MRO Manual Before 2004
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hallucinogens - LSD, Peyote, Psilocybin, and PCP
Hallucinogens - LSD, Peyote, Psilocybin, and PCP Hallucinogenic compounds found in some • Psilocybin (4-phosphoryloxy-N,N- plants and mushrooms (or their extracts) dimethyltryptamine) is obtained from have been used—mostly during religious certain types of mushrooms that are rituals—for centuries. Almost all indigenous to tropical and subtropical hallucinogens contain nitrogen and are regions of South America, Mexico, and classified as alkaloids. Many hallucinogens the United States. These mushrooms have chemical structures similar to those of typically contain less than 0.5 percent natural neurotransmitters (e.g., psilocybin plus trace amounts of acetylcholine-, serotonin-, or catecholamine- psilocin, another hallucinogenic like). While the exact mechanisms by which substance. hallucinogens exert their effects remain • PCP (phencyclidine) was developed in unclear, research suggests that these drugs the 1950s as an intravenous anesthetic. work, at least partially, by temporarily Its use has since been discontinued due interfering with neurotransmitter action or to serious adverse effects. by binding to their receptor sites. This DrugFacts will discuss four common types of How Are Hallucinogens Abused? hallucinogens: The very same characteristics that led to • LSD (d-lysergic acid diethylamide) is the incorporation of hallucinogens into one of the most potent mood-changing ritualistic or spiritual traditions have also chemicals. It was discovered in 1938 led to their propagation as drugs of abuse. and is manufactured from lysergic acid, Importantly, and unlike most other drugs, which is found in ergot, a fungus that the effects of hallucinogens are highly grows on rye and other grains. variable and unreliable, producing different • Peyote is a small, spineless cactus in effects in different people at different times. -
Tolerance and Dependence
Tolerance and Dependence Drug Tolerance is a decrease in the effect of a drug as a consequence of repeated exposure. • Change over repeated exposures. • Different effects may show different tolerance. • Tolerance is reversible. Mechanisms of Tolerance • Pharmacokinetic Tolerance • Enzyme Induction Effects. • Pharmacodynamic Tolerance • NT depletion • Receptor Plasticity 1 Receptor Plasticity and Tolerance • Drugs that are NT agonists can cause receptor downregulation. • Drugs that are NT antagonists can cause receptor upregulation. Pharmacodynamic drug tolerance can also affect “normal” synaptic transmission. • Serious side-effect of drug use. Mechanisms of tolerance continued… Learned Tolerance - Learned behaviors compensate for drug effects. • Practice effects. • Reward and punishment . Context-Specific Tolerance • Stimuli in the environment (context) become able to counteract the effects of a drug. Pavlovian Conditioning • A neutral stimulus paired with a biologically relevant stimulus becomes able to elicit a response. Siegel et al. (1982) - Demonstrated that drug tolerance can be conditioned. 2 Group Control 15 injections of saline in distinctive room. High dose of heroin in distinctive room on Day 16. • Results: 96% died of overdose. Group Same 15 injections of heroin in distinctive room. Hig h dose o f hero in in dis tincti ve room on D ay 16 . • Results: 32% died of overdose. Group Different 15 injections of heroin in distinctive room. High dose of heroin in new room on Day 16. • Results: 64% died of overdose. Siegel’s Theory: • When an environment consistently predicts drug administration... • … the environment begins to elicit a “compensatory” response that is opposite to the drug’s effect. • The compensatory response counteracts the drug’s effect. -
AND DRUG' ABUSE' ( , \ I ., : for VOLUNTEER .AFTERCARE OFFICERS
