The Magazine of the Arnold Arboretum VOLUME 75 • NUMBER 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Horticulture - HORT 1
Horticulture - HORT 1 Horticulture - HORT Courses HORT 1010 INTRODUCTION TO HORTICULTURE (1) LEC. 1. Introduces scientific and practical aspects of pomology, olericulture, floriculture and landscape horticulture. Also presents the broad scope of career opportunities in the field of horticultural science. Fall. HORT 2010 FRUIT AND NUT PRODUCTION (4) LEC. 3. LAB. 3. Introductory course in cultural practices and economics associated with commercial fruit and nut production. Fall. HORT 2020 HORTICULTURE CROP PRODUCTION (3) LEC. 2. LAB. 3. Pr. BIOL 1010 or BIOL 1030 or BIOL 1037. Techniques of plant propagation and cultural methods for successful fruit and vegetable production. Fall. HORT 2030 VEGETABLE PRODUCTION (3) LEC. 3. Principles, practices, establishment, production, maintenance, harvesting, storage and marketing of commercial vegetable crops. HORT 2040 ORGANIC GARDENING (3) LEC. 3. Principles, production practices, maintenance, harvesting and marketing of organically and traditionally home-grown vegetables. HORT 2050 FOOD FOR THOUGHT (3) LEC. 3. Study of history of food plants, including their impact on world culture, variety of uses, economic botany, production systems, and impact on societies. Fall. HORT 2060 HYDROPONICS: PRINCIPLES AND TECHNIQUES OF SOILLESS PLANT PRODUCTION (3) LEC. 3. This course is a survey of the science of hydroponic plant production and is focused on commercial and home vegetable crop production. Specific topics include plant growth and nutrition in hydroponic growing systems, challenges and opportunities, and system design. HORT 2210 LANDSCAPE GARDENING (4) LEC. 2. LAB. 4. Principles of landscape gardening applied to residential and small- scale commercial grounds. Involves plant identification and use, basic landscape design, and landscape installation and management concepts. -
Plant Expedition to the Republic of Georgia
PLANT EXPEDITION TO THE REPUBLIC OF GEORGIA — CAUCASUS MOUNTAINS AUGUST 15 - SEPTEMBER 11, 2010 SPONSORED BY THE DANIEL F. AND ADA L. RICE FOUNDATION PLANT COLLECTING COLLABORATIVE (PCC) Chicago Botanic Garden Missouri Botanical Garden The Morton Arboretum New York Botanical Garden University of Minnesota Landscape Arboretum 1 Table of Contents Summary 3 Georgia’s Caucasus 4-6 Expedition, Expedition Route & Itinerary 7-10 Collaboration 11 Observations 12-13 Documentation 14 Institutional review 14-15 Acknowledgements 16 Maps of the Republic of Georgia and PCC member locations 17 Photo Gallery Collecting 18-19 Collections 20-24 Seed Processing 25 Landscapes 26-29 Transportation 30 Dining 31 People 32-33 Georgia Past and Present 34 Georgia News 35-36 Appendix I – Germplasm Collections Listed by Habit Appendix II – Germplasm Collections Listed Alphabetically Appendix III – Weed Risk Assessment Appendix IV – Field Notes 2 Summary With generous support from the Daniel F. and Ada L. Rice Foundation, Galen Gates and the Plant Collecting Collaborative (PCC) team made outstanding progress through an expedition in the Republic of Georgia. On this recent trip into the Caucasus Moun- tains, a record was set for the most collections made on any Chicago Botanic Garden and PCC expedition to date. The trip, door to door, was 26 days with field collecting most days; nearly every night‘s activity included seed cleaning. We made three hundred collections at 60 sites. Most were seeds from 246 types of trees, shrubs, and perennials, 14 were bulb taxa and four were in the form of perennial roots. Remarkably, 53 taxa are new to U.S. -
Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final Report
Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final report Dr. Iryna Matsiakh Tbilisi 2014 This publication has been produced with the assistance of the European Union. The content, findings, interpretations, and conclusions of this publication are the sole responsibility of the FLEG II (ENPI East) Programme Team (www.enpi-fleg.org) and can in no way be taken to reflect the views of the European Union. The views expressed do not necessarily reflect those of the Implementing Organizations. CONTENTS LIST OF TABLES AND FIGURES ............................................................................................................................. 3 ABBREVIATIONS AND ACRONYMS ...................................................................................................................... 6 EXECUTIVE SUMMARY .............................................................................................................................................. 7 Background information ...................................................................................................................................... 7 Literature review ...................................................................................................................................................... 7 Methodology ................................................................................................................................................................. 8 Results and Discussion .......................................................................................................................................... -
(Prunus Spp) Using Random Amplified Microsatellite Polymorphism Markers
Assessment of genetic diversity and relationships among wild and cultivated Tunisian plums (Prunus spp) using random amplified microsatellite polymorphism markers H. Ben Tamarzizt, S. Ben Mustapha, G. Baraket, D. Abdallah and A. Salhi-Hannachi Laboratory of Molecular Genetics, Immunology & Biotechnology, Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar, Tunis, Tunisia Corresponding author: A. Salhi-Hannachi E-mail: [email protected] Genet. Mol. Res. 14 (1): 1942-1956 (2015) Received January 8, 2014 Accepted July 8, 2014 Published March 20, 2015 DOI http://dx.doi.org/10.4238/2015.March.20.4 ABSTRACT. The usefulness of random amplified microsatellite polymorphism markers to study the genetic diversity and relationships among cultivars belonging to Prunus salicina and P. domestica and their wild relatives (P. insititia and P. spinosa) was investigated. A total of 226 of 234 bands were polymorphic (96.58%). The 226 random amplified microsatellite polymorphism markers were screened using 15 random amplified polymorphic DNA and inter-simple sequence repeat primers combinations for 54 Tunisian plum accessions. The percentage of polymorphic bands (96.58%), the resolving power of primers values (135.70), and the polymorphic information content demonstrated the efficiency of the primers used in this study. The genetic distances between accessions ranged from 0.18 to 0.79 with a mean of 0.24, suggesting a high level of genetic diversity at the intra- and interspecific levels. The unweighted pair group with arithmetic mean dendrogram Genetics and Molecular Research 14 (1): 1942-1956 (2015) ©FUNPEC-RP www.funpecrp.com.br Genetic diversity of Tunisian plums using RAMPO markers 1943 and principal component analysis discriminated cultivars efficiently and illustrated relationships and divergence between spontaneous, locally cultivated, and introduced plum types. -
Checklist of Illinois Native Trees
Technical Forestry Bulletin · NRES-102 Checklist of Illinois Native Trees Jay C. Hayek, Extension Forestry Specialist Department of Natural Resources & Environmental Sciences Updated May 2019 This Technical Forestry Bulletin serves as a checklist of Tree species prevalence (Table 2), or commonness, and Illinois native trees, both angiosperms (hardwoods) and gym- county distribution generally follows Iverson et al. (1989) and nosperms (conifers). Nearly every species listed in the fol- Mohlenbrock (2002). Additional sources of data with respect lowing tables† attains tree-sized stature, which is generally to species prevalence