Toxic Effects of Some Pesticides on Deraeocoris Lutescens in the Laboratory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biopesticides: State of the Art and Future Opportunities James N
Entomology Publications Entomology 11-2014 Biopesticides: State of the Art and Future Opportunities James N. Seiber University of California - Davis Joel R. Coats Iowa State University, [email protected] Stephen O. Duke United States Department of Agriculture Aaron D. Gross Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs Part of the Entomology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ ent_pubs/300. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Biopesticides: State of the Art and Future Opportunities Abstract The use of biopesticides and related alternative management products is increasing. New tools, including semiochemicals and plant-incorporated protectants (PIPs), as well as botanical and microbially derived chemicals, are playing an increasing role in pest management, along with plant and animal genetics, biological control, cultural methods, and newer synthetics. The og al of this Perspective is to highlight promising new biopesticide research and development (R&D), based upon recently published work and that presented in the American Chemical Society (ACS) symposium “Biopesticides: State of the Art and Future Opportunities,” as well as the authors’ own perspectives. Although the focus is on biopesticides, included in this Perspective is progress with products exhibiting similar characteristics, namely those naturally occurring or derived from natural products. -
Seven Biopesticide Active Ingredients You Should Know About
Certis USA for CAPCA Adviser Seven Biopesticide Active Ingredients You Should Know About By Tim Damico, Executive VP-NAFTA, Certis USA Biological pesticides are often referred to as soft materials. It is Isaria fumosorosea. This fungus is highly pathogenic toward a broad true that their impact is soft to the environment, beneficial insects, range of pests, including whiteflies, aphids, thrips, soil-dwelling wildlife, spray applicators and farm crews. insects and spider mites. Spores applied as a foliar spray or soil drench germinate on contact with the target pest, and the growing But there is nothing soft about how biopesticides kill pests. fungus then penetrates through the cuticle or natural openings to proliferate inside. The insect or mite stops feeding and dies soon These seven common biopesticide active ingredients are formulated afterward, often with dark spots at infection points as the only from naturally occurring bacteria, fungi and viruses. Like the visible sign of fungal infection. I. fumosorosea can infect all life pathogenic diseases and insect pests they control, these beneficial stages of the pest (eggs, nymphs, pupae and adults). organisms must employ survival strategies to live. These strategies or modes of action allow them to biologically decimate their target Bacillus amyloliquefaciens. B. amyloliquefaciens is a broad spectrum pest species. preventive fungicide/bacteriacide for foliar and soil application. This bacterium rapidly colonizes root hairs, leaves and other plant Yet as destructive as they are to their target pests, beneficial bacteria, fungi and viruses cannot infect or harm non-target species. Their modes of action are specific to certain pests. A virus Paecilomyces lilacinus fungus engulfing nematode eggs. -
THIS PUBLICATION IS out of DATE. for Most Current Information
The Pear Psylla in Oregon DATE. U OF := ls72 OREGONLIBRARY STATEOUTL UNIVERSITY r IS ti information:Technical Bulletin 122 PUBLICATIONcurrent most THIS AGRICULTURAL EXPERIMENT For STATION Oregon State University http://extension.oregonstate.edu/catalogCorvallis, Oregon November 1972 CONTENTS Abstract--------------------------- Introduction--------------------------------------- ---------------------------------------------- ---------------3 Psylla Injury to Pear------------------------------- ----- ------------------------- 5 Pear Decline------------------------- --------------------------------------------- 5 Psylla Toxin--------------------------------------------------------------------------------------- 6 Psylla Honeydew______________--_ -------------------------------------------------------_______-_-___ 6 PsyllaDensities and Economic Losses____-__-____ _____-_--_____-__-__ 7 Biology------------------------------------------------------------------------------------------------------------7 Life History--------------------------------- - DATE. 7 Number of Generations-----------------------------------------------------------------------9 Host Range----------------------------------------------------------------------------------------OF 9 Control------------------------------------------------------------------------------------------------------------10 Natural Control-------------------------------------------------------------------------------------OUT 10 Chemical Control------------------------------------------ ------------------------------------14 -
Monitoring of Pear Psylla for Pest Management Decisions and Research
