Evolution of a Habitable Planet

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of a Habitable Planet 23 Jul 2003 20:28 AR AR194-AA41-11.tex AR194-AA41-11.sgm LaTeX2e(2002/01/18) P1: GCE 10.1146/annurev.astro.41.071601.170049 Annu. Rev. Astron. Astrophys. 2003. 41:429–63 doi: 10.1146/annurev.astro.41.071601.170049 Copyright c 2003 by Annual Reviews. All rights reserved First published online as a Review in Advance on June 4, 2003 EVOLUTION OF A HABITABLE PLANET James F. Kasting1 and David Catling2 1Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802; email: [email protected] 2Department of Atmospheric Sciences and Astrobiology Program, University of Washington, Seattle, Washington 98195-1640; email: [email protected] Key Words climate history, habitable zones, planetary volatiles, rise of atmospheric oxygen, biosignature gases ■ Abstract Giant planets have now been discovered around other stars, and it is only a matter of time until Earth-sized planets are detected. Whether any of these planets are suitable for life depends on their volatile abundances, especially water, and on their climates. Only planets within the liquid-water habitable zone (HZ) can support life on their surfaces and, thus, can be analyzed remotely to determine whether they are inhabited. Fortunately, current models predict that HZs are relatively wide around main-sequence stars not too different from our sun. This conclusion is based on studies of how our own planet has evolved over time. Earth’s climate has remained conducive to life for the past 3.5 billion years or more, despite a large increase in solar luminosity, probably because of previous higher concentrations of CO2 and/or CH4. Both these gases are involved in negative feedback loops that help to stabilize the climate. In addition to these topics, we also briefly discuss the rise of atmospheric O2 and O3, along with their possible significance as indicators of life on other planets. 1. INTRODUCTION The evolution of Earth’s atmosphere and climate has long been the domain of geo- scientists and biologists. Geoscientists are interested in understanding the history of the solid planet as well as its atmosphere and ocean. Biologists are interested Access provided by University of Chicago Libraries on 04/04/18. For personal use only. Annu. Rev. Astron. Astrophys. 2003.41:429-463. Downloaded from www.annualreviews.org in understanding biological evolution and how that may have been influenced by interactions with the environment. Prebiotic chemists are involved with these is- sues as well because they want to understand the conditions under which life may have originated. Astronomers now have reason to take an interest in this topic because they hope to be able to observe Earth-sized planets around other stars within the next two decades. Only giant planets—approximately 100 of them to date—have been detected, all by the radial-velocity technique (Butler 2003, Marcy & Butler 1998). One planet, HD 209458, has also been photometrically monitored in transit across its parent star (Charbonneau et al. 2000). Future space missions, and perhaps ground-based observers as well, have the potential of finding Earth-sized planets. 0066-4146/03/0922-0429$14.00 429 23 Jul 2003 20:28 AR AR194-AA41-11.tex AR194-AA41-11.sgm LaTeX2e(2002/01/18) P1: GCE 430 KASTING CATLING NASA’s Kepler mission, scheduled to launch in 2006, will look for planetary transits across approximately 50,000 stars in a patch of the Milky Way (Borucki et al. 2003). In the somewhat more distant future, NASA’s proposed Terrestrial Planet Finder mission (Beichman, Woolf & Lindensmith 1999), or the European Space Agency’s (ESA’s) proposed Darwin mission (L´eger 2000, Selsis, Despois & Parisot 2002), will attempt to observe planets directly at either visible/near- infrared (IR) or thermal-IR wavelengths and, at the same time, obtain spectra of their atmospheres. With luck, we will learn not only whether other habitable worlds exist but also whether any of them are actually inhabited. It therefore behooves us to consider what it takes to create and maintain a habitable world and to consider how one might look for evidence of life on such a planet. We should note that not everyone agrees as to what constitutes a habitable world. We concern ourselves here with the traditional definition (Dole 1964; Hart 1978, 1979): A habitable planet is one on which liquid water is stable at the surface. This definition presupposes that, like life on Earth, alien life will be carbon-based and will require liquid water. Some scientists (e.g., Hoyle 1957) have speculated that life may be a more general phenomenon and that carbon and water are not needed. This idea is indeed conceivable, but it lends itself better to science fiction than to concrete development. Many more researchers would argue that life is possible on planets (or moons) with subsurface liquid water. Mars and Europa in our own solar system are two obvious candidates, and NASA has missions in the planning stages to find out if they are inhabited. However, the search for life on such bodies can only be carried out in situ because any life that may be present does not modify the planet’s atmosphere in a detectable way. In contrast, investigators can search spectroscopically for biogenic gases in the atmosphere of a planet that is habitable in the traditional sense. Hence, this traditional definition of habitability is useful to researchers looking for life on planets around other stars. 