and county distribution include Mohlen- defined as having a(i) single stem with a trunk diameter brock and Ladd (1978), INHS (2011), and USDA’s The Plant Da- greater than or equal to 3 inches, measured at 4.5 feet above tabase (2012). ground level, (ii) well-defined crown of foliage, and(iii) total vertical height greater than or equal to 13 feet (Little 1979). Table 2. Species prevalence (Source: Iverson et al. 1989). Based on currently accepted nomenclature and excluding most minor varieties and all nothospecies, or hybrids, there Common — widely distributed with high abundance. are approximately 184± known native trees and tree-sized Occasional — common in localized patches. shrubs found in Illinois (Table 1). Uncommon — localized distribution or sparse. Rare — rarely found and sparse. Nomenclature used throughout this bulletin follows the Integrated Taxonomic Information System —the ITIS data- Basic highlights of this tree checklist include the listing of 29 base utilizes real-time access to the most current and accept- native hawthorns (Crataegus), 21 native oaks (Quercus), 11 ed taxonomy based on scientific consensus. -
Global Journal of Food Sciences and Nutrition
Global Journal of Food Sciences and Nutrition doi: 10.39127/GJFSN:1000104 Research Article Aliev Z.H. Gl J Food Sci Nutri: GJFSN-104. The Research of The Radial Growth of The Flora Species Which Do Not Have Special Protection on The South Hillsides of Greater Caucasus Prof. Dr. Aliyev Zakir Huseyn Oglu Institute of Soil Science and Agrochemistry of the National Academy of Sciences of Azerbaijan *Corresponding author: Prof. Dr. Aliyev Zakir Huseyn Oglu, Senior Scientific Officer, Erosion and Irrigation Institute of the National Academy of Sciences of the Azerbaijan Republic 1007AZ. Baku city, M. Kashgay house 36, Russia. Tel: +7994 (012) 440-42-67; Email: [email protected] Citation: Aliev Z.H (2020) The Research of The Radial Growth of The Flora Species Which Do Not Have Special Protection on The South Hillsides of Greater Caucasus. Gl J Foo Sci Nutri: GJFSN:104. Received Date: 24 January, 2020; Accepted Date: 30 January, 2020; Published Date: 05 February, 2020. Abstract The radial growth of the trunks of the following flora species which do not have special protection on the south hillsides of Greater Caucasus were studied in the article: Georgioan oak- Quercus iberica M. Bieb Common hornbeam - Caprinus betulus L. Common chestnut - Castanea sativa Mill. Black walnut - Juglans nigra L., Heart leaved alder - Alnus subcordata C.A. Mey. During the dendrochronological analyses, the dynamics of growth over the years were analysed based on the distances between the tree rings. The impact of the climatic factors to the growth of the trees was analysed and the ages of tree species were investigated. -
Giresun Ve İlçelerinde Yetiştirilen Yerel Erik Çeşitlerinin Pomolojik Ve Morfolojik Özeliklerinin Belirlenmesi
Araştırma Makalesi Ziraat Mühendiliği (372), 101-115 DOI: 10.33724/zm.956357 Giresun ve İlçelerinde Yetiştirilen Yerel Erik Çeşitlerinin Pomolojik ve Morfolojik Özeliklerinin Belirlenmesi The Determination of Pomological and Morphological Properties of The Local Plum Types Grown in Giresun and Districts ÖZET Canan ÖNCÜL1 Ahmet AYGÜN2* Bu araştırma Giresun ili Merkez, Bulancak, Keşap İlçelerinde 2016-2017 yılları arasında yürütülmüştür. Çalışma yapılan 1 T.C. Tarım ve Orman Bakanlığı, Giresun İl alanda 20 farklı isimde anılan yerel erik çeşidi belirlenmiştir. Müdürlüğü, Giresun Belirlenen erik çeşitlerinin ağaç özellikleri ve meyve özellikleri 0000-0001-9270-7051 tespit edilmiştir. Belirlenen yerel erik çeşitlerinin ortalama meyve ağırlığı 8.02-169.40 g, meyve eni 20.65-42.06 mm, meyve boyu 2Kocaeli Üniversitesi, Fen Edebiyat Fakültesi, Biy- oloji Bölümü, 41380, Kocaeli, Türkiye/ Kırgızistan 25.42-42.89 mm, meyve yüksekliği 23.33-43.67 mm, meyve Türkiye Manas Üniversitesi, Ziraat Fakültesi, sapı uzunluğu 11.63-17.64 mm, meyve sapı çapı 0.80-2.53 mm, Bahçe ve Tarla