=£q, G& ~. ~I o II g ~ L>- ".,-~..- ". 'PR'OBATIQN AND AFTERCA'RE SERVICE " rI ! ,~ i I!' 0 i! ,1 u I', :( ~ II' 1 r :.:" I I) 'tbLLECTED ,READINGS ,~ ~ - '., ,\ ON It, DR!J.GS ·AND DRUG' ABUSE' ( , \ i ., : FOR VOLUNTEER .AFTERCARE OFFICERS. ri ll, "' , 'I: o '.> .. , 4 . , . I:o..-__________:i-.._---... __ ~~ ___~;L __~ ______ fF PROBATION AND AFTERCARE SERVICE COLLECTED READUNGS ON DRUGS AND DRUG ABUSE FOR VOLUNTEER AFTERCARE OFFICERS 1977 a If' t «(, CONTENTS ARTICLE PAGE PART I - THE DRUG SCENE Speech by Dr Goh Keng Swee, Deputy Prime Minister and Minister of Defence, at the Launching of the NADAC Month at the National Theatre Or! Wedr!e~dev, 4th August 1976. 1 II Speech by Mr Chua Sian Chin, Minister for Home Affairs and Education at the Opening Ceremony of the First Meeting of ASEAN Drug Experts at the Crystal Ballroom, Hyatt Hotel, on Tuesday, 26th October 1976. 6 PART II - PREVENTIVE EDUCATION III The Objectives of Anti-Drug Abuse Education by Dr Tow Siang Hwa, Past President, Singapore Anti-Narcotics Association 8 .. PART III - DRUGS AND THEIR EFFECTS IV CommonlY Abused Drugs by Dr Yeow Teow Seng, Associate Profassor oi Pharmacology, University of Singapore 12 V The Non-Medical Uses of Dependence-Producing Drugs by Dr Leong Hon Koon 18 VI Psychiatric Aspects of Drug Abuse by Dr Paul W Ngui, Consultant Psychlatrist 23 VII Sad End to All Drug Trips by Dr Chao Tzu Cheng, Senior Forensic Pathologist, Ministry of Health 27 PART IV - SOCIAL CONSIDERATIONS OF DRUG ABUSE VIII Patterns & Social Consequences of Drug Abuse & the Rehabilitation of Drug Addict by K V Veloo, Chief Probation & Aftercare Officer 29 IX Social Factors of Drug Abuse by K V Veloo, Chief Probation & Aftercare Officer 34 f X Some Causes of Adolescent Problems , by S Vasoo, Deputy Director, Singapore Council of Social Service 39 " ,. -
Medical Review Officer Manual
Department of Health and Human Services Substance Abuse and Mental Health Services Administration Center for Substance Abuse Prevention Medical Review Officer Manual for Federal Agency Workplace Drug Testing Programs EFFECTIVE OCTOBER 1, 2010 Note: This manual applies to Federal agency drug testing programs that come under Executive Order 12564 dated September 15, 1986, section 503 of Public Law 100-71, 5 U.S.C. section 7301 note dated July 11, 1987, and the Department of Health and Human Services Mandatory Guidelines for Federal Workplace Drug Testing Programs (73 FR 71858) dated November 25, 2008 (effective October 1, 2010). This manual does not apply to specimens submitted for testing under U.S. Department of Transportation (DOT) Procedures for Transportation Workplace Drug and Alcohol Testing Programs (49 CFR Part 40). The current version of this manual and other information including MRO Case Studies are available on the Drug Testing page under Medical Review Officer (MRO) Resources on the SAMHSA website: http://www.workplace.samhsa.gov Previous Versions of this Manual are Obsolete 3 Table of Contents Chapter 1. The Medical Review Officer (MRO)........................................................................... 6 Chapter 2. The Federal Drug Testing Custody and Control Form ................................................ 7 Chapter 3. Urine Drug Testing ...................................................................................................... 9 A. Federal Workplace Drug Testing Overview.................................................................. -
Educational Commentary – Testing for Amphetamines and Related Compounds
EDUCATIONAL COMMENTARY – TESTING FOR AMPHETAMINES AND RELATED COMPOUNDS Learning Outcomes Upon completion of this exercise, participants will be able to: • list amphetamine-like compounds that may be detected by immunoassay screening tests for amphetamines. • describe the 3 types of amphetamine immunoassays based on their antibody specificity. • discuss common causes of false-positive results when testing for amphetamines. Correct interpretation of testing results for amphetamines and related compounds is dependent on many factors including an understanding of the nomenclature, structure, and metabolism of these compounds. The class of phenethylamine compounds having varying degrees of sympathomimetic activity include amphetamine, methamphetamine, and many other compounds known by several names including amphetamines (as a group), designer drugs often grouped