2. FORMATION OF THE ATMOSPHERE AND OCEANS We begin by briefly discussing the formation of Earth’s atmosphere and oceans and, in passing, the formation of the Earth/Moon system. Entire books have been Access provided by University of Chicago Libraries on 04/04/18. For personal use only. devoted to this latter subject (Canup & Righter 2000, Hartmann, Phillips & Taylor Annu. Rev. Astron. Astrophys. 2003.41:429-463. Downloaded from www.annualreviews.org 1986, Newsom & Jones 1990), so we do no more than scratch the surface of this topic. Our goal in this section is to establish boundary conditions for the subsequent evolution of the atmosphere and for the origin of life. 2.1. Formation of Earth and the Moon Radiometric (207Pb/206Pb) age dating shows that Earth is approximately the same age as primitive chondritic meteorites, 4.56 0.01 Ga. (We use geologists’ pre- ferred time notation as it is less cumbersome than other units. Ga stands for giga- annum or billions of years ago.) Theoretical models of planetary accretion (Canup 23 Jul 2003 20:28 AR AR194-AA41-11.tex AR194-AA41-11.sgm LaTeX2e(2002/01/18) P1: GCE EVOLUTION OF A HABITABLE PLANET 431 & Agnor 2000, Chambers & Wetherill 1998, Petit, Morbidelli & Valsecchi 1999, Safronov 1969, Wetherill 1985) suggest that the planets in the inner solar sys- tem formed on a timescale of 107–108 years. Hence, most of the action was over by 4.5 Ga. During this initial period, growing Earth accreted numerous bodies that were the size of the Moon or larger (Wetherill 1985). Given that the Moon is approximately one eightieth of Earth’s mass, these impacts were exceedingly violent: They would have vaporized any ocean that was present and melted part or all of Earth’s surface (Zahnle & Sleep 1997). The largest collisions, such as the Mars-sized impact that is thought to have formed the Moon (Cameron 2000, Hartmann et al. 1986), may have driven off the atmosphere and ocean entirely— although no one has demonstrated this—and created a magma ocean with a depth of 1000 km (Righter & Drake 1997). The oldest Moon rocks are dated at 4.44 Ga, so this singular event occurred very early in Earth’s history. Radiometric dat- ing using isotopes of Lu and Hf suggests that the Moon-forming impact occurred within 30 million years of solar-system formation (Halliday, Lee & Jacobsen 2000, Halliday et al. 2001). Moon rocks also indicate that large, 100 km diameter bod- ies continued to pelt both Earth and Moon until approximately 3.8 Ga (Sleep et al. 1989). This bombardment took place throughout the inner solar system, as evidenced by the large number of craters on Mercury and Mars. This turbulent first 700 million years of Earth’s history is referred to as the heavy-bombardment period. The modern concept of the formation of Earth by large impacts stands in stark contrast to earlier theories, in which Earth was thought to have formed relatively slowly by the accumulation of many small bodies. The modern theory has several implications that are important for planetary habitability. First, the occurrence of large impacts should have ensured that Earth’s iron core formed at the same time as did the planet (Stevenson 1983). Indeed, hafnium-isotope evidence suggests that Earth’s core formed less than 30 million years after the formation of the solar system (Yin et al. 2002). In some early models of atmospheric evolution (e.g., Holland 1962), core formation was delayed for up to half a billion years until Earth’s interior was sufficiently heated by radioactive decay to allow melting to occur. In Holland’s model, metallic iron remained present in the upper mantle throughout this time, implying that volcanic gases would have been much more Access provided by University of Chicago Libraries on 04/04/18. For personal use only. reduced than at present. Indeed, the upper mantle probably was highly reduced Annu. Rev. Astron. Astrophys. 2003.41:429-463. Downloaded from www.annualreviews.org in the immediate aftermath of the Moon-forming impact, as evidenced by the distribution of moderately siderophile (iron-loving) elements in mantle-derived rocks (Righter & Drake 1997, 1999). However, the mantle redox state evolved rapidly to a more oxidized level as a consequence of loss of hydrogen to space and 3 subduction of oxidants such as ferric iron (Fe+ ), water, and carbonates (Catling et al.
