Investigation of Crayfish Control Technology

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Crayfish Control Technology Investigation of Crayfish Control Technology FINAL REPORT COOPERATIVE AGREEMENT NO. 1448-20181-02-J850 Matthew W. Hyatt Arizona Game and Fish Department Wildlife management Division / Research Branch 2221 W. Greenway Road Phoenix, AZ 85023 ii CIVIL RIGHTS AND DIVERSITY COMPLIANCE The Arizona Game and Fish Department prohibits discrimination on the basis of race, color, sex national origin, age, or disability in its programs and activities. If anyone believes they have been discriminated against in any of the AGFD’s programs or activities, including its employment practices, the individual may file a complaint alleging discrimination directly with the AGFD Deputy Director at: Arizona Game and Fish Department Office of the Deputy Director, DOHQ 2221 West Greenway Road Phoenix, Arizona 85023-4399 (602) 942-3000 or The Office for Diversity and Civil Rights U.S. Fish and Wildlife Service 4040 North Fairfax Drive, Suite 130 Arlington, Virginia 22203 AMERICANS WITH DISABILITIES ACT COMPLIANCE The Arizona Game and Fish Department complies with all provisions of the Americans with Disabilities Act. If you require this document in an alternative format, please contact the AGFD Deputy Director as listed above or by calling TTY at (800) 367-8939. iii EXECUTIVE SUMMARY North America is home to 390 native species of crayfishes, 75% of the world’s total. No native crayfish occur in Arizona or the Colorado River basin of western North America; however, they have been widely introduced to this landscape and have become widespread and abundant throughout the Colorado River basin. Nonindigenous crayfishes have greatly altered North American lake and stream ecosystems, harmed fisheries, extirpated many populations of native crayfishes, and contributed to the global extinction of at least one native crayfish species. The economic cost alone of a small subset of freshwater Nonindigenous species in the United States has recently been estimated at 4.1 billion dollars annually. In Arizona, crayfish pose a serious threat to the long-term survival of many species of native fishes and amphibians. Due to the potential harmful effects to native flora and fauna, there is a need for the development of methods to control or eradicate Nonindigenous species. This report provides a complete literature review of methods that have been tested for the purpose of controlling or eradicating nonindigenous crayfishes and methods that have not been tested, but have potential. Five broad categories of control were considered: legislative, mechanical, biological, physical, and chemical. Legislative control, while in effect at both the state and national level, has been unsuccessful. Mechanical control methods include manual removal, trapping, and electrofishing. Trapping, despite being the most common method used, has failed in every case to eliminate or even control crayfish. Biological control includes the use of fish predators, diseases, and microbial insecticides. Although some cases demonstrated an inverse relationship between the presence of fish predators and crayfish numbers, in no case did fish predators eradicate a population of crayfish. Crayfish plague is lethal to non-North American crayfish, but not to North American crayfish. If a strain of this disease lethal to North American crayfish could be developed, it might prove to be an effective method of control. Physical methods include de-watering, habitat destruction, and barriers. The ability of crayfish to travel over-ground for long distances and to survive for long periods of time in their burrows during dry periods, renders physical methods useless in most cases. Chemical methods include biocides, rotenone, and pheromones. Although rotenone will kill crayfish, any dosage sufficient to cause crayfish mortality results in the death of almost all other living organisms first. Research on the potential of using pheromones as a means of control has just recently begun. Early results of these studies do not look promising, but pheromones may prove effective in helping detect low density crayfish populations. Biocides proved to be the only method with any potential for eradicating or controlling crayfish. iv TABLE OF CONTENTS EXECUTIVE SUMMARY iii INTRODUCTION 1 CONTROL CATEGORIES 5 LEGISLATIVE 5 MECHANICAL 11 Manual 11 Trapping 12 Electrofishing 22 BIOLOGICAL 23 Fish Predators 23 Diseases 26 Microbial Insecticides 28 PHYSICAL 29 De-watering 31 Habitat Destruction 32 Barriers 32 Other 35 CHEMICAL 35 Biocides 36 Rotenone 56 Pheromones 59 CONCLUSIONS 63 LITERATURE CITED 73 FIGURES Figure 1. Schematic diagram of commercial Swedish Trappy. 