO YOU BY: U.S. CONSUMER PRODUCT SAFETY COMMISSION Washington, DC 20207 Web site: www.cpsc.gov Toll-free hotline: 1-800-638-2772 The U.S. Consumer Product Safety Commission (CPSC) is a federal agency that helps keep families and children safe in and around their homes. For more information, call the CPSC’s toll-free hotline at 1-800-638-2772 or visit its website at http://www.cpsc.gov. Poison Prevention Packaging: A Guide For Healthcare Professionals (revised 2005) Preface The U.S. Consumer Product Safety Commission (CPSC) administers the Poison Prevention Packaging Act of 1970 (PPPA), 15 U.S.C. §§ 1471-1476. The PPPA requires special (child-resistant and adult-friendly) packaging of a wide range of hazardous household products including most oral prescription drugs. Healthcare professionals are more directly involved with the regulations dealing with drug products than household chemical products. Over the years that the regulations have been in effect, there have been remarkable declines in reported deaths from ingestions by children of toxic household substances including medications. Despite this reduction in deaths, many children are poisoned or have "near-misses" with medicines and household chemicals each year. Annually, there are about 30 deaths of children under 5 years of age who are unintentionally poisoned. Data from the National Electronic Injury Surveillance System (a CPSC database of emergency room visits) indicate that in 2003, an estimated 78,000 children under 5 years of age were treated for poisonings in hospital emergency rooms in the United States.
    [Show full text]
  • Molecular Modeling of Major Tobacco Alkaloids in Mainstream Cigarette Smoke Caren Kurgat, Joshua Kibet* and Peter Cheplogoi
    Kurgat et al. Chemistry Central Journal (2016) 10:43 DOI 10.1186/s13065-016-0189-5 RESEARCH ARTICLE Open Access Molecular modeling of major tobacco alkaloids in mainstream cigarette smoke Caren Kurgat, Joshua Kibet* and Peter Cheplogoi Abstract Background: Consensus of opinion in literature regarding tobacco research has shown that cigarette smoke can cause irreparable damage to the genetic material, cell injury, and general respiratory landscape. The alkaloid family of tobacco has been implicated is a series of ailments including addiction, mental illnesses, psychological disorders, and cancer. Accordingly, this contribution describes the mechanistic degradation of major tobacco alkaloids including the widely studied nicotine and two other alkaloids which have received little attention in literature. The principal focus is to understand their energetics, their environmental fate, and the formation of intermediates considered harmful to tobacco consumers. Method: The intermediate components believed to originate from tobacco alkaloids in mainstream cigarette smoke were determined using as gas-chromatography hyphenated to a mass spectrometer fitted with a mass selective detector (MSD) while the energetics of intermediates were conducted using the density functional theory framework (DFT/B3LYP) using the 6-31G basis set. Results: The density functional theory calculations conducted using B3LYP correlation function established that the scission of the phenyl C–C bond in nicotine and β-nicotyrine, and C–N phenyl bond in 3,5-dimethyl-1-phenylpyrazole were respectively 87.40, 118.24 and 121.38 kcal/mol. The major by-products from the thermal degradation of nicotine, β-nicotyrine and 3,5-dimethyl-1-phenylpyrazole during cigarette smoking are predicted theoretically to be pyridine, 3-methylpyridine, toluene, and benzene.