Recommended publications
  • Prebiotic Chemistry, Origin, and Early Evolution of Life
    Say what you are going to say, say it, say what you said Guiding theory Richard Feynman Polyelectrolytes with uniform structure are universal for Darwinism A specific hypothesis to provide context The polyelectrolyte that supported Earth’s first Darwinism was RNA Focus on paradoxes to constrain human self-deception "Settled science" says that RNA is impossible to form prebiotically Strategies for paradox resolution Mineral-guided processes allow RNA to form nonetheless Natural history context The needed chemistry-mineral combination was transient on Earth Your reward A relatively simple path to form RNA prebiotically A relatively narrow date when life on Earth originated prebiotically A clear statement of the next round of paradoxes Elisa Biondi, Hyo-Joong Kim, Daniel Hutter, Clemens Richert, Stephen Mojzsis, Ramon Brasser, Dustin Trail, Kevin Zahnle, David Catling, Rob Lavinsky Say what you are going to say, say it, say what you said Guiding theory Richard Feynman Polyelectrolytes with uniform structure are universal for Darwinism A specific hypothesis to provide context The polyelectrolyte that supported Earth’s first Darwinism was RNA Focus on paradoxes to constrain human self-deception "Settled science" says that RNA is impossible to form prebiotically Strategies for paradox resolution Mineral-guided processes allow RNA to form nonetheless Natural history context The needed chemistry-mineral combination was transient on Earth Your reward A relatively simple path to form RNA prebiotically A relatively narrow date when life on Earth originated prebiotically A clear statement of the next round of paradoxes Elisa Biondi, Hyo-Joong Kim, Daniel Hutter, Clemens Richert, Stephen Mojzsis, Ramon Brasser, Dustin Trail, Kevin Zahnle, David Catling, Rob Lavinsky What does a repeating backbone charge do for informational molecule? O 1.