14 Figure 2. Modification of standard minnow trap used to harvest crayfish and reduce unwanted fish capture in lakeside ponds used to rear endangered native fish at Lake Mohave, Arizona/Nevada. 17 Figure 3. Schematic diagram of a refuge trap. 18 Figure 4. Schematic diagram of a small mesh trap. 20 Figure 5. Proposed design of catchpit at West Tanfield Fishery. 25 TABLES Table 1. Differential importance1 of different anthropogenic vectors of crayfish introductions in Europe and North America. 2 Table 2. Effect of fish predators on adult (A) and juvenile (J) crayfish population size. 25 Table 3. Concentrations (mg/L, except mg/L for Baythroid) that produced 100% mortality for rusty crayfish and bluegills in static tests at 12oC. 43 Table 4. Estimated costs of chemical treatments. 55 1 INTRODUCTION North America is home to 390 native species of crayfishes, 75% of the world’s total (Lodge et al. 2000). There is at least one native crayfish species in each of the 48 continental United States except for Arizona, which has no native species (Hobbs 1989). Moreover, there are no crayfish species native to the Colorado River basin of western North America, including the Gila River drainage of Arizona and New Mexico. However, crayfish have been widely introduced to this landscape and have become widespread and abundant throughout the Colorado River basin. In several well documented cases, nonindigenous crayfishes have greatly altered North American lake and stream ecosystems, harmed fisheries, extirpated many populations of native crayfishes, and contributed to the global extinction of at least one native crayfish species (Lodge et al. 2000). The economic cost alone of a small subset of freshwater nonindigenous species in the United States has recently been estimated at 4.1 billion dollars annually (Pimentel et al. 1999). In Arizona, crayfish pose a serious threat to the long-term survival of many species of native fishes and amphibians. Introductions of nonindigenous crayfish around the world can be attributed to a variety of vectors (Table 1). Crayfish first appeared in Arizona waters about 30 years ago when they were stocked by Arizona Game and Fish Department (AZGFD) and U.S. Fish and Wildlife Service (USFWS) for the purposes of aquatic weed control (Dean 1969) and as forage for sport fish. It has also been suggested that the appearance of non-native crayfish in other states is a result of deliberate stockings by crayfish trappers, who wished to expand their operations (Bills and Marking 1988). Other mechanisms by which crayfish are introduced to the wild include their discard by aquarium enthusiasts and 2 escape or release from bait buckets, both reasonable explanations for the present widespread distribution of nonindigenous crayfish in the state (Inman et al. 1998). Table 1. Differential importance1 of different anthropogenic vectors of crayfish introductions in Europe and North America (Lodge et al. 2000). Vector of crayfish introduction Europe North America 1. Canals Decreasing importance Decreasing importance 2. Legal stocking in natural waters Decreasing importance Decreasing importance 3. Illegal stocking in natural Remains important Decreasing importance waters 4. Aquaculture Increasing importance Increasing importance 5. Live food trade Increasing importance Increasing importance 6. Aquarium and pond trade Remains important Increasing importance 7. Biological supply trade Not important Increasing importance 8. Live bait Decreasing importance Increasing importance 1In the absence of data comparable across vectors, we relied on expert opinion. Collecting data to quantify the importance of different vectors should be a priority. Due to the potential harmful effects to native flora and fauna, there is a need for the development of methods to control or eradicate nonindigenous crayfish species. According to Peay and Hiley (2001), the feasibility of eradicating, or even controlling, a population of crayfish is dependent on a number of factors: - Is there any method of determining whether or not a control