Bitkileri Bölümü, 720044, Bişkek, çekirdek ağırlığı 0.31-1.61 g, titre edilebilir asitlik %1.15-2.83, Kırgızistan. pH 2.13-3.83, suda çözünebilir kuru madde miktarının %7.12- 0000-0001-7745-3380 18.47 olarak değişim gösterdiği tespit edilmiştir. Erik çeşitlerinde tomurcuk kabarması 25 Ocak-18 Mart tarihleri arasında, tomurcuk patlaması 8 Şubat-23 Mart tarihleri arasında, İlk Sorumlu Yazar * : [email protected] çiçeklenme 20 Şubat-27 Mart tarihleri arasında, tam çiçeklenme 1 Mart ile 9 Nisan tarihleri arasında, çiçeklenme sonu 10 Mart- 20 Nisan tarihleri arasında gerçekleşmiştir. Eriklerin hasat tarihleri ise 18 Haziran-31 Ağustos tarihleri arasında 75 günlük bir periyotta dağılım göstermiştir. -
Vascular Plants of Williamson County Prunus Rivularis − THICKET PLUM, CREEK PLUM [Rosaceae]
Vascular Plants of Williamson County Prunus rivularis − THICKET PLUM, CREEK PLUM [Rosaceae] Prunus rivularis Scheele, THICKET PLUM, CREEK PLUM. Thicket-forming shrub, cloning via shallow, horizontal roots, shoots from spreading roots erect, 200−400 cm tall, in range dense clones to 30 m long; shoots often 2-dimensional (plagiotropic), not spinescent. Stems: somewhat angled, with 3 ridges descending from leaf, zigzagged, internodes to 20 mm long; bark on small branches satiny reddish brown having horizontal lenticels, with scattered stiff short hairs. Leaves: helically alternate, simple, petiolate, with stipules; stipules 2, attached to petiole at top of wing, acuminate, to 7 × < 1 mm, with 1−2 basal lobes or without lobes, having 1−several, fleshy glandular teeth on margins; petiole to 20 mm long, winglike to 3 mm below stipules, above wings strongly channeled, having 1−several glandular teeth along ridges above midpoint, channel stiff-hairy; blade ovate- lanceolate, (15−)50−95+ × (9−)22−35+ mm, tapered at base, low-serrate initially with glandular tips on teeth base-to-tip on margins, acuminate to acute at tip, pinnately veined with principal vein slightly sunken on upper surface and raised on lower surface, often with a pair of glands at base of blade, glands on teeth abscising as blade growing, short-villous aging glabrescent or hairs mostly present along veins on lower surface. Inflorescence: 2−4-flowered cymelike clusters, on lateral shoots < 50 cm long on stubby shoots to 3 mm long, flower-bearing spur shoots covered with bud and bract scars, bracteate; bractlet subtending pedicel fan-shaped, to 3 mm long, early-deciduous; pedicel at anthesis 8−10 mm long not increasing in fruit, glabrous. -
UA in the Greater Dublin Region Short Term Scientific Mission Report
WEISSINGER, Helene COST Action Urban Agriculture Europe: UA in the Greater Dublin Region Short Term Scientific Mission Report Maynooth, Ireland 26/08-10/09/2013 2 COST Action UAE: STSM Report - UA in the Greater Dublin Region (2013) COST Action Urban Agriculture Europe UA in the Greater Dublin Region Short Term Scientific Mission Report Maynooth, Ireland 26/08-10/09/2013 Author: WEISSINGER, Helene Photography: WEISSINGER, Helene Local organizers: CORCORAN, Mary KETTLE, Patricia Illustrations and resources are under the responsibility of the author COST Action Urban Agriculture Europe is chaired by: Prof. Dr.-Ing. Frank Lohrberg Chair of Landscape Architecture Faculty of Architecture RWTH Aachen University e-mail: [email protected] Professor Lionella Scazzosi PaRID - Ricerca e documentazione internazionale per il paessaggio Politecnico di Milano e-mail: [email protected] This publication is supported by COST ESF provides the COST Office through an EC contract COST is supported by the EU RTD Framework programme 3 COST Action UAE: STSM Report - UA in the Greater Dublin Region (2013) Index 1. Purpose of the STSM .......................................................................................................................... 6 2. Methodology ....................................................................................................................................... 8 3. Results ............................................................................................................................................. -