    [Show full text]
  • Snowball Earth: a Thin-Ice Solution with Flowing Sea Glaciers’’ by David Pollard and James F
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, C09016, doi:10.1029/2005JC003411, 2006 Click Here for Full Article Comment on ‘‘Snowball Earth: A thin-ice solution with flowing sea glaciers’’ by David Pollard and James F. Kasting Stephen G. Warren1,2 and Richard E. Brandt1 Received 22 November 2005; revised 22 May 2006; accepted 9 June 2006; published 14 September 2006. Citation: Warren, S. G., and R. E. Brandt (2006), Comment on ‘‘Snowball Earth: A thin-ice solution with flowing sea glaciers’’ by David Pollard and James F. Kasting, J. Geophys. Res., 111, C09016, doi:10.1029/2005JC003411. 1. Introduction 2. Choices of Model Variables That Favor [1] Pollard and Kasting [2005] (hereinafter referred to as Thin Ice PK) have coupled an energy-balance climate model to an 2.1. Albedo of Cold Glacier Ice ice-shelf flow model, to investigate the Snowball Earth [2] As sea glaciers flowed equatorward into the tropical episodes of the Neoproterozoic, 600–800 million years region of net sublimation, their surface snow and subsurface ago, when the ocean apparently froze all the way to the firn would sublimate away, exposing bare glacier ice to equator [Hoffman and Schrag, 2002]. PK’s particular con- the atmosphere and solar radiation. This ice would be cern was to investigate the possibility that over a wide freshwater (meteoric) ice, which originated from compres- equatorial band where sublimation exceeded snowfall, the sion of snow, so it would contain numerous bubbles, giving bare ice may have been thin enough to permit transmission a high albedo. The albedo of cold (nonmelting) glacier ice of sunlight to the water below, providing an extensive exposed by sublimation (Antarctic ‘‘blue ice’’) has been refugium for the photosynthetic eukaryotes that survived measured as 0.55–0.65 in four experiments in the Atlantic the Snowball events.
    [Show full text]
  • The First Billion Years: Warm and Wet Or Cold and Icy? Robert M
    The First Billion Years: Warm and Wet or Cold and Icy? Robert M. Haberle Space Science and Astrobiology Division NASA/Ames Research Center July 15, 2014 Mars 8 Meeting Acknowledgements: Mike Carr, David Catling, and Kevin Zahnle Haberle, 8th Mars Conference Evidence for a Different Valley Networks Climate Isotopic Heavy Isotopes Aqueous Minerals 14N/15N 170±15 (Viking) 20Ne/22Ne ~10 (Meteorites) 36Ar/38Ar 4.2±0.2 (MSL) δ13C 46±4‰ (MSL) Elmann and Edwards (2014) 129Xe/132Xe ~ 2.5 (Viking) Haberle, 8th Mars Conference The First Billion Years Haberle, 8th Mars Conference Faint Young Sun Problem Noachian Haberle, 8th Mars Conference Atmospheric Redox and Outgassing The oxidation state of volcanic gases (principally H2/H2O) is governed by the oxidation state (fO2) of the upper mantle. During core(a) formation After core(b) formation Since core formation was fast (< 10 My), the mantle was likely weakly reducing and Outgassing products were mostly CO2, H2O, and N2 Haberle, 8th Mars Conference 1-D Calculations of Pollack et al. (1987) Main Conclusion: Early Mars was Continuously Warm and Wet - 5 bars of CO2 maintained against carbonate loss by impact recycling Haberle, 8th Mars Conference Problems With This Model Haberle, 8th Mars Conference 1. CO2 condenses in the atmosphere reducing the greenhouse effect. Latent heat release warms the upper atmosphere Kasting (1991) Haberle, 8th Mars Conference 2. Collision Induced Absorption Overestimated We now have more accurate absorption data based on theoretical and experimental data Old parameterizations overestimated induced-dipole absorption -1 in the 250-500 cm region Haberle, 8th Mars Conference Wordsworth et al.
