Fermentative Production of 6-Aminocaproic Acid Stefan Turk DSM
Total Page:16
File Type:pdf, Size:1020Kb
Engineering Conferences International ECI Digital Archives Metabolic Engineering IX Proceedings Summer 6-7-2012 Towards Sustainable Nylon-6: Fermentative Production of 6-Aminocaproic Acid Stefan Turk DSM Axel Trefzer DSM Elly Raemakers DSM Lian Wu DSM Monika Müller DSM See next page for additional authors Follow this and additional works at: http://dc.engconfintl.org/metabolic_ix Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Stefan Turk, Axel Trefzer, Elly Raemakers, Lian Wu, Monika Müller, Margarita Temudo, and Henk Noorman, "Towards Sustainable Nylon-6: Fermentative Production of 6-Aminocaproic Acid" in "Metabolic Engineering IX", E. Heinzle, Saarland Univ.; P. Soucaille, INSA; G. Whited, Danisco Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/metabolic_ix/17 This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Metabolic Engineering IX by an authorized administrator of ECI Digital Archives. For more information, please contact [email protected]. Authors Stefan Turk, Axel Trefzer, Elly Raemakers, Lian Wu, Monika Müller, Margarita Temudo, and Henk Noorman This conference proceeding is available at ECI Digital Archives: http://dc.engconfintl.org/metabolic_ix/17 Towards sustainable Nylon-6: Fermentative production of 6-aminocaproic acid Stefan Turk , Axel Trefzer, Elly Raemakers, Liang Wu, Monika Müller, Margarida Temudo, Henk Noorman O June 7, 2012 NH Overview • DSM Company Overview • Caprolactam: What is it? • Route Scouting • Enzyme Discovery • Strain Development • Acknowledgements Page 1 DSM, the Life Sciences and Materials Sciences company • Some 22, 000 employees • Net sales 2011: € 9.0 billion • 4 drivers, directed to global trends • Strong, solid balance sheet • Leader in Dow Jones Sustainability Index 2011 Page 2 DSM sales offices and production sites BusinessPage 3 and markets Where did it start…… and what are we heading for? Need for new and sustainable energy and material resources Coal Oil Biomass First generationNon-renewable Renewable Page 4 Caprolactam • Lactam of 6-amino-caproic acid • Monomer for production of nylon 6 O O H H N COOH H2N N COOH 2 NH N H O n • Currently part of Benzene value chain O NOH H O N • Does not occur in nature Page 5 Caprolactam for NylonNylon--66 Applications Page 6 Caprolactam Market Info • World caprolactam market size: 4 Mtpa • DSM largest merchant seller, 2nd largest producer • Only global producer (NL, US, CN) • DSM technology leader, 40% of Caprolactam is made using DSM technology Page 7 How “green” is caprolactam / nylonnylon--6?6? 8 Source: NatureWorks LLC website 7 NO x 6 5 4 Energy 3 Energy 2 Feedstock 1 Global warming potantial (kg product) product) eq/kg eq/kg (kg (kg CO2CO2 potantialpotantial warming warming GlobalGlobal Feedstock 0 Page 8 • Production of Caprolactam by fermentation has significant potential to improve sustainability of the nylon-6 value chain • DSM has embarked on a project to develop a fermentation process that is based on sustainable raw materials Page 9 Route Scouting Central BCD Product Metabolism Page 10 Identification of Biochemical Route • Identify close natural metabolites 6-ACA caprolactam H2N COOH O NH NH2 NH2 O COOH H N 6COOH-ACA 2 NH hexanoic acid