Ipcs Evaluation of Antidotes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cobalt Toxicity in Humans. a Review of the Potential Sources and Systemic Health Effects
Cobalt toxicity in humans. A review of the potential sources and systemic health effects. Laura Leyssensa, Bart Vincka,b, Catherine Van Der Straetenc,d, Floris Wuytse,f, Leen Maesa,g. a Faculty of Medicine and Health Sciences, University of Ghent (Belgium) Department of Speech, Language and Hearing Sciences University Hospital Ghent, policlinic 1 floor 2 De Pintelaan 185 9000 Ghent Belgium [email protected] (corresponding author) [email protected] b Faculty of Humanities, University of Pretoria (South Africa) Department of Speech-Language Pathology and Audiology Aula Theatre, University Road Pretoria, 0001 South Africa [email protected] c Faculty of Medicine, Imperial College London Department of Surgery & Cancer Musculoskeletal Sciences and Technology Imperial College London Charing Cross Campus, 7L21 Lab Block London SW7 2AZ UK [email protected] d Faculty of Medicine and Health Sciences, University of Ghent (Belgium) De Pintelaan 185 9000 Ghent Belgium e Antwerp University Research center for Equilibrium and Aerospace (AUREA) Department of Otorhinolaryngology University Hospital Antwerp Campus Groenenborger Groenenborgerlaan 171 2020 Antwerp Belgium [email protected] f Department of Biomedical Physics, University of Antwerp (Belgium) Campus Groenenborger Groenenborgerlaan 171 2020 Antwerp Belgium g Clinical audiology department University Hospital Ghent De Pintelaan 185 9000 Ghent Belgium 1 Abstract Cobalt (Co) and its compounds are widely distributed in nature and are part of numerous anthropogenic activities. Although cobalt has a biologically necessary role as metal constituent of vitamin B12, excessive exposure has been shown to induce various adverse health effects. This review provides an extended overview of the possible Co sources and related intake routes, the detection and quantification methods for Co intake and the interpretation thereof, and the reported health effects. -
IV-23 N. Hydroxocobalamin (Cyanokit®)
N. Hydroxocobalamin (Cyanokit®) I. Classification •Cyanide antidote II. Actions •Binds cyanide ions with more affinity than hemoglobin molecule •Cyanide ion and hydroxocobalamin form cyanocobalamin (Vitamin B12) which is then excreted in the urine. III. Indications •Known or suspected cyanide poisoning - patients at high risk (industrial accidents, fire victims with smoke inhalation, known overdose, etc) with one more more of the following symptoms: - Altered mental status, confusion, seizures, coma - Headache - Chest pain or tightness - Shortness of breath, bradypnea, tachypnea - Hypertension (early), hypotension (late), cardiovascular collapse - Nausea, vomiting - Cardiac arrest - Mydriasis (dilated pupils) IV. Contraindications •Known allergic reaction to hydroxocobalamin or cyanocobalamin V. Adverse effects A. Cardiovascular •Ventricular extrasystoles •Tachycardia •Transient hypertension B. Neurological •Memory impairment •Dizziness •Restlessness C. Respiratory •Dyspnea •Dry Throat •Throat tightness D. Gastrointestinal •Abdominal discomfort •Dysphagia •Vomiting, diarrhea •Hematochezia E. General •Allergic reaction, pruritis, anaphylaxis •Hot flush SUBJECT : PATIENT CARE GUIDELINES AND STANDING ORDERS FOR BLS AND ALS UNITS REFERENCE NO. III-01 PUBLICATION : 1/11/21 IV-23 VI. Administration A. Do not administer hydroxocobalamin through the same IV site/set as the following medications: dopamine, fentanyl, dobutamine, diazepam, nitroglycerin, pentobarbital, propofol, thiopental, sodium thiosulfate, sodium nitrite and ascorbic acid. You must start a second IV to administer hydroxocobalamin in patient’s receiving these medications. B. Adult: •5 grams IV/IO over 15 minutes (Stocked as single 5gm bottle, or two 2.5 gm bottles) -Single 5 gm Bottle - Reconstituted with 200 ml Normal Saline. -Two 2.5 gm Bottles, give over 7.5 minutes each. - Each vial reconstituted with 100 ml Normal Saline. C. Pediatric •100 mg/kg IV/IO of hydroxocobalamin (reconstituted with Normal Saline the same as adults) over 15 minutes. -
Cobalt-Nickel Strip, Plate, Bar, and Tube Safety Data Sheet Revision Date: 12/14/2012