    [Show full text]
  • Life Beyond the Solar System: Remotely Detectable Biosignatures
    Life Beyond the Solar System: Remotely Detectable Biosignatures Shawn Domagal-Goldman 1,NancyY.Kiang2,NikiParenteau3,DavidC.Catling4,Shiladitya DasSarma 5,YukaFujii6,ChesterE.Harman7,AdrianLenardic8,EnricPall´e9,ChristopherT. Reinhard 10,EdwardW.Schwieterman11,JeanSchneider12,HarrisonB.Smith13,Motohide Tamura 14,DanielAngerhausen15,GiadaArney1 ,VladimirS.Airapetian16,NatalieM. Batalha 3 ,CharlesS.Cockell17,LeroyCronin18,RussellDeitrick19,AnthonyDelGenio2 , Theresa Fisher 13 ,DawnM.Gelino20,J.LeeGrenfell21,HilairyE.Hartnett13 ,Siddharth Hegde 22,YasunoriHori23,Bet¨ulKa¸car24,JoshuaKrissansen-Totten4 ,TimothyLyons11 , William B. Moore 25,NorioNarita26,StephanieL.Olson11 Heike Rauer 27,TylerD.Robinson 28,SarahRugheimer29,NickSiegler30,EvgenyaL.Shkolnik13 ,KarlR.Stapelfeldt30 ,Sara Walker 31 1NASA Goddard Space Flight Center,2NASA Goddard Institute for Space Studies,3NASA Ames Research Center,4Dept. Earth and Space Sciences / Astrobiology Program, University of Washington,5Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland,6Earth-Life Science Institute, Tokyo Institute of Technology and NASA Goddard Institute for Space Studies,7Columbia University and NASA Goddard Institute for Space Studies,8Rice Univer- sity ,9Instituto de Astrof´ısica de Canaria, Spain,10School of Earth and Atmospheric Sciences, Georgia Institute of Technology,11Dept. Earth Sciences, University of California, Riverside, California,12Paris Observatory,13School of Earth and Space Exploration, Arizona State University,14University
    [Show full text]
  • The Rationale for a Long-Lived Geophysical
    THE RATIONALE FOR A LONG-LIVED GEOPHYSICAL NETWORK MISSION TO MARS Submitted to The Mars Panel, NRC Decadal Survey for the Planetary Sciences Division, SMD, NASA Phil Christensen, Chair; Wendy Calvin, Vice Chair Written by Bruce Banerdt JPL Robert Grimm SwRI Franck Montmessin Scot Rafkin SwRI Tilman Spohn DLR Matthias Grott DLR Service Aeronomie Peter Read Oxford Ulli Christensen MPS Bob Haberle NASA-Ames Yosio Nakamura Gerald Schubert UCLA Veronique Dehant ROB Martin Knapmeyer DLR U Texas (ret.) Sue Smrekar JPL Linda Elkins-Tanton MIT Philippe Lognonné IPGP Roger Phillips SwRI Mike Wilson JPL Endorsed by Oded Aharonson Caltech François Forget Kurt Klaus Boeing Thomas Ruedas Carnegie Don Albert CRREL CNRS-LMD Jörg Knollenberg DLR Chris Russell UCLA Carlton Allen NASA-JSC Matt Fouch ASU Naoki Kobayashi JAXA David Sandwell Scripps Robert Anderson JPL Brenda Franklin JPL Ulrich Koehler DLR Nicholas Schmerr Carnegie Scott Anderson SwRI Herbert Frey GSFC Carlos Lange U Alberta Nicole Schmitz DLR Jeff Andrews-Hanna Jeannine Gagnepain- Gary Latham DOE (ret.) Richard Schultz U Nevada Colo. School of Mines Beyneix IPGP Mark Leese Open U Mindi Searls U Colorado Jafar Arkani-Hamed Rafael Garcia Frank Lemoine GSFC Karsten Seiferlin U Bern McGill U Obs. Midi-Pyrenees Robert Lillis UC Berkeley Nikolai Shapiro IPGP Gabriele Arnold U Münster Jim Garvin GSFC John Longhi Charles Shearer UNM Sami Asmar JPL Rebecca Ghent U Toronto Lamont-Doherty Brian Shiro NOAA Lisa Baldwin DLR Domenico Giardini ETH Paul Lundgren JPL Mark Simons Caltech Don Banfield Cornell Lori Glaze GSFC Mioara Mandea GFZ Norman Sleep Stanford Amy Barr SwRI Matthew Golombek JPL Michael Manga John C.