Section [I]Cerris[I] in Western Eurasia: Inferences from Plastid
A peer-reviewed version of this preprint was published in PeerJ on 17 October 2018. View the peer-reviewed version (peerj.com/articles/5793), which is the preferred citable publication unless you specifically need to cite this preprint. Simeone MC, Cardoni S, Piredda R, Imperatori F, Avishai M, Grimm GW, Denk T. 2018. Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation. PeerJ 6:e5793 https://doi.org/10.7717/peerj.5793 Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation Marco Cosimo Simeone Corresp., 1 , Simone Cardoni 1 , Roberta Piredda 2 , Francesca Imperatori 1 , Michael Avishai 3 , Guido W Grimm 4 , Thomas Denk 5 1 Department of Agricultural and Forestry Science (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy 2 Stazione Zoologica Anton Dohrn, Napoli, Italy 3 Jerusalem Botanical Gardens, Hebrew University of Jerusalem, Jerusalem, Israel 4 Orleans, France 5 Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden Corresponding Author: Marco Cosimo Simeone Email address: [email protected] Oaks (Quercus) comprise more than 400 species worldwide and centres of diversity for most sections lie in the Americas and East/Southeast Asia. The only exception is the Eurasian Sect. Cerris that comprises 15 species, a dozen of which are confined to western Eurasia. This section has not been comprehensively studied using molecular tools. Here, we assess species diversity and reconstruct a first comprehensive taxonomic scheme of western Eurasian members of Sect. Cerris using plastid (trnH-psbA) and nuclear (5S-IGS) DNA variation with a dense intra-specific and geographic sampling. -
Number 3, Spring 1998 Director’S Letter
Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m. -
Plant Identification Presentation
Today’s Agenda ◦ History of Plant Taxonomy ◦ Plant Classification ◦ Scientific Names ◦ Leaf and Flower Characteristics ◦ Dichotomous Keys Plant Identification Heather Stoven What do you gain Looking at plants more closely from identifying plants? Why is it ◦ How do plants relate to each other? How are they important? grouped? • Common disease and insect problems • Cultural requirements • Plant habit • Propagation methods • Use for food and medicine Plant Classification Plant Classification Group each plant into a specific category Group each plant into a specific category Maple Spiraea Viburnum Crabapple Maple Spiraea Apple tree Ash Viburnum Crabapple Daylily Geranium Apple tree Ash Tomato Poinsettia Daylily Geranium TREES Oak Pepper Tomato Poinsettia Weeping willow Mint Oak Pepper Petunia Euonymus Weeping willow Mint Petunia Euonymus OS-Plant ID.ppt, page 1 Plant Classification Plant Classification Group each plant into a specific category Group each plant into a specific category Maple Spiraea Maple Spiraea Viburnum Crabapple Viburnum Crabapple Apple tree Ash Ornamental Apple tree Ash Edible Daylily Geranium Flowering Daylily Geranium Tomato Poinsettia Plants Tomato Poinsettia Crops Oak Pepper Oak Pepper Weeping willow Mint Weeping willow Mint Petunia Euonymus Petunia Euonymus Carolus Linnaeus Plant Taxonomy The Father of Taxonomy ◦ Identifying, classifying and assigning ◦ Swedish botanist scientific names to plants ◦ Developed binomial ◦ Historical botanists trace the start of nomenclature taxonomy to one of Aristotle’s students, Theophrastus (372-287 B.C.), but he didn’t ◦ Cataloged plants based on create a scientific system natural relationships—primarily flower structures (male and ◦ He relied on the common groupings of female sexual organs) folklore combined with growth: tree, shrub, undershrub or herb ◦ Published Species Naturae in ◦ Detected the process of germination and 1735 and Species Plantarum in realized the importance of climate and soil 1753 to plants ◦ Then, along came Linnaeus….