Cobalt-Nickel Strip, Plate, Bar, and Tube Safety Data Sheet Revision date: 12/14/2012 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product name. : Cobalt-Nickel Strip, Plate, Bar, and Tube 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/preparation : Parts Manufacturing No additi onal infor mati on available 1.3. Details of the supplier of the safety data sheet Ametek Specialty Metal Products 21 Toelles Road Wallingford, CT 06492 T 203-265-6731 1.4. Emergency telephone number Emergency number : 800-424-9300 Chemtrec SECTION 2: Hazards identification 2.1. Classification of the substance or mixture GHS-US classification Comb. Dust H232 Resp. Sens. 1 H334 Skin Sens. 1 H317 Carc. 2 H351 STOT RE 1 H372 STOT RE 2 H373 Aquatic Acute 1 H400 Aquatic Chronic 4 H413 2.2. Label elements GHS-US labelling Hazard pictograms (GHS-US) : Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H232 - May form combustible dust concentrations in air H317 - May cause an allergic skin reaction H334 - May cause allergy or asthma symptoms or breathing difficulties if inhaled H351 - Suspected of causing cancer H372 - Causes damage to organs through prolonged or repeated exposure H373 - May cause damage to organs through prolonged or repeated exposure H400 - Very toxic to aquatic life H413 - May cause long lasting harmful effects to aquatic life 12/14/2012 EN (English) 1/9 Cobalt-Nickel Strip, Plate, Bar, and Tube Safety Data Sheet Precautionary statements (GHS-US) : P201 - Obtain special instructions before use P202 - Do not handle until all safety precautions have been read and understood P260 - Do not breathe dust/fume/gas/mist/vapours/spray P264 - Wash .. -
WHO Model List of Essential Medicines
WHO Model List of Essential Medicines 15th list, March 2007 Status of this document This is a reprint of the text on the WHO Medicines web site http://www.who.int/medicines/publications/essentialmedicines/en/index.html 15th edition Essential Medicines WHO Model List (revised March 2007) Explanatory Notes The core list presents a list of minimum medicine needs for a basic health care system, listing the most efficacious, safe and cost‐effective medicines for priority conditions. Priority conditions are selected on the basis of current and estimated future public health relevance, and potential for safe and cost‐effective treatment. The complementary list presents essential medicines for priority diseases, for which specialized diagnostic or monitoring facilities, and/or specialist medical care, and/or specialist training are needed. In case of doubt medicines may also be listed as complementary on the basis of consistent higher costs or less attractive cost‐effectiveness in a variety of settings. The square box symbol () is primarily intended to indicate similar clinical performance within a pharmacological class. The listed medicine should be the example of the class for which there is the best evidence for effectiveness and safety. In some cases, this may be the first medicine that is licensed for marketing; in other instances, subsequently licensed compounds may be safer or more effective. Where there is no difference in terms of efficacy and safety data, the listed medicine should be the one that is generally available at the lowest price, based on international drug price information sources. Therapeutic equivalence is only indicated on the basis of reviews of efficacy and safety and when consistent with WHO clinical guidelines. -
Cyanocobalamin-A Case for Withdrawal
686 Journal of the Royal Society of Medicine Volume 85 November 1992 Cyanocobalamin- a case for withdrawal: discussion paper A G Freeman MD FRCP Meadow Rise, 3 Lakeside, Swindon SN3 IQE Keywords: anaemia, pernicious; optic neuropathies; chronic cyanide intoxication; hydroxocobalamin; cyanocobalamin It seems evident that controversy still surrounds the reduced ability to detoxify the cyanide in the tobacco- treatment of pernicious anaemia and other vitamin smoke to which they are exposed'0. B12 deficiency disorders. The long quest for the 'anti- Patients with tobacco amblyopia who have normal pernicious anaemia factor' in the liver seemed to serum vitamin B12 levels need not continue therapy have ended in 1948 when pure cyanocobalamin was with intramuscular hydroxocobalamin once their isolated. This was found to be very active thera- visual acuity and visual fields have returned to peutically when given by intramuscular injection and normal providing they abstain from further smoking. was non-toxic in extremely high doses'. However, those patients who have low serum vitamin Lederle, in a recent commentary2, advocates that B12 levels or evidence of -defective vitamin B12 patients with pernicious anaemia should now be absorption will need to continue-indefinitely with treated with oral cyanocobalamin. He is not without hydroxocobalamin irrespective of their smoking support in that 40% of patients with pernicious habits as will all patients with pernicious anaemia anaemia in Sweden are being similarly treated3. and other vitamin B12 deficiency disorders who are He further states that such!- treatment is cheap at risk of developing- optic neuropathy if they and effective, produces clinical and haematological are smokers. -
CLINICAL TOXICOLOGY THROUGH the AGES Programme 11Th November 2016 Aula of the University of Zürich Kol G 201, Rämistrasse 71, 8006 Zürich