Integrated Pest Management Reviews 4: 1–20, 1999. © 1999 Kluwer Academic Publishers. Printed in the Netherlands. Monitoring of pear psylla for pest management decisions and research David R. Horton USDA-ARS, 5230 Konnowac Pass Rd., Wapato, WA 98951 U.S.A. (Tel.: (509) 454-5639; Fax: 509-454-5646) Received 6 May 1998; accepted 3 November 1998 Abstract Pear psylla, Cacopsylla pyricola (Foerster) (Homoptera: Psyllidae), is one of the key insect pests in North American pear production. In some growing areas, more than 50% of dollars spent to control arthropod pests in commercial pear are directed specifically at controlling this species. Control measures require accurate and timely information about dispersal, onset of egg-laying in spring, densities in the orchard, and age composition of the population. To meet these ends, a number of sampling methods have been developed to monitor pear psylla, the most common being (for pest management purposes) visual inspection of spurs and foliage for nymphs and eggs, and use of beat trays to monitor adults. Action thresholds have been developed for counts obtained with either method. However, threshold estimates are fairly narrowly defined, referring to a somewhat limited group of pear cultivars, type of injury to be prevented, and pest management program being used. Further refinement has been difficult because of an incomplete understanding of psylla’s spatial distribution, seasonal changes in spatial distribution, and unknown or seasonally changing action thresholds. Beat trays and visual inspection of foliage have also been used to monitor pear psylla in various types of research projects, including studies of dispersal and biological control. -
Disposal of Persistent Organic Pollutants and Obsolete Pesticides and Strengthening Life-Cycle Management of Pesticides in Benin”
Project evaluation series Mid-term evaluation of “Disposal of Persistent Organic Pollutants and Obsolete Pesticides and Strengthening Life-cycle Management of Pesticides in Benin” Project evaluation series Mid-term evaluation of “Disposal of persistent organic pollutants and obsolete pesticides and strengthening life-cycle management of pesticides in Benin” GCP/BEN/056/GFF FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2019 Required citation: FAO. 2019. Mid-term evaluation of “Disposal of Persistent Organic Pollutants and Obsolete Pesticides and Strengthening Life-cycle Management of Pesticides in Benin”. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/ licenses/by-nc-sa/3.0/igo/legalcode/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. -
8820 Issn 1314
ISSN 1313 - 8820 (print) ISSN 1314 - 412X (online) Volume 8, Number 4 December 2016 2016 Editor-in-Chief Scope and policy of the journal for rewriting to the authors, if necessary. Agricultural Science and Technology /AST/ The editorial board reserves rights to reject Georgi Petkov – an International Scientific Journal of manuscripts based on priorities and space Faculty of Agriculture Agricultural and Technology Sciences is availability in the journal. Trakia University, Stara Zagora published in English in one volume of 4 The journal is committed to respect high Bulgaria issues per year, as a printed journal and in standards of ethics in the editing and electronic form. The policy of the journal is reviewing process and malpractice to publish original papers, reviews and statement. Commitments of authors Co-Editor-in-Chief short communications covering the related to authorship are also very aspects of agriculture related with life important for a high standard of ethics and Dimitar Panayotov sciences and modern technologies. It will publishing. We follow closely the Faculty of Agriculture offer opportunities to address the global Committee on Publication Ethics (COPE), Trakia University, Stara Zagora needs relating to food and environment, http://publicationethics.org/resources/guid Bulgaria health, exploit the technology to provide elines innovative products and sustainable The articles appearing in this journal are development. Papers will be considered in indexed and abstracted in: DOI, EBSCO Editors and Sections aspects of both fundamental and applied Publishing Inc. and AGRIS (FAO). science in the areas of Genetics and The journal is accepted to be indexed with Genetics and Breeding Breeding, Nutrition and Physiology, the support of a project № BG051PO001- Production Systems, Agriculture and 3.3.05-0001 “Science and business” Tsanko Yablanski (Bulgaria) Environment and Product Quality and financed by Operational Programme Atanas Atanasov (Bulgaria) Safety. -
The Biology of the Predator Complex of the Filbert Aphid, Myzocallis Coryli