together as ecstasy [3,4- methylenedioxymethamphetamine (MDMA); 3,4-methylenedioxyamphetamine (MDA), and 3,4- methylenedioxy-N-ethylamphetamine (MDEA)], and sympathomimetic amines including ephedrine, pseudoephedrine, and phenylpropanolamine found in over-the-counter (OTC) medications. Amphetamine, a primary amine, and methamphetamine, a secondary amine, have a stereogenic center and have enantiomers or optical isomers designated d (or +) for dextrorotatory and l (or -) for levorotatory. In general, the d isomers are the more physiologically active compounds, but pharmaceutical preparations may consist of either isomer or a mixture of both isomers. When the mixture contains equal concentrations of the 2 enantiomers, it is known as a racemic mixture. The existence of enantiomers for amphetamines creates analytical and interpretative problems. Immunoassay Screening The primary screening methods for detecting amphetamines are immunoassays. The structural similarity to amphetamine or methamphetamine of the compounds previously mentioned makes it difficult to produce antibodies specific for amphetamine, methamphetamine, or both. -
IOC Doping Control Guide For
Doping Control Guide Version 1.0 | February 2016 CONTENTS 1 | ! GENERAL INFORMATION ...................................................... 2! 2 | ! DOPING CONTROL ............................................................. 2! 3 | ! DOPING CONTROL STEP-BY-STEP ........................................... 3! 4 | ! LABORATORY ................................................................... 4! 5 | ! MEDICATIONS USE ............................................................. 4! 6 | ! SUPPLEMENT USE .............................................................. 4! 7 | ! THERAPEUTIC USE EXEMPTIONS ............................................. 5! 8 | ! WHEREABOUTS INFORMATION ............................................... 5! 9 | ! RESOLVING PENDING CASES INVOLVING POSSIBLE VIOLATIONS OF ANTI-DOPING RULES .......................................................... 6! 10 |!WADA INDEPENDENT OBSERVER PROGRAMME ............................. 6! 11 |!WADA OUTREACH PROGRAMME ............................................ 7! 12 |!SHARE OF INFORMATION THROUGH SECURE DATABASE ................. 7! 13 |!DOPING CONTROL TECHNICAL PROCEDURES FOR RIO 2016 OLYMPIC GAMES ............................................................... 7! APPENDICES .......................................................................... 8! A1| DOPING CONTROL STEP-BY-STEP POSTER .................................. 8! A2|THE 2016 PROHIBITED LIST .................................................... 9! SUBSTANCES & METHODS PROHIBITED AT ALL TIMES (IN AND OUT-OF-COMPETITION) ......................................................... -
How Psychoactive Drugs Affect Us
HOW PSYCHOACTIVE DRUGS AFFECT US Part II 7th February 2014 Ms. Cathy Ngarachu Physiological Responses to Drugs • Determines how drugs affect people and why it is difficult to control their levels of use. • They include: • Tolerance to Drug • Tissue Dependence • Psychological Dependence & Reward-reinforcing action of drugs • Withdrawal Tolerance • Results from the body’s attempt to eliminate a drug that it treats as a toxin • With continued drug use the body tries to neutralize the toxic effects by: • Requiring larger amounts of the drugs to achieve the original effects • Degree of effects depend on the : • Amount used • Duration of use • Frequency of use • Individual’s chemistry • State of mind Kinds of Tolerance • Dispositional Tolerance • Speeds up the metabolism to handle the drug in order to eliminate it • Example: Increases the amount of cytocells and mitochondria in the liver to neutralize the drug….. So it will take more of the drug to achieve the same level of intoxication Kinds of Tolerance • Pharmacodynamic Tolerance • Results from the desensitization of nerve cells to the action of the drug • Ex. The nerve cells become less sensitive and begin producing an antidote or antagonist to the drug, ie. The brain will generate more opiod receptor sites. Kinds of Tolerance • Behavioral Tolerance: • Brain adjustments that affect behavior • Someone who is high may make himself appear sober when threatened, then revert back to the high state • Reverse Tolerance • Person has greater sensitivity to the drug, after prolong use, and the body’s ability to metabolize the drug decreases. • Ex. A person who has drunk a 12-pack of beer daily for ten years, may find themselves drinking 3-4 beers to achieve the effect due to tissue damage of the liver and kidneys. -