Anniversary Symposium 50 Years Tox Info Suisse CLINICAL TOXICOLOGY THROUGH THE AGES Programme 11th November 2016 Aula of the University of Zürich Kol G 201, Rämistrasse 71, 8006 Zürich Anniversary Symposium 50 Years Tox Info Suisse CLINICAL TOXICOLOGY THROUGH THE AGES Part 1: Humans and Animals Chair: Hugo Kupferschmidt 12:15 Opening Hugo Kupferschmidt, Director Tox Info Suisse 12:20 Differing aspects in human and veterinary toxicology Hanspeter Nägeli, Zürich 12:55 Food poisoning today - current research to target old problems Martin J. Loessner, Zürich 13:30 Venomous animals in Switzerland Jürg Meier, Basel 14:05 Coffee break Part 2: Hips, Pain Killers and Mushrooms Chair: Michael Arand 14:35 Welcome address Michael O. Hengartner, President UZH 14:45 Fatal shoot from the hip: News of heavy metal poisoning Sally Bradberry, Birmingham UK 15:20 Old and new aspects in paracetamol poisoning D. Nicholas Bateman, Edinburgh 15:55 Amanita phalloïdes poisoning Thomas Zilker, München 16:30 A silent threat - chronic intoxications Michael Arand, Zürich 17:05 Coffee break Part 3: From Critical Care to the Opera Chair: Martin Wilks 17:35 Management of severe poisoning-induced cardiovascular compromise Bruno Mégarbane, Paris 18:10 Chemical terrorism: New and old chemical weapons and their counter- measures Horst Thiermann, München 18:45 Novel psychoactive substances: How much a threat in public health? Alessandro Ceschi, Lugano 19:20 Poisons in the opera Alexander Campbell, Birmingham UK 19:50 Conclusion 20:00 Apéro riche 21:30 Closure 50 Years Tox Info Suisse | Anniversary Symposium | 11th November 2016 2/15 Anniversary Symposium 50 Years Tox Info Suisse CLINICAL TOXICOLOGY THROUGH THE AGES Speakers Hanspeter Nägeli Differing aspects in human and veterinary toxicology Institute of Veterinary Pharma- Veterinary toxicology is a difficult, yet fascinating subject as it cology and Toxicology, deals with multiple species and a wide variety of poisons of very University of Zurich diverse origins. -
Adverse Health Effects of Heavy Metals in Children
TRAINING FOR HEALTH CARE PROVIDERS [Date …Place …Event …Sponsor …Organizer] ADVERSE HEALTH EFFECTS OF HEAVY METALS IN CHILDREN Children's Health and the Environment WHO Training Package for the Health Sector World Health Organization www.who.int/ceh October 2011 1 <<NOTE TO USER: Please add details of the date, time, place and sponsorship of the meeting for which you are using this presentation in the space indicated.>> <<NOTE TO USER: This is a large set of slides from which the presenter should select the most relevant ones to use in a specific presentation. These slides cover many facets of the problem. Present only those slides that apply most directly to the local situation in the region. Please replace the examples, data, pictures and case studies with ones that are relevant to your situation.>> <<NOTE TO USER: This slide set discusses routes of exposure, adverse health effects and case studies from environmental exposure to heavy metals, other than lead and mercury, please go to the modules on lead and mercury for more information on those. Please refer to other modules (e.g. water, neurodevelopment, biomonitoring, environmental and developmental origins of disease) for complementary information>> Children and heavy metals LEARNING OBJECTIVES To define the spectrum of heavy metals (others than lead and mercury) with adverse effects on human health To describe the epidemiology of adverse effects of heavy metals (Arsenic, Cadmium, Copper and Thallium) in children To describe sources and routes of exposure of children to those heavy metals To understand the mechanism and illustrate the clinical effects of heavy metals’ toxicity To discuss the strategy of prevention of heavy metals’ adverse effects 2 The scope of this module is to provide an overview of the public health impact, adverse health effects, epidemiology, mechanism of action and prevention of heavy metals (other than lead and mercury) toxicity in children. -
Hydroxocobalamin for Injection) for Intravenous Infusion Alternative Therapies, If Available, in Patients with Known Anaphylactic Initial U.S