AN ABSTRACT OF THE THESIS OF Russell H. Messing for the degree of Master of Science in Entomology presented in July 1982 Title: The Biology of the Predator Complex of the Filbert Aphid, Myzocallis coryli (Goetze) in Western Oregon. Abstract approved: Redacted for Privacy M. T. AliNiiee Commercial filbert orchards throughout the Willamette Valley were surveyed for natural enemies of the filbert aphid, Myzocallis coryli (Goetze). A large number of predaceous insects were found to prey upon M. coryli, particularly members of the families Coccinellidae, Miridae, Chrysopidae, Hemerobiidae, and Syrphidae. Also, a parasitic Hymenopteran (Mesidiopsis sp.) and a fungal pathogen (Triplosporium fresenii) were found to attack this aphid species. Populations of major predators were monitored closely during 1981 to determine phenology and synchrony with aphid populations and to determine their relative importance. Adalia bipunctata, Deraeocoris brevis, Chrysopa sp. and Hemerobius sp. were found to be extremely well synchronized with aphid population development cycles. Laboratory feeding trials demonstrated that all 4 predaceous insects tested (Deraeocoris brevis, Heterotoma meriopterum, Compsidolon salicellum and Adalia bipunctata) had a severe impact upon filbert aphid population growth. A. bipunctata was more voracious than the other 3 species, but could not live as long in the absence of aphid prey. Several insecticides were tested both in the laboratory and field to determine their relative toxicity to filbert aphids and the major natural enemies. Field tests showed Metasystox-R to be the most effective against filbert aphids, while Diazinon, Systox, Zolone, and Thiodan were moderately effective. Sevin was relatively ineffective. All insecticides tested in the field severely disrupted the predator complex. -
Impact of the Pear Psyllid Cacopsylla Pyri Host Instar on the Behavior and Fitness
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.374504; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Impact of the pear psyllid Cacopsylla pyri host instar on the behavior and fitness 2 of the parasitoid Trechnites insidious 3 4 Guillaume Jean Le Goff1*, Jeremy Berthe1, Kévin Tougeron1, Benoit Dochy1, Olivier Lebbe1, 5 François Renoz1 & Thierry Hance1 6 7 1 Earth and Life Institute, Biodiversity Research Centre, UCLouvain, Croix du sud 4-5 bte L7.07.04, 8 1348 Louvain-la-Neuve, Belgium 9 10 11 *Corresponding author: Guillaume Jean Le Goff (E-mail address: [email protected]) 12 13 14 15 16 17 18 19 20 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.374504; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 23 Abstract 24 1. Pear is one of the most important fruit crops of temperate regions. The control of its mains pest, 25 Cacopsylla pyri, is still largely based on the use of chemical pesticides, with all that this implies in 26 terms of negative effects on the environment and health. -
Impacts of Insecticides on Predatory Mite, Neoseiulus Fallacis (Acari: Phytoseidae) and Mite Flaring of European Red Mites, Panonychus Ulmi (Acari: Tetranychidae)
IMPACTS OF INSECTICIDES ON PREDATORY MITE, NEOSEIULUS FALLACIS (ACARI: PHYTOSEIDAE) AND MITE FLARING OF EUROPEAN RED MITES, PANONYCHUS ULMI (ACARI: TETRANYCHIDAE) By Raja Zalinda Raja Jamil A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Entomology–Doctor of Philosophy 2014 ABSTRACT IMPACTS OF INSECTICIDES ON PREDATORY MITE, NEOSEIULUS FALLACIS (ACARI: PHYTOSEIDAE) AND MITE FLARING OF EUROPEAN RED MITES, PANONYCHUS ULMI (ACARI: TETRANYCHIDAE) By Raja Zalinda Raja Jamil Panonychus ulmi, the European red mite, is a major agricultural pest found in most deciduous fruit growing areas. It is the most important mite species attacking tree fruits in humid regions of North America. Bristle-like mouthparts of this mite species pierce the leaf cell wall and ingestion of their contents including chlorophyll causes bronzing injury to leaves. Heavy mite feeding early in the season (late Jun and July) reduce tree growth and yield as well as the fruit bud formation, thereby reduce yields the following year. Biological control of this pest species by predators has been a cornerstone of IPM. Phytoseiid mite, Neoseiulus fallacis (Garman) is the most effective predator mite in Michigan apple orchards and provides mid- and late-season biological control of European red mites. Achieving full potential of biological control in tree fruit has been challenging due to the periodic sprays of broad-spectrum insecticides. There have been cases of mite flaring reported by farmers in relation to the reduced-risk (RR) insecticides that were registered in commercial apple production in the past ten years. These insecticides are often used in fruit trees to control key direct pests such as the codling moth. -
Ecology and Biology of the Parasitoid Trechnites Insidiosus and Its