method has been effective? - Is there a method capable of killing/ removing all the alien crayfish in a target area, or at least sufficient to prevent the population from spreading? - Is there a method specific to alien crayfish, and if not, is its use acceptable? Peay and Hiley (2001) suggest that unless the endpoint is known and identifiable, there is a risk of very large expenditure of resources without achieving eradication, or even 3 control. Consequently, basic understanding of crayfish population dynamics is needed in order to assess the potential for eradication. The fundamental problem of any attempt to eradicate a population is the difficulty of achieving and detecting 'zero' population (Peay and Hiley 2001). In order for any methodology designed for the eradication of nonindigenous crayfish to be judged successful, it must be capable of removing sufficient crayfish
Recommended publications
  • Global Turkey in Europe. Political, Economic, and Foreign Policy
    ISSN 2239-2122 9 IAI Research Papers The EU is changing, Turkey too, and - above all - there is systemic change and crisis all G round, ranging from economics, the spread of democratic norms and foreign policy. LOBAL The IAI Research Papers are brief monographs written by one or N.1 European Security and the Future of Transatlantic Relations, This research paper explores how the EU and Turkey can enhance their cooperation in more authors (IAI or external experts) on current problems of inter- T edited by Riccardo Alcaro and Erik Jones, 2011 URKEY GLOBAL TURKEY national politics and international relations. The aim is to promote the political, economic, and foreign policy domains and how they can find a way out of the stalemate EU-Turkey relations have reached with the lack of progress in accession greater and more up to date knowledge of emerging issues and N. 2 Democracy in the EU after the Lisbon Treaty, IN trends and help prompt public debate. edited by Raaello Matarazzo, 2011 negotiations and the increasing uncertainty over both the future of the European project E after the Eurozone crisis and Turkey’s role in it. UROPE IN EUROPE N. 3 The Challenges of State Sustainability in the Mediterranean, edited by Silvia Colombo and Nathalie Tocci, 2011 A non-profit organization, IAI was founded in 1965 by Altiero Spinel- li, its first director. N. 4 Re-thinking Western Policies in Light of the Arab Uprisings, SENEM AYDIN-DÜZGIT is Assistant Professor at the Istanbul Bilgi University and Senior POLITICAL, ECONOMIC, AND FOREIGN POLICY edited by Riccardo Alcaro and Miguel Haubrich-Seco, 2012 Research Affiliate of the Istanbul Policy Centre (IPC).
    [Show full text]
  • The Home Range of Signal Crayfish in a British Lowland River
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquatic Commons HOME RANGE OF SIGNAL CRAYFISH 45 THE HOME RANGE OF SIGNAL CRAYFISH IN A BRITISH LOWLAND RIVER RUI-ZHANG GUAN AND PETER WILES (Dr R.-Z. Guan, Xiamen Fisheries College, Jimei University, Xiamen, Fuijan 361021, P.R. China and P. R. Wiles, The Clore Laboratory for Life Sciences, The University of Buckingham, Bucks MK18 1EG, England.) Introduction The signal crayfish Pacifastacus leniusculus (Dana), a native of north-western North America, is now a common resident in some British fresh waters following its introduction to England in 1976 (Lowery & Holdich 1988). In 1984, signal crayfish were introduced into the River Great Ouse, the major lowland river in southern central England, where they have established a large breeding population, with a mean density of 15 per m2 in riffles during summer and 2 per m2 in pools. By the summer of 1994, they had occupied an 11.4 km section of river (Guan 1995). The unexpected burrowing behaviour of signal crayfish in the river was reported by Guan (1994). Signal crayfish not only take natural shelters but they also dig extensive burrows in the mud banks of the river. They are typically nocturnal. In this study we have investigated crayfish movements and addressed two questions: (1), how large is the home range? [Burt's (1943) definition of home range was adopted here, i.e., "The area traversed by the individual in its normal activities of food gathering, mating, and caring for young"]; and (2), does the home range vary between sexes and crayfish of different sizes? Study sites Two sites near Thornborough Weir (map reference: OS 738355) were chosen for study.