    [Show full text]
  • Hallucinogens and Dissociative Drugs
    Long-Term Effects of Hallucinogens See page 5. from the director: Research Report Series Hallucinogens and dissociative drugs — which have street names like acid, angel dust, and vitamin K — distort the way a user perceives time, motion, colors, sounds, and self. These drugs can disrupt a person’s ability to think and communicate rationally, or even to recognize reality, sometimes resulting in bizarre or dangerous behavior. Hallucinogens such as LSD, psilocybin, peyote, DMT, and ayahuasca cause HALLUCINOGENS AND emotions to swing wildly and real-world sensations to appear unreal, sometimes frightening. Dissociative drugs like PCP, DISSOCIATIVE DRUGS ketamine, dextromethorphan, and Salvia divinorum may make a user feel out of Including LSD, Psilocybin, Peyote, DMT, Ayahuasca, control and disconnected from their body PCP, Ketamine, Dextromethorphan, and Salvia and environment. In addition to their short-term effects What Are on perception and mood, hallucinogenic Hallucinogens and drugs are associated with psychotic- like episodes that can occur long after Dissociative Drugs? a person has taken the drug, and dissociative drugs can cause respiratory allucinogens are a class of drugs that cause hallucinations—profound distortions depression, heart rate abnormalities, and in a person’s perceptions of reality. Hallucinogens can be found in some plants and a withdrawal syndrome. The good news is mushrooms (or their extracts) or can be man-made, and they are commonly divided that use of hallucinogenic and dissociative Hinto two broad categories: classic hallucinogens (such as LSD) and dissociative drugs (such drugs among U.S. high school students, as PCP). When under the influence of either type of drug, people often report rapid, intense in general, has remained relatively low in emotional swings and seeing images, hearing sounds, and feeling sensations that seem real recent years.
    [Show full text]
  • Introduced by Wayne, 13
    LB617 LB617 2017 2017 LEGISLATURE OF NEBRASKA ONE HUNDRED FIFTH LEGISLATURE FIRST SESSION LEGISLATIVE BILL 617 Introduced by Wayne, 13. Read first time January 18, 2017 Committee: Agriculture 1 A BILL FOR AN ACT relating to agricultural promotion; to amend section 2 28-401, Reissue Revised Statutes of Nebraska, and section 2-5701, 3 Revised Statutes Cumulative Supplement, 2016; to adopt the 4 Industrial Hemp Act; to provide an exemption as prescribed; to 5 provide an operative date; and to repeal the original sections. 6 Be it enacted by the people of the State of Nebraska, -1- LB617 LB617 2017 2017 1 Section 1. Sections 1 to 14 of this act shall be known and may be 2 cited as the Industrial Hemp Act. 3 Sec. 2. (1) The purpose of the Industrial Hemp Act is to assist the 4 State of Nebraska in moving to the forefront of industrial hemp 5 production, development, and commercialization of hemp products in 6 agribusiness, alternative fuel production, and other business sectors, 7 both nationally and globally and to the greatest extent possible. These 8 purposes shall be accomplished, in part, through: 9 (a) The creation of the Industrial Hemp Commission; 10 (b) The industrial hemp research program overseen by the commission, 11 working in conjunction with the staff of selected Nebraska postsecondary 12 institution agricultural research programs, along with other research 13 partners. This research program shall include the planting, cultivation, 14 and analysis of industrial hemp demonstration plots by selected growers 15 that are licensed by the commission; and 16 (c) The pursuit of any federal permits or waivers necessary to allow 17 industrial hemp to be grown in Nebraska.
    [Show full text]
  • Long-Lasting Analgesic Effect of the Psychedelic Drug Changa: a Case Report
    CASE REPORT Journal of Psychedelic Studies 3(1), pp. 7–13 (2019) DOI: 10.1556/2054.2019.001 First published online February 12, 2019 Long-lasting analgesic effect of the psychedelic drug changa: A case report GENÍS ONA1* and SEBASTIÁN TRONCOSO2 1Department of Anthropology, Philosophy and Social Work, Universitat Rovira i Virgili, Tarragona, Spain 2Independent Researcher (Received: August 23, 2018; accepted: January 8, 2019) Background and aims: Pain is the most prevalent symptom of a health condition, and it is inappropriately treated in many cases. Here, we present a case report in which we observe a long-lasting analgesic effect produced by changa,a psychedelic drug that contains the psychoactive N,N-dimethyltryptamine and ground seeds of Peganum harmala, which are rich in β-carbolines. Methods: We describe the case and offer a brief review of supportive findings. Results: A long-lasting analgesic effect after the use of changa was reported. Possible analgesic mechanisms are discussed. We suggest that both pharmacological and non-pharmacological factors could be involved. Conclusion: These findings offer preliminary evidence of the analgesic effect of changa, but due to its complex pharmacological actions, involving many neurotransmitter systems, further research is needed in order to establish the specific mechanisms at work. Keywords: analgesic, pain, psychedelic, psychoactive, DMT, β-carboline alkaloids INTRODUCTION effects of ayahuasca usually last between 3 and 5 hr (McKenna & Riba, 2015), but the effects of smoked changa – The treatment of pain is one of the most significant chal- last about 15 30 min (Ott, 1994). lenges in the history of medicine. At present, there are still many challenges that hamper pain’s appropriate treatment, as recently stated by American Pain Society (Gereau et al., CASE DESCRIPTION 2014).