Molecular Modeling of Major Tobacco Alkaloids in Mainstream Cigarette Smoke Caren Kurgat, Joshua Kibet* and Peter Cheplogoi
Kurgat et al. Chemistry Central Journal (2016) 10:43 DOI 10.1186/s13065-016-0189-5 RESEARCH ARTICLE Open Access Molecular modeling of major tobacco alkaloids in mainstream cigarette smoke Caren Kurgat, Joshua Kibet* and Peter Cheplogoi Abstract Background: Consensus of opinion in literature regarding tobacco research has shown that cigarette smoke can cause irreparable damage to the genetic material, cell injury, and general respiratory landscape. The alkaloid family of tobacco has been implicated is a series of ailments including addiction, mental illnesses, psychological disorders, and cancer. Accordingly, this contribution describes the mechanistic degradation of major tobacco alkaloids including the widely studied nicotine and two other alkaloids which have received little attention in literature. The principal focus is to understand their energetics, their environmental fate, and the formation of intermediates considered harmful to tobacco consumers. Method: The intermediate components believed to originate from tobacco alkaloids in mainstream cigarette smoke were determined using as gas-chromatography hyphenated to a mass spectrometer fitted with a mass selective detector (MSD) while the energetics of intermediates were conducted using the density functional theory framework (DFT/B3LYP) using the 6-31G basis set. Results: The density functional theory calculations conducted using B3LYP correlation function established that the scission of the phenyl C–C bond in nicotine and β-nicotyrine, and C–N phenyl bond in 3,5-dimethyl-1-phenylpyrazole were respectively 87.40, 118.24 and 121.38 kcal/mol. The major by-products from the thermal degradation of nicotine, β-nicotyrine and 3,5-dimethyl-1-phenylpyrazole during cigarette smoking are predicted theoretically to be pyridine, 3-methylpyridine, toluene, and benzene. -
Neurobiological and Neurobehavioral Mechanisms of Chronic Alcohol Drinking
Neurobiological and Neurobehavioral Mechanisms of Chronic Alcohol Drinking Neurobiological and Neurobehavioral Mechanisms of Chronic Alcohol Drinking Alcoholism comprises a set of complex behaviors seeking behaviors, have been developed. These in which an individual becomes increasingly models, which remain an integral part of the preoccupied with obtaining alcohol. These study of alcoholism, include animals that pref- behaviors ultimately lead to a loss of control over erentially drink solutions containing alcohol, consumption of the drug and to the development animals that self-administer alcohol during of tolerance, dependence, and impaired social and withdrawal, animals with a history of dependence occupational functioning. that self-administer alcohol, and animals that self- administer alcohol after a period of abstinence Although valuable information regarding toler- from the drug. Genetic models for alcoholism ance and dependence has been, and continues to also exist and include animals that have been bred be, gathered through human studies, much of the selectively for high alcohol consumption. Studies detailed understanding of the impact of exposure using such models are uncovering the systemic, to alcohol on behavior and on the biological cellular, and molecular neurobiological mech- mechanisms underlying those behaviors has been anisms that appear to contribute to chronic obtained through the use of animal models for alcohol consumption. The challenge of current alcoholism and a variety of in vitro, or cellular, and future studies is to understand which specific systems. Through the use of cellular systems and cellular and subcellular systems undergo mole- animal models, researchers can control the genetic cular changes to influence tolerance and depen- background and experimental conditions under dence in motivational systems that lead to which a specific alcohol-related behavior or chronic drinking. -