lysine amino- caprolactam • Microbial metabolites contain too much or too little N Page 11 Solving the N-problem • Transamination is most common way to add/ remove N O NH O NH 2 HO 2 + COOH + HOOC COOH COOH COOH O • Transamination of 6-ACA is known from caprolactam degradation O O NH H2N COOH + R COOH + R 2 Page 12 Caprolactam Degradation as Inspiration: AKPAKP--routeroute H O N NH2 H2N COOH HOOC COOH O O O COOH HOOC COOH HOOC COOH α-keto pimelate COOH DecarboxylaseHOOC O O O PdcHOOC SCoA OH O O HOOC SCoA O Kdc OH O OH HOOC SCoA O O O O HOOC SCoA O O + HOOH2C SCoA SCoA Page 13 How to make αα--ketoketo pimelate ( AKP) • AKP only present in methanogens α α • Intermediate in C 1-elongation from -keto glutarate to -keto suberate in the pathway for coenzymeB biosynthesis α ketoglutarate R-homocitrate cis homoaconitate (-) threo iso-homocitrate α keto-adipate Ac-CoA CO2 OH H O HOOC COOH HOOC COOH HOOC COOH O H HOOC HOOC COOH COOH HOOC H H COOH HO COOH NAD+ NADH2 Homo-citrate Homo- Homo-iso-citrate synthase aconitase dehydrogenase • Characterized in Methanocaldococcus jannashii • Proceeds in 3 cycles from AKG via AKA and AKP to AKS • N-fixing bacteria have homocitrate synthase specific for AKG and AKA (e.g.NifV from Azotobacter vinelandii ) Page 14 the “AKP” --pathwaypathway O HOOC COOH AK G (C 5 ) O HOOC COOH AKA (C6) O O H OOC HOOC COOH COOH AK P (C7) AK S (C8) O HOOC 5-FVA 6 -A CA H 2N COOH caprolactam O NH Page 15 AKP production in 60 50 40 E. coli 30 20 AKP production [mg/l] 10 glycerol 0 glucose Page 16 control NifV AksAFDE AksAFDE NifV NifV AksFDE AksFDE NifV control NifV AksAFDE AksAFDE NifV NifV AksFDE AksFDE NifV the “AKP” --pathwaypathway O HOOC COOH AK G (C 5 ) O HOOC COOH AKA (C6) O O H OOC HOOC COOH COOH AK P (C7) AK S (C8) O HOOC 5-FVA 6 -A CA H 2N COOH caprolactam O NH Page 17 MethanomicrobialesMethanosarcinales Methanomicrobia Methanococci Methanocorpusculum labreanum Methanocorpusculaceae Aks Page 18 Methanospirillum hungatei Methanospirillaceae Methanosarcina acetivorans Methanosarcina Methanosarcinaceae genes from various archae bacteria Methanococcoides burtonii Methanococcoides Methanosaeta thermophila Methanosaeta Methanosaetaceae Methanococcaceae cellular organisms cellular Methanococcales Euryarchaeota Methanococcus vannielii Archaea; Methanococcus aeolicus Methanococcus Methanococcus maripaludis Methanocaldococcaceae Methanocaldococcus jannaschii Methanocaldococcus Methanobacteriaceae Methanobacteriales Methanobrevibacter smithii Methanobrevibacter Methanobacteria Methanosphaera stadtmanae Methanosphaera AKP (mg/l) 100 200 300 400 500 600 0 Mac Mhun Mjan Mvan Maeo AKP production AKP AKP (mg/l) AKP the “AKP” --pathwaypathway O HOOC COOH AK G (C 5 ) O HOOC COOH AKA (C6) O HOOC COOH AK P (C7) DC O O NH 2 HOOC OH HOOC HO OC CO OH 5-FVA A AP a dipate AT 6 -A CA H 2N COOH Introduced genes caprolactam O NH Endogenous E.coli enzymes Page 19 Identification of AKP Decarboxylases • Identification of suitable decarboxylases in databases • Cloned and tested candidates in AKP decarboxylation Biocatalyst 5-FVA concentration [mg/l] 3 h 18 h 48 h LysA ( E. coli ) 150 590 720 PDC I472A ( S. cerevisiae ) 2000 2000 1600 KdcA ( L. lactis ) 3300 2300 2200 KivD ( L. lactis ) 820 1400 1500 control n.d. n.d. n.d. Page 20 Identification of 5-FVA aminotransferase • Screening proprietary DSM aminotransferase platform • Primary screening with sensitive colour assay identified numerous hits • Confirmation of hits with LC/MS Biocatalyst 6-ACA [mg/l] Vibrio fluvialis 43 Pseudomonas aeruginosa 25 Bacillus weihenstephanensis 24 Bacillus subtilis 6 Pseudomonas aeruginosa 21 Vector control 0.6 colorimetric assay Negative control n.d. Page 21 DC and AT are functional inin--vivovivo • Several combinations tested in AKP-feeding experiments 50 45 KdcA-Vfl KivD-Vfl 40 KivD-Pao1 35 KivD-Vfl Pdc-Vfl 30 Pdc-Bwe 25 20 6-ACA6-ACA [mg/l] [mg/l] 15 10 5 0 0 12 24 36 48 time [h] • Best combination (KdcA and Vfl) selected for further work Page 22 Strain Development for 66--ACAACA production A B C D E Page 23 Production of 66--ACAACA in E. coli O HOOC COOH H2N COOH PLaat 1+2 week 42 D29685-3007 Sm (Mn, 3x2) MRM of 3 Channels ES- 4.93 TIC NifV ( A. vinelandii ) 1.02e5 O HOOC Aks DEF ( M. COOH aeolicus) % O HOOC COOH 3.53 KdcA ( L. 5.50 1 Time O lactis ) 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 • Observed M+H +: 132.09 HOOC Vfl ( V. • Identical to chemical standard fluvialis) H2N COOH Page 24 Production of 66--ACAACA in E. coli O HOOC COOH AK G (C 5) Metabolite production with AKS genes of M.aeolicus 5-AVA HOOC 450 NH2 400 O HOOC 350 COOH AKA (C6 ) 300 NH2 HOOC AAA 250 6-ACA COOH Adipate O 200 AAP H O OC COO H 150 Metabolites Metabolites Metabolites (mg/l) (mg/l) AK P (C7) 100 50 0 O O NH 2 24 h 48 h 72 h 120 h HOOC HO OC CO OH HOOC OH Time after induction 5-FVA A AP a dipate 6-A CA H N COOH 2 Introduced genes Endogenous E.coli enzymes caprolactam O NH Page 25 Summary • Fermentative production can improve sustainability • Identified enzymes for production of AKP • Demonstrated first fermentative production of 6-ACA and 5-AVA in a microbial host • Fermentative production of Adipate, AAP aan AAA • Next to 6-ACA, 5-AVA was also produced from AKA indicating that this pathway can also be used for the production of compounds with another chain length, such as 7-amino suberate a building block for nylon 7 which is currently not produced at large scale, but is expected to have interesting properties. Page 26 Outlook FermentativeTraditional CAP Caproloactam in the 40s Today TraditionalFermentative CAP Caprolactam today Future Page 27 Acknowledgements Analysis BioIT Enzyme Screening General • Rob van der Hoeven • Liang Wu • Elly Raemakers • Axel Trefzer • Huub Hendrickx • Olaf Schouten • Hilly Menke • Martin Schürmann • Emile van de Sandt • Burhan Ozalp • Marco de Groot • Monika Müller • Marcel Wubbolts • Marieke Vijverberg • Linda Vermote • Roel Bovenberg • Farhane El- CHTS • Natascha Smeets • John Perkins Bouazzaoui • Marcus Hans • Stefaan de • Herman Pel Strain Construction • Hilde Huininga Wildeman • Oliver May • Stefan Turk • Laurens • Lucien Duchateau • Bernard Kaptein • Wigard Kloosterman Ekkelkamp • Eric Roos • Erwin Suir • Linda van den Business • Ronald Gebhard • Dennis Ninaber Hoogen • Julia Knutova • Roland van der • Daniel Mink • Karin Kolen • Maurice Brakel Stoel • Najat Saddik • Rieneke van • Michael Kuczynski Gelder ORNL • Yvonne Arendsen • David Graham • Diana Pronk IP • Jef Dautzenberg Fermentations • Marco Molling • Margarida Temudo (Vereenigde) • Sybe Hartmans • Leonie Raamsdonk • Paulo Neves Page 28 .