HIGHLIGHTS OF PRESCRIBING INFORMATION -------------------------------CONTRAINDICATIONS----------------------------- These highlights do not include all the information needed to use None (4) CYANOKIT safely and effectively. See full prescribing information for CYANOKIT. ------------------------WARNINGS AND PRECAUTIONS----------------------- Risk of Anaphylaxis and Other Hypersensitivity Reactions: Consider CYANOKIT® (hydroxocobalamin for injection) for intravenous infusion alternative therapies, if available, in patients with known anaphylactic Initial U.S. Approval: 1975 reactions to hydroxocobalamin or cyanocobalamin. (5.2) Risk of Renal Injury: Acute renal failure with acute tubular necrosis, renal ----------------------------RECENT MAJOR CHANGES-------------------------- impairment and urine calcium oxalate crystals have been reported Warnings and Precautions, Risk of Renal Injury (5.3) 12/2018 following CYANOKIT therapy. Monitor renal function for 7 days Warnings and Precautions, Use of Blood Cyanide Assay (5.7) 12/2018 following CYANOKIT therapy. (5.3) Risk of Increased Blood Pressure: Substantial increases in blood pressure ----------------------------INDICATIONS AND USAGE--------------------------- may occur following CYANOKIT therapy. Monitor blood pressure during CYANOKIT is indicated for the treatment of known or suspected cyanide treatment. (5.4) poisoning. (1) -------------------------------ADVERSE REACTIONS------------------------------ ------------------------DOSAGE AND ADMINISTRATION---------------------- Most common -
ABC of Poisoning. Emergency Drugs: Agents Used in the Treatment Of
1984 1AFnT('AT VOT. TmFT 289 22 SEPTEMBER UIQnTCTIT utILtjTOTTRMAT vJV' _- - . _ 742 D.ll.lilm13 4=.-, TIM MEREDITH JANE CAISLEY ABC ofPoisoning GLYN VOLANS EMERGENCY DRUGS: AGENTS USED IN THE TREATMENT OF POISONING A readily available and practical guide to the drugs used in the treatment of / poisoning is important, since many of the agents concerned are used infrequently; some can be obtained only from selected poisons treatment centres, and others, although listed in textbooks, are not available in the United Kingdom; still others are now considered obsolete and, in some cases, actually dangerous. The article Is basen advice Lists ofrecommended drugs have been published by the Department of appendixah artiendixsHto basedcrcularcircuon HNhen(78) Health and Social Security, most recently as HN(62)13 and HN(78)23. DrHuSS s 23 Ougs of Special Value in the1This article is based on these earlier lists, although, necessarily, many more Treatment of Poisoning in drugs have been included and additional information is given on the Accident and Emergency indications for use, mode ofaction, presentation, and dosage. In future this Departments list will be revised as necessary, and copies will be available from the National Poisons Information Service. Agents used for local cleansing, reliefofpain, fluid replacement, oxygen, and the more general care of the injured patient are not included. The need for collaboration and discussion between doctors and pharmacists in the preparation ofthis list is readily apparent and we would welcome comments which may be taken into account in future revisions. (1) Recommended agents that are readily available The decision to stock individual items will depend on the expected ofthe hospital concerned. -
Biological Monitoring of Chemical Exposure in the Workplace Guidelines
WHO/HPR/OCH 96.2 Distr.: General Biological Monitoring of Chemical Exposure in the Workplace Guidelines Volume 2 World Health Organization Geneva 1996 Contribution to the International Programme on Chemical Safety (IPCS) Layout of the cover page Tuula Solasaari-Pekki Technical editing Suvi Lehtinen This publication has been published with the support of the Finnish Institute of Occupational Health. ISBN 951-802-167-8 Geneva 1996 This document is not a formal publication Ce document n'est pas une publication of of the World Health Organization (WHO), ficielle de !'Organisation mondiale de la and all rights are reserved by the Organiza Sante (OMS) et tous Jes droits y afferents tion. The document may, however, be sont reserves par !'Organisation. S'il peut freely reviewed, abstracted, reproduced and etre commente, resume, reproduit OU translated, in part or in whole, but not for traduit, partiellement ou en totalite, ii ne sale nor for use in conjunction with .com saurait cependant l'etre pour la vente ou a mercial purposes. des fins commerciales. The views expressed in documents by Les opinions exprimees clans Jes documents named authors are solely the responsibility par des auteurs cites nommement n'enga of those authors. gent que lesdits auteurs. Preface This is the second in a series of volumes on 'Guidelines on Biological Monitoring of Chemical Exposure in the Workplace', produced under the joint direction of WHO's Of fice of Occupational Health (OCH) and Programme for the Promotion of Chemical Safety (PCS). The objectives of this project was to provide occupational health professionals in Mem ber States with reference principles and methods for the determination of biomarkers of exposure, with emphasis on promoting appropriate use of biological monitoring and as sisting in quality assurance. -
Toxic Exposures Kathy L
8 MODULE 8 Toxic Exposures Kathy L. Leham-Huskamp / William J. Keenan / Anthony J. Scalzo / Shan Yin 8 Toxic Exposures Kathy L. Lehman-Huskamp, MD William J. Keenan, MD