    [Show full text]
  • Habitability Models for Astrobiology
    Astrobiology, 21, 8. (August, 2021) DOI: 10.1089/ast.2020.2342 Habitability Models for Astrobiology Abel Méndez, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA Edgard G. Rivera-Valentín, Lunar and Planetary Institute, USRA, Houston, Texas, USA Dirk Schulze-Makuch, Center for Astronomy and Astrophysics, Technische Universität Berlin, Berlin, Germany; German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany. Justin Filiberto, Lunar and Planetary Institute, USRA, Houston, Texas, USA Ramses M. Ramírez, University of Central Florida, Department of Physics, Orlando, Florida, USA; Space Science Institute, Boulder, Colorado, USA. Tana E. Wood, USDA Forest Service International Institute of Tropical Forestry, San Juan, Puerto Rico, USA Alfonso Dávila, NASA Ames Research Center, Moffett Field, California, USA Chris McKay, NASA Ames Research Center, Moffett Field, California, USA Kevin N. Ortiz Ceballos, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA Marcos Jusino-Maldonado, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA Nicole J. Torres-Santiago, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA Guillermo Nery, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA René Heller, Max Planck Institute for Solar System Research; Institute for Astrophysics,
    [Show full text]
  • Valles Marineris Landslides: Evidence for a Strength Limit to Martian Relief? ⁎ Florence Bigot-Cormier , David R
    Earth and Planetary Science Letters 260 (2007) 179–186 www.elsevier.com/locate/epsl Valles Marineris landslides: Evidence for a strength limit to Martian relief? ⁎ Florence Bigot-Cormier , David R. Montgomery Quaternary Research Center and Department of Earth & Space Sciences, University of Washington, Seattle, WA 098195, United States Received 16 March 2007; received in revised form 11 May 2007; accepted 19 May 2007 Available online 26 May 2007 Editor: T. Spohn Abstract Unresolved controversies in Martian geology surround the role of active tectonics and a wetter climate early in Mars history, and particularly the history and amount of liquid water at or near the surface. Among the various lines of evidence brought into such debates are the massive landslides along the walls of Valles Marineris, which generally have been interpreted as resulting from marsquakes, and therefore necessitating active tectonics, under either wet or dry conditions. We analyze Valles Marineris landslides using digital elevation data from the Mars Orbiter Laser Altimeter (MOLA) and find that a relief limit consistent with the intact strength of evaporites or other weak sedimentary rock defines an upper bound to the length and relief of unfailed slopes, as would material with the strength properties of basalt lithology subjected to ground accelerations of about 0.2 g. In contrast to prior interpretations of Valles Marineris landslides, we propose an alternative, complementary hypothesis that does not require significant pore-water pressures or ground acceleration based on the close correspondence between back-calculated material strength properties and values consistent with portions of the chasm walls at least locally being composed of relatively weak materials, such as potentially frozen evaporites and/or mixtures of ash fall or flow deposits, ice, hydrated salts and lava flows.
    [Show full text]
  • Waiting for O2
    Downloaded from specialpapers.gsapubs.org on May 11, 2015 The Geological Society of America Special Paper 504 2014 Waiting for O2 Kevin Zahnle* Space Science Division, National Aeronautics and Space Administration Ames Research Center, MS 245-3, Moffett Field, California 94035, USA David Catling Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, Washington 98195, USA ABSTRACT Oxygenic photosynthesis appears to be necessary for an oxygen-rich atmosphere like Earth’s. However, available geological and geochemical evidence suggests that at least 200 m.y., and possibly as many as 700 m.y., elapsed between the advent of oxygenic photosynthesis and the establishment of an oxygen atmosphere. The inter- regnum implies that at least one other necessary condition for O2 needed to be met. Here, we argue that the second condition was the oxidation of the surface and crust to the point where free O2 became more stable than competing reduced gases such as CH4, and that the cause of Earth’s surface oxidation was the same cause as it is for other planets with oxidized surfaces: hydrogen escape to space. The duration of the interregnum was determined by the rate of hydrogen escape and by the size of the reduced reservoir that needed to be oxidized before O2 became favored. We speculate that hydrogen escape determined the history of continental growth, and we are confi - dent that hydrogen escape provided a progressive bias to biological evolution. INTRODUCTION atmosphere, a state that is more widespread in the solar system. Oxygen and oxidation are different things and refl ect different This volume addresses Earth from its beginnings in the processes acting on different time scales, although it is plausible Hadean ca.