    [Show full text]
  • Pacifastacus Leniusculus) out Consume Newly Introduced Crayfishes for Invasive Chinese Mystery Snail (Bellamya Chinensis)
    Aquat Ecol (2009) 43:1073–1084 DOI 10.1007/s10452-009-9244-9 Home-field advantage: native signal crayfish (Pacifastacus leniusculus) out consume newly introduced crayfishes for invasive Chinese mystery snail (Bellamya chinensis) Julian D. Olden Æ Eric R. Larson Æ Meryl C. Mims Received: 5 November 2008 / Accepted: 3 April 2009 / Published online: 21 April 2009 Ó Springer Science+Business Media B.V. 2009 Abstract The introduction of non-indigenous plants, the most profitable prey choice. By contrast, previous animals and pathogens is one of today’s most pressing studies have reported the opposite pattern for crayfish environmental challenges. Freshwater ecologists are consumption on thin-shelled snails. For all snail size challenged to predict the potential consequences of classes, we found that native P. leniusculus and species invasions because many ecosystems increas- invasive O. virilis consumed greater numbers of snails ingly support novel assemblages of native and non- than invasive P. clarkii. Moreover, P. leniusculus native species that are likely to interact in complex consistently handled and consumed snails at a faster ways. In this study we evaluated how native signal pace compared to both invasive crayfishes across the crayfish (Pacifastacus leniusculus) and non-native red range of snail sizes examined in our study. These swamp crayfish (Procambarus clarkii) and northern results suggest not only that B. chinensis is a suitable crayfish (Orconectes virilis) utilize a novel prey food source for crayfish, but also that native resource: the non-native Chinese mystery snail (Bell- P. leniusculus may ultimately out-consume invasive amya chinensis). All species are widespread in the crayfishes for this new prey resource.
    [Show full text]
  • EVALUATION of BOTANICAL PISCICIDES on NILE TILAPIA Oreochromis Niloticus L
    EVALUATION OF BOTANICAL PISCICIDES ON NILE TILAPIA Oreochromis niloticus L. AND MOSQUITO FISH Gambusia affinis BAIRD AND GIRARD Arsenia G. Cagauan, Marjorie C. Galaites and Lorenz J. Fajardo College of Fisheries and Freshwater Aquaculture Center Central Luzon State University, Science City of Muñoz, Nueva Ecija 3120, Philippines Abstract The study assessed the piscicidal activity of ten locally available plants to two freshwater fishes; Nile tilapia (O. niloticus L.) and mosquito fish (G. affinis Baird and Girard). It focused on the laboratory determination of lethal concentrations (LC50 and LC100) through a static bioassay test. The ten plants tested were ampalaya Momordica charantia, adelfa Nerium indicum, agave Agave cantala, kalamansi Citrus mitis, lagundi Vitex negundo, madre de cacao Gliricidia sepium, makabuhai Tinosphora rhumpii, neem Azadirachta indica, physic nut Jatropa curcas and sambong Blumea balsamifera. Based on the 24-hour lethal concentration (LC100), the plants with the strongest piscicidal activity to Nile tilapia and mosquito fish were makabuhai and kalamansi, respectively. The toxicity to Nile tilapia of the ten plants arranged in the order of decreasing toxicity is as follows: makabuhai (0.82 ml l-1) > adelfa (1.06 ml l-1) > ampalaya (2.59 ml l-1) > kalamansi (5 ml l-1) > neem (12.4 ml l-1) > physic nut (26.67 ml l-1) > lagundi (31.5 ml l-1) > agave (74.29 ml l-1) > madre de cacao (90 ml l-1) > sambong (125.71 ml l-1). For mosquito fish, the toxicity of the ten plants arranged in the order of decreasing toxicity is as follows: kalamansi (3 ml l-1) > makabuhai (6 ml l-1) > adelfa (7.87 ml l-1) > neem (8.31 ml l-1) > ampalaya (13.5 ml l-1) > lagundi (50 ml l-1) > sambong (80 ml l-1) > physic nut (81.67 ml l-1) > agave (102.08 ml l-1) >madre de cacao (117.5 ml l-1).