    [Show full text]
  • Corymine Potentiates NMDA-Induced Currents in Xenopus Oocytes Expressing Nr1a/NR2B Glutamate Receptors
    J Pharmacol Sci 98, 58 – 65 (2005) Journal of Pharmacological Sciences ©2005 The Japanese Pharmacological Society Full Paper Corymine Potentiates NMDA-Induced Currents in Xenopus Oocytes Expressing NR1a/NR2B Glutamate Receptors Pathama Leewanich1,2,*, Michihisa Tohda2, Hiromitsu Takayama3, Samaisukh Sophasan4, Hiroshi Watanabe2, and Kinzo Matsumoto2 1Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand 2Division of Medicinal Pharmacology, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan 3Laboratory of Molecular Structure and Biological Function, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan 4Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand Received January 5, 2005; Accepted March 31, 2005 Abstract. Previous studies demonstrated that corymine, an indole alkaloid isolated from the leaves of Hunter zeylanica, dose-dependently inhibited strychnine-sensitive glycine-induced currents. However, it is unclear whether this alkaloid can modulate the function of the N-methyl- D-aspartate (NMDA) receptor on which glycine acts as a co-agonist via strychnine-insensitive glycine binding sites. This study aimed to evaluate the effects of corymine on NR1a/NR2B NMDA receptors expressed in Xenopus oocytes using the two-electrode voltage clamp technique. Corymine significantly potentitated the NMDA-induced currents recorded from oocytes on days 3 and 4 after cRNA injection but it showed no effect when the current was recorded on days 5 and 6. The potentiating effect of corymine on NMDA-induced currents was induced in the presence of a low concentration of glycine (≤0.1 µM). Spermine significantly enhanced the potentiating effect of corymine observed in the oocytes on days 3 and 4, while the NMDA- receptor antagonist 2-amino-5-phosphonopentanone (AP5) and the NMDA-channel blocker 5- methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) reversed the effect of corymine.
    [Show full text]
  • MRO Manual Before 2004
    Note: This manual is essentially the same as the 1997 HHS Medical Review Officer (MRO) Manual except for changes related to the new Federal Custody and Control Form (CCF). The appendix has also been deleted since the new Federal Custody and Control Form is available as a separate file on the website. Medical Review Officer Manual for Federal Agency Workplace Drug Testing Programs for use with the new Federal Drug Testing Custody and Control Form (OMB Number 0930-0158, Exp Date: June 30, 2003) This manual applies to federal agency drug testing programs that come under Executive Order 12564 and the Department of Health and Human Services (HHS) Mandatory Guidelines. Table of Contents Chapter 1. The Medical Review Officer (MRO) ............................................................... 1 Chapter 2. Federal Drug Testing Custody and Control Form .......................................... 3 Chapter 3. The MRO Review Process ............................................................................ 3 A. Administrative Review of the CCF ........................................................................... 3 I. State Initiatives and Laws ....................................................................................... 15 Chapter 4. Specific Drug Class Issues .......................................................................... 15 A. Amphetamines ....................................................................................................... 15 B. Cocaine ................................................................................................................