Review Received: 9 June 2021 Accepted article published: 20 June 2021 Published online in Wiley Online Library: (wileyonlinelibrary.com) DOI 10.1002/ps.6517 Ecology and biology of the parasitoid Trechnites insidiosus and its potential for biological control of pear psyllids Kévin Tougeron,* Corentin Iltis, François Renoz, Loulou Albittar, Thierry Hance, Sébastien Demeter† and Guillaume J. Le Goff† Abstract Pear cultivation accounts for a large proportion of worldwide orchards, but its sustainability is controversial because it relies on intensive use of pesticides. It is therefore crucial and timely to find alternative methods to chemical control in pear orchards. The psyllids Cacopsylla pyri and Cacopsylla pyricola are the most important pests of pear trees in Europe and North America, respectively, because they infest all commercial varieties, causing damage directly through sap consumption or indirectly through the spread of diseases. A set of natural enemies exists, ranging from generalist predators to specialist parasitoids. Trechnites insidiosus (Crawford) is undoubtedly the most abundant specialist parasitoid of psyllids. In our literature review, we highlight the potential of this encyrtid species as a biological control agent of psyllid pests by first reviewing its biology and ecology, and then considering its potential at regulating psyllids. We show that the parasitoid can express fairly high par- asitism rates in orchards, and almost perfectly matches the phenology of its host and is present early in the host infestation season, which is an advantage for controlling immature stages of psyllids. We propose new research directions and innovative approaches that would improve the use of T. insidiosus in integrated pest management strategies in the future, regarding both augmentative and conservation biocontrol. -
Resistance Management: a Critical Role for Biopesticides
Certis USA for CAPCA Adviser Resistance Management: A Critical Role for Biopesticides By Mike Dimock, Ph.D., Certis USA Vice President of Field Development & Technical Support and Scott Ockey, Certis USA Field Development Manager-Western USA BIOPESTICIDES are becoming critical components of resistance management programs. Most biopesticides, BENEFITS OF BIOPESTICIDES particularly microbial products, have multiple modes of action—they don’t target a single site or gene. Even if 0LNH'LPRFN3K'SRLQWVRXWWKHIROORZLQJ a pest is resistant to a single mode of action, it is highly EHQHÀWVWRXVLQJELRSHVWLFLGHVIRUUHVLVWDQFH unlikely it will have cross resistance to a biopesticide management: that has multiple modes of action or target sites. For this reason, biopesticides are valuable for helping us reduce or eliminate the development of resistance to pesticides. •0RVWDUHH[HPSWIURPUHVLGXHWROHUDQFHVRGRQ·W Resistance Development: A Brief Review SRVHDQLVVXHZLWK0D[LPXP5HVLGXH/LPLWV Weeds, insect pests and disease-causing fungi 05/V LQH[SRUWFURSV and bacteria are living organisms capable of evolving in response to selection. And one source of selection can be •6SHFLÀFLW\²PRVWELRSHVWLFLGHVSUHVHQWORZHU the pesticides used to control them. Most pest populations include a few individuals ULVNVIURPZRUNHUH[SRVXUHDQGHQYLURQPHQWDO with heritable traits that make them more able to survive issues. exposure to certain types of pesticide active ingredients. For example, a genetic mutation resulting in a slight change to •0RVWKDYHPXOWLSOHPRGHVRIDFWLRQUDWKHUWKDQ an enzyme that is the target of a particular active ingredient (AI) might make individuals expressing the altered enzyme attacking a single target site as is more typical of no longer susceptible to that AI. Application of pesticides conventional chemical pesticides. This puts them containing that AI acts as a selective agent favoring those DWORZHUULVNRIUHVLVWDQFHGHYHORSPHQW individuals (and their offspring) over individuals lacking the mutant genes for resistance to that mode of action. -
(Homoptera: Psyllidae) on Pear Trees
Historic, Archive Document Do not assume content reflects current scientific knowledge, policies, or practices. K-5 •A/ us^ Agriculture A Bibliography of Psylla Science and Education (l-lomoptera: Psyllidae) Administration Bibliographies and Literature on Pear Trees of Agriculture Number 17 Additional copies of tine bibliography can be obtained from: Publications Center Office of Governmental and Public Affairs U.S. Department of Agriculture Washington, D.C. 20250 A Bibliography of Psylla (Homoptera:Psyllidae) on Pear Trees^ By G. j] Fields, R. W. Zwick, and H. RJMoffitt^ A complete current and partial retrospective computer Introduction search, conducted through the USDA, SEA Current The jumping plant lice or psyllids of the genus Psylla Awareness Literature Service, has been used to review are probably the most important pest of pear fruit trees the following indexing sources back through 1970: throughout the world. Three species, Psylla pyricola Biological Abstracts (BA), Bio-Research Index (BRI), Foerster, P. pyri L., and P. pyrisuga Foerster, originated Chemical Abstracts (CAO, CAE), National Agricultural in Europe or Asia Minor. The fourth species, P. hex- Library Catalog (CAIN), and Commonwealth astigma Hovarth, known to infest pear trees, is found Agricultural Bureaux (CAB) back through 1976 only. Ad- in eastern Siberia and Japan. This bibliography covers ditional sources include the USDA Library Bibliography only the first three species. P. pyri (known as the pear of Agriculture (1943-69), various State experiment sta- sucker, pear leaf sucker, pear flea, or large pear psylla) tion publications, journal article citations, and publish- and P. pyrisuga (called the common pear psylla or pear ed proceedings of several State horticultural societies.