    [Show full text]
  • Environmental DNA (Edna)
    fenvs-08-612253 December 1, 2020 Time: 20:27 # 1 ORIGINAL RESEARCH published: 07 December 2020 doi: 10.3389/fenvs.2020.612253 Environmental DNA (eDNA) Monitoring of Noble Crayfish Astacus astacus in Lentic Environments Offers Reliable Presence-Absence Surveillance – But Fails to Predict Population Density Stein I. Johnsen1†, David A. Strand2*†, Johannes C. Rusch2,3 and Trude Vrålstad2 1 Norwegian Institute for Nature Research, Lillehammer, Norway, 2 Norwegian Veterinary Institute, Oslo, Norway, 3 Department of Biosciences, University of Oslo, Oslo, Norway Noble crayfish is the most widespread native freshwater crayfish species in Europe. It is threatened in its entire distribution range and listed on the International Union for Edited by: Concervation Nature- and national red lists. Reliable monitoring data is a prerequisite for Ivana Maguire, University of Zagreb, Croatia implementing conservation measures, and population trends are traditionally obtained Reviewed by: from catch per unit effort (CPUE) data. Recently developed environmental DNA Michael Sweet, (eDNA) tools can potentially improve the effort. In the past decade, eDNA monitoring University of Derby, United Kingdom Chloe Victoria Robinson, has emerged as a promising tool for species surveillance, and some studies have University of Guelph, Canada established that eDNA methods yield adequate presence-absence data for crayfish. *Correspondence: There are also high expectations that eDNA concentrations in the water can predict David A. Strand biomass or relative density. However, eDNA studies for crayfish have not yet been [email protected] able to establish a convincing relationship between eDNA concentrations and crayfish †These authors have contributed equally to this work density. This study compared eDNA and CPUE data obtained the same day and with high sampling effort, and evaluated whether eDNA concentrations can predict Specialty section: relative density of crayfish.
    [Show full text]
  • RR Program's RCL Spreadsheet Update
    RR Program’s RCL Spreadsheet Update March 2017 RR Program RCL Spreadsheet Update DNR-RR-052e The Wisconsin DNR Remediation and Redevelopment Program (RR) has updated the numerical soil standards in the August 2015 DNR-RR- 052b RR spreadsheet of residual contaminant levels (RCLs). The RCLs were determined using the U.S. EPA RSL web- calculator by accepting EPA exposure defaults, with the exception of using Chicago, IL, for the climatic zone. This documentThe U.S. provides EPA updateda summary its Regionalof changes Screening to the direct-contact Level (RSL) RCLs website (DC-RCLs) in June that2015. are To now reflect in the that March 2017 spreadsheet.update, the The Wisconsin last page ofDNR this updated document the has numerical the EPA exposuresoil standards, parameter or residual values usedcontaminant in the RCL levels calculations. (RCLs), in the Remediation and Redevelopment program’s spreadsheet of RCLs. This document The providesU.S. EPA a RSL summary web-calculator of the updates has been incorporated recently updated in the Julyso that 2015 the spreadsheet.most up-to-date There toxicity were values no changes for chemi - cals madewere certainlyto the groundwater used in the RCLs,RCL calculations. but there are However, many changes it is important in the industrial to note that and the non-industrial web-calculator direct is only a subpartcontact of the (DC) full RCLsEPA RSL worksheets. webpage, Tables and that 1 andthe other 2 of thissubparts document that will summarize have important the DC-RCL explanatory changes text, generic tablesfrom and the references previous have spreadsheet yet to be (Januaryupdated.
    [Show full text]
  • Decapoda: Cambaridae) of Arkansas Henry W
    Journal of the Arkansas Academy of Science Volume 71 Article 9 2017 An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas Henry W. Robison Retired, [email protected] Keith A. Crandall George Washington University, [email protected] Chris T. McAllister Eastern Oklahoma State College, [email protected] Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Robison, Henry W.; Crandall, Keith A.; and McAllister, Chris T. (2017) "An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas," Journal of the Arkansas Academy of Science: Vol. 71 , Article 9. Available at: http://scholarworks.uark.edu/jaas/vol71/iss1/9 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas Cover Page Footnote Our deepest thanks go to HWR’s numerous former SAU students who traveled with him in search of crayfishes on many fieldtrips throughout Arkansas from 1971 to 2008. Personnel especially integral to this study were C.