    [Show full text]
  • Topical Analgesics: Expensive and Avoidable
    TOPICAL ANALGESICS: EXPENSIVE AND AVOIDABLE FAST FOCUS Some very expensive topical creams and gels are creeping into the workers’ compensation Close management of custom compounds prescription files. Previously, the issue of custom compounds was highlighted and the has decreased their prevalence in workers’ attention to these prescriptions has resulted in a decrease in the number of prescriptions compensation. But private-label topicals and homeopathic products have filled the void. seen. However, the price of these compounds has increased significantly. Neither is FDA-approved. Both warrant close monitoring because of their high costs and In addition to the compounds that are still being prescribed, other topical products are lack of proven efficacy. increasingly seen in the workers’ compensation setting. In this article, a spotlight is turned on to expose more expensive topicals — private-label analgesics and homeopathic products. 24 | RxInformer FALL 2013 SUMMARY OF PRIMARY ISSUES Issue Custom Compounds Private-Label Analgesics Homeopathic Products NDCs Available FDA-approved Proven clinical benefit Prepared by compounding — — pharmacy for a specific patient Contain high levels of NSAIDs — — Contain 2-3x the FDA-approved concentration of methyl salicylate — and/or menthol Can cause skin burns — Prescribers unaware of compound ingredients Prescribers unaware of high costs Expiration dating required — — TOPICAL PRIVATE-LABEL PRODUCTS FINANCIAL CONCERNS There are private-label companies marketing products similar to inexpensive, over- When compared with comparable over-the- the-counter products, but with catchy names, inflated claims and prices. Private-label counter (OTC) preparations, the private-label topical compounds are products containing OTC ingredients such as high-potency products’ prices are stunning.
    [Show full text]
  • (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact
    pharmaceuticals Review Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact Andreia Machado Brito-da-Costa 1 , Diana Dias-da-Silva 1,2,* , Nelson G. M. Gomes 1,3 , Ricardo Jorge Dinis-Oliveira 1,2,4,* and Áurea Madureira-Carvalho 1,3 1 Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; [email protected] (A.M.B.-d.-C.); ngomes@ff.up.pt (N.G.M.G.); [email protected] (Á.M.-C.) 2 UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 3 LAQV-REQUIMTE, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 4 Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal * Correspondence: [email protected] (D.D.-d.-S.); [email protected] (R.J.D.-O.); Tel.: +351-224-157-216 (R.J.D.-O.) Received: 21 September 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: Ayahuasca is a hallucinogenic botanical beverage originally used by indigenous Amazonian tribes in religious ceremonies and therapeutic practices. While ethnobotanical surveys still indicate its spiritual and medicinal uses, consumption of ayahuasca has been progressively related with a recreational purpose, particularly in Western societies. The ayahuasca aqueous concoction is typically prepared from the leaves of the N,N-dimethyltryptamine (DMT)-containing Psychotria viridis, and the stem and bark of Banisteriopsis caapi, the plant source of harmala alkaloids.
    [Show full text]
  • Experiment 22 Synthesis of Aspirin and Oil of Wintergreen
    Experiment 22 Synthesis of Aspirin and Oil of Wintergreen GOALS: In this two-week experiment the important area of organic chemistry will be illustrated by the preparation and characterization of two compounds. The usefulness of functional groups will be illustrated as well as the use of NMR, IR, and melting point in characterizing a product. The analysis will be done next week in Experiment 23. INTRODUCTION: Synthesis and use of organic compounds is an extremely important area of modern chemistry. Approximately half of all chemists work with organic chemicals. In everyday life, many if not most of the chemicals you come in contact with are organic chemicals. Examples include drugs, synthetic fabrics, paints, plastics, etc. Synthesis of Aspirin and Methyl Salicylate. The two compounds we will be preparing, aspirin (acetylsalicylic acid) and oil of wintergreen (methyl salicylate), are both organic esters. An ester is a compound that is formed when an acid (containing the –COOH group) reacts with an alcohol (a compound containing an –OH group). O O + C O C + O Eqn 1 R O H 1 H R2 R O R H H 1 2 ester water acid alcohol Here R1 and R2 represent groups such as CH3– or CH3CH2–. The reaction type shown above may be called a condensation reaction because the small molecule H2O is eliminated from the reactants while the remaining bits of the reactants condense together to give the main product. This reaction may also be called an esterification, since the product of the reaction is an ester, a compound containing the CO2R group (see chapter 20 for definitions of acids, esters, and alcohols).
    [Show full text]