    [Show full text]
  • Habitability Models for Planetary Sciences
    White Paper for the Planetary Science and Astrobiology Decadal Survey 2023–2032 (July 14, 2020) ​ Habitability Models for Planetary Sciences Abel Méndez, ([email protected]) ​ ​ Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, USA 1 2 1 3 4 Edgard G. Rivera-Valentín ,​ Dirk Schulze-Makuch ,​ Justin Filiberto ,​ Ramses Ramírez ,​ Tana E. Wood ,​ Alfonso 5 5 ​ 6 ​ ​ 6 6​ 7 ​ 8 Dávila ,​ Chris McKay ,​ Kevin Ortiz Ceballos ,​ Marcos Jusino-Maldonado ,​ Guillermo Nery ,​ René Heller ,​ Paul Byrne ,​ ​ 9​ 10 ​ 11 ​ 11 ​ ​ 12 ​ Michael J. Malaska ,​ Erica Nathan ,​ Marta Filipa Simões ,​ André Antunes ,​ Jesús Martínez-Frías ,​ Ludmila 13 ​ 14 ​ 15 ​ 16 ​ ​ 17 Carone ,​ Noam R. Izenberg ,​ Dimitra Atri ,​ Humberto Itic Carvajal Chitty ,​ Priscilla Nowajewski-Barra ,​ Frances ​ 18 ​ 19 ​ 1 20 ​ 21 22​ Rivera-Hernández ,​ Corine Brown ,​ Kennda Lynch ,​ David Catling ,​ Jorge I. Zuluaga ,​ Juan F. Salazar ,​ Howard 23 ​ 4 ​ ​ 24 ​ 25 ​ 26 ​ 27 Chen ,​ Grizelle González ,​ Madhu Kashyap Jagadeesh ,​ Rory Barnes ,​ Charles S. Cockell ,​ Jacob Haqq-Misra ​ ​ ​ ​ ​ ​ 1 2 3 4 L​ unar and Planetary Institute, USRA, USA; T​ echnical University Berlin, Germany; E​ arth-Life Science Institute, Japan; I​ nternational Institute of ​ 5 ​ 6 ​ Tropical Forestry, USDA Forest Service, Puerto Rico, USA; N​ ASA Ames Research Center, USA; P​ lanetary Habitability Laboratory, University of 7 ​ ​ 8 9 Puerto Rico at Arecibo, Puerto Rico, USA; M​ ax Planck Institute for Solar System Research, Germany, N​ orth Carolina State University, USA;
    [Show full text]
  • Habitability Models for Planetary Sciences
    White Paper for the Planetary Science and Astrobiology Decadal Survey 2023–2032 (July 14, 2020) ​ Habitability Models for Planetary Sciences Abel Méndez, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, USA ([email protected]) ​ ​ Edgard G. Rivera-Valentín, Lunar and Planetary Institute, USRA, USA Dirk Schulze-Makuch, Technical University Berlin, Germany Justin Filiberto, Lunar and Planetary Institute, USRA, USA Ramses Ramírez, Earth-Life Science Institute, Japan Tana E. Wood, International Institute of Tropical Forestry, USDA Forest Service, Puerto Rico, USA Alfonso Dávila, NASA Ames Research Center, USA Chris McKay, NASA Ames Research Center, USA Kevin Ortiz Ceballos, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA Marcos Jusino-Maldonado, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA Guillermo Nery, University of Puerto Rico at Arecibo, Puerto Rico, USA René Heller, Max Planck Institute for Solar System Research, Germany Paul Byrne, North Carolina State University, USA Michael J. Malaska, Jet Propulsion Laboratory / California Institute of Technology, USA Erica Nathan, Brown University, USA Marta Filipa Simões, State Key Laboratory of Lunar and Planetary Sciences, China André Antunes, State Key Laboratory of Lunar and Planetary Sciences, China Jesús Martínez-Frías, Instituto de Geociencias (CSIC-UCM), Spain Ludmila Carone, Max Planck Institute for Astronomy, Germany Noam R. Izenberg, Johns Hopkins Applied Physics Laboratory, USA Dimitra Atri, Center for Space Science, New York University Abu Dhabi, United Arab Emirates Humberto Itic Carvajal Chitty, Universidad Simón Bolívar, Venezuela Priscilla Nowajewski-Barra, Fundación Ciencias Planetarias, Chile Frances Rivera-Hernández, Dartmouth College, USA Corine Brown, Macquarie University, Australia Kennda Lynch, Lunar and Planetary Institute, USRA, USA David Catling, University of Washington, USA Jorge I.