    [Show full text]
  • How the Red Swamp Crayfish Took Over the World Running Title Invasion
    1 Title 2 One century away from home: how the red swamp crayfish took over the world 3 Running Title 4 Invasion history of Procambarus clarkii 5 Authors 6 Francisco J. Oficialdegui1*, Marta I. Sánchez1,2,3, Miguel Clavero1 7 8 Affiliations 9 1. Estación Biológica de Doñana (EBD-CSIC). Avenida Américo Vespucio 26, 10 Isla de la Cartuja. 41092. Seville, Spain 11 2. Instituto Universitario de Investigación Marina (INMAR) Campus de Excelencia 12 Internacional/Global del Mar (CEI·MAR) Universidad de Cádiz. Puerto Real, 13 Cadiz (Spain). 14 3. Present address: Departamento de Biología Vegetal y Ecología, Facultad de 15 Biología, Universidad de Sevilla, Apartado 1095, 41080, Seville, Spain 16 17 Contact: [email protected] Francisco J. Oficialdegui. Department of Wetland 18 Ecology. Estación Biológica de Doñana (EBD-CSIC). C/Américo Vespucio 26. Isla de 19 la Cartuja. 41092. Seville (Spain). Phone: 954466700. ORCID: 0000-0001-6223-736X 20 21 Marta I. Sánchez. [email protected] ORCID: 0000-0002-8349-5410 22 Miguel Clavero. [email protected] ORCID: 0000-0002-5186-0153 23 24 Keywords: Alien species; GBIF; Global translocations; Historical distributions; 25 iNaturalist; Invasive species; Pathways of introduction; Procambarus clarkii; 26 1 27 ABSTRACT 28 The red swamp crayfish (Procambarus clarkii) (hereafter RSC), native to the southern 29 United States and north-eastern Mexico, is currently the most widely distributed 30 crayfish globally as well as one of the invasive species with most devastating impacts 31 on freshwater ecosystems. Reconstructing the introduction routes of invasive species 32 and identifying the motivations that have led to those movements, is necessary to 33 accurately reduce the likelihood of further introductions.
    [Show full text]
  • Chinese Mitten Crab (Eriocheir Sinensis) in San Francisco Bay
    Distribution, Ecology and Potential Impacts of the Chinese Mitten Crab (Eriocheir sinensis) in San Francisco Bay Deborah A Rudnick Kathleen M. Halat Vincent H. Resh Department of Environmental Science, Policy and Management University of California, Berkeley TECHNICAL COMPLETION REPORT Project Number: UCAL-WRC-W-881 University of California Water Resources Center Contribution #206 ISBN 1-887192-12-3 June 2000 The University of California prohibits discrimination against or harassment of any person employed by or seeking employment with the University on the basis of race, color, national origin, religion, sex, physical or mental disability, medical condition (cancer- related), ancestry, marital status, age, sexual orientation, citizenship or status as a Vietnam-era veteran or special disabled veteran. The University of California is an affirmative action/equal opportunity employer. The University undertakes affirmative action to assure equal employment opportunity for underutilized minorities and women, for persons with disabilities, and for Vietnam-era veterans and special disabled veterans. University policy is intended to be consistent with the provisions of applicable State and Federal law. Inquiries regarding this policy may be addressed to the Affirmative Action Director, University of California, Agriculture and Natural Resources, 300 Lakeside Drive, 6th Floor, Oakland, CA 94612-3560, (510) 987-0097. This publication is a continuation in the Water Resources Center Contribution series. It is published and distributed by the UNIVERSITY
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Checklist of the Crayfish and Freshwater Shrimp (Decapoda) of Indiana