Hallucinogens and Dissociative Drugs
Long-Term Effects of Hallucinogens See page 5. from the director: Research Report Series Hallucinogens and dissociative drugs — which have street names like acid, angel dust, and vitamin K — distort the way a user perceives time, motion, colors, sounds, and self. These drugs can disrupt a person’s ability to think and communicate rationally, or even to recognize reality, sometimes resulting in bizarre or dangerous behavior. Hallucinogens such as LSD, psilocybin, peyote, DMT, and ayahuasca cause HALLUCINOGENS AND emotions to swing wildly and real-world sensations to appear unreal, sometimes frightening. Dissociative drugs like PCP, DISSOCIATIVE DRUGS ketamine, dextromethorphan, and Salvia divinorum may make a user feel out of Including LSD, Psilocybin, Peyote, DMT, Ayahuasca, control and disconnected from their body PCP, Ketamine, Dextromethorphan, and Salvia and environment. In addition to their short-term effects What Are on perception and mood, hallucinogenic Hallucinogens and drugs are associated with psychotic- like episodes that can occur long after Dissociative Drugs? a person has taken the drug, and dissociative drugs can cause respiratory allucinogens are a class of drugs that cause hallucinations—profound distortions depression, heart rate abnormalities, and in a person’s perceptions of reality. Hallucinogens can be found in some plants and a withdrawal syndrome. The good news is mushrooms (or their extracts) or can be man-made, and they are commonly divided that use of hallucinogenic and dissociative Hinto two broad categories: classic hallucinogens (such as LSD) and dissociative drugs (such drugs among U.S. high school students, as PCP). When under the influence of either type of drug, people often report rapid, intense in general, has remained relatively low in emotional swings and seeing images, hearing sounds, and feeling sensations that seem real recent years. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
UFC PROHIBITED LIST Effective June 1, 2021 the UFC PROHIBITED LIST
UFC PROHIBITED LIST Effective June 1, 2021 THE UFC PROHIBITED LIST UFC PROHIBITED LIST Effective June 1, 2021 PART 1. Except as provided otherwise in PART 2 below, the UFC Prohibited List shall incorporate the most current Prohibited List published by WADA, as well as any WADA Technical Documents establishing decision limits or reporting levels, and, unless otherwise modified by the UFC Prohibited List or the UFC Anti-Doping Policy, Prohibited Substances, Prohibited Methods, Specified or Non-Specified Substances and Specified or Non-Specified Methods shall be as identified as such on the WADA Prohibited List or WADA Technical Documents. PART 2. Notwithstanding the WADA Prohibited List and any otherwise applicable WADA Technical Documents, the following modifications shall be in full force and effect: 1. Decision Concentration Levels. Adverse Analytical Findings reported at a concentration below the following Decision Concentration Levels shall be managed by USADA as Atypical Findings. • Cannabinoids: natural or synthetic delta-9-tetrahydrocannabinol (THC) or Cannabimimetics (e.g., “Spice,” JWH-018, JWH-073, HU-210): any level • Clomiphene: 0.1 ng/mL1 • Dehydrochloromethyltestosterone (DHCMT) long-term metabolite (M3): 0.1 ng/mL • Selective Androgen Receptor Modulators (SARMs): 0.1 ng/mL2 • GW-1516 (GW-501516) metabolites: 0.1 ng/mL • Epitrenbolone (Trenbolone metabolite): 0.2 ng/mL 2. SARMs/GW-1516: Adverse Analytical Findings reported at a concentration at or above the applicable Decision Concentration Level but under 1 ng/mL shall be managed by USADA as Specified Substances. 3. Higenamine: Higenamine shall be a Prohibited Substance under the UFC Anti-Doping Policy only In-Competition (and not Out-of- Competition).