    [Show full text]
  • Pinning Down the Habitable Zones of Different Stars
    Pinning Down the Habitable Zones of Professor James Kasting Different Stars PINNING DOWN THE HABITABLE ZONES OF DIFFERENT STARS One of life’s greatest mysteries is whether or not we are alone in the Universe. One way to find planets that could support life is by working out whether they lie in the ‘habitable zone’ of their parent star – a distance at which liquid water might exist on the surface. Professor Jim Kasting at Penn State University has been studying stars and the boundaries of their habitable zones for decades. More recently, he has been looking into how these boundaries can change with a phenomenon called climate limit cycling, which might occur on certain planets. The Habitable Zone most likely rocky planets within the habitable zones of their host stars. But exactly how Finding extra-terrestrial planets that may be we know whether or not water can exist on able to support life is one of the biggest goals a planet is a complicated question, with a in astronomy. Since life as we know it relies rich history. on water to survive, one of the requirements for finding potentially habitable worlds is Over twenty years ago, in 1993, Professor that liquid water must be able to exist on the Jim Kasting and his colleagues came up with planets’ surface. Life could exist on planets a model to place restrictions on where the with subsurface water, as well, but it would habitable zone could be for certain planets. be difficult to detect remotely, and so is of ‘I derived estimates for the boundaries of less interest to astronomers.
    [Show full text]
  • Metrics to Find Life from Remote Sensing Data & Their Limitaions
    Metrics to find life from remote sensing data & their limitaons David Catling Dept. of Earth and Space Sciences/ Astrobiology Program University of Washington, Seale +NASA Earth & Space Science Fellowship student, Josh Krissansen-Toon Outline Part 1: Background: ideas of looking for life remotely Part 2: A) Looking at thermodynamic disequilibrium (in Gibbs energy/mole air) in Solar System atmospheres as a metric for life B) the kinecs of disequilibrium Part 3: Where we’re going from here PART 1: Ideas for finding life remotely: 1. Search for Extraterrestrial Intelligence (SETI) legit approach, but not the focus of this talk/meeting 2. Biogenic surfaces microbial or multicellular pigments-discussed yesterday somewhat 3. Biogenic gases Which gases? How many gases? What levels constitute life detection? Why chemical disequilibrium? Chemical disequilibrium as a sign of life? Part 1 “Kinec instability in the context of local chemical and physical condions…” Joshua Lederberg (1965) Nature More than one: “Search for…compounds in the planet’s atmosphere that are incompable on a long-term basis” James Lovelock (1965) Nature “gaseous oxygen…and atmospheric methane in extreme thermodynamic disequilibrium...are strongly suggesve of life on Earth” Carl Sagan (1993) Science Chemical disequilibrium as a sign of life? Part 1 “Kinec instability in the context of local chemical and physical condions…” Joshua Lederberg (1965) Nature More than one: “Search for…compounds in the planet’s atmosphere that are incompable on a long-term basis” James Lovelock (1965)
    [Show full text]