    2001. Proceedings of the Indiana Academy of Science 110:104-110 CHECKLIST OF THE CRAYFISH AND FRESHWATER SHRIMP (DECAPODA) OF INDIANA Thomas P. Simon: U.S. Fish and Wildlife Service, 620 South Walker Street, Bloomington, Indiana 47401 ABSTRACT. Crayfish and freshwater shrimp are members of the order Decapoda. All crayfish in In- diana are members of the family Cambaridae, while the freshwater shrimp belong to Palaemonidae. Two genera of freshwater shrimps, each represented by a single species, occur in Indiana. Palaemonetes ka- diakensis and Macrobrachium ohione are lowland forms. Macrobrachium ohione occurs in the Ohio River drainage, while P. kadiakensis occurs statewide in wetlands and lowland areas including inland lakes. Currently, 21 crayfish taxa, including an undescribed form of Cambarus diogenes, are found in Indiana. Another two species are considered hypothetical in occurrence. Conservation status is recommended for the Ohio shrimp Macrobrachium ohione, Indiana crayfish Orconectes indianensis, and both forms of the cave crayfish Orconectes biennis inennis and O. i. testii. Keywords: Cambaridae, Palaemonidae, conservation, ecology The crayfish and freshwater shrimp belong- fish is based on collections between 1990 and ing to the order Decapoda are among the larg- 2000. Collections were made at over 3000 lo- est of Indiana's aquatic invertebrates. Crayfish calities statewide, made in every county of the possess five pair of periopods, the first is mod- state, but most heavily concentrated in south- ified into a large chela and dactyl (Pennak ern Indiana, where the greatest diversity of 1978; Hobbs 1989). The North American species occurs. families, crayfish belong to two Astacidae and The current list of species is intended to Cambaridae with all members east of the Mis- provide a record of the extant and those ex- sissippi River belong to the family Cambari- tirpated from the fauna of Indiana over the last dae (Hobbs 1974a).
    [Show full text]
  • APPENDIX G3 Diflubenzuron Rejected by OPP and ECOTOX
    APPENDIX G3 Diflubenzuron Rejected by OPP and ECOTOX Rejected Abgrall, J. F. (1999). Short and Medium Term Impact of Aerial Application of Insecticide Against the Winter Moth (Operophtera Brumata L.). Revue forestiere francaise (nancy) 50: 395-404. Chem Codes: Chemical of Concern: DFZ Rejection Code: NON-ENGLISH. Aguirre-Uribe, L. A., Lozoya-Saldana, A., Luis-Jauregui, A., Quinones-Luna, S., and Juarez-Ramos, F. (1991(1992)). Field Evaluation for the Population Control of Musca Domestica (Diptera: Muscidae) in Chicken Manure With Diflubenzuron. Folia entomol mex 0: 143-151. Chem Codes: Chemical of Concern: DFZ Rejection Code: NON-ENGLISH. Akanbi, M. O. and Ashiru, M. O. (1991). Towards Integrated Pest Management of Forest Defoliators the Nigerian Situation. Xviii international congress of entomology, vancouver, british columbia, canada, 1988. For ecol manage 39: 81-86. Chem Codes: Chemical of Concern: DFZ Rejection Code: REVIEW,CHEM METHODS. Akiyama, Y., Yoshioka, N., Yano, M., Mitsuhashi, T., Takeda, N., Tsuji, M., and Matsushita, S. (1997). Pesticide Residues in Agricultural Products (F.y. 1994-1996). J.Food Hyg.Soc.Jpn. 38: 381-389 (JPN) . Chem Codes: Chemical of Concern: FNT,ACP,DZ,DDVP,MTM,CYP,EFX,FNV,FVL,PMR,MOM,BFZ,IPD,TFZ,CYF,TFY,MLN,BPH,ILL,T BA,DPHP,ES,DM,BTN,FRM,IPD,MYC,TDF,TDM Rejection Code: NON-ENGLISH. Alho, C. Jr and Vieira, L. M. (1997). Fish and Wildlife Resources in the Pantanal Wetlands of Brazil and Potential Disturbances From the Release of Environmental Contaminants. Environmental toxicology and chemistry 16: 71-74. Chem Codes: Chemical of Concern: DFZ Rejection Code: REVIEW. Ali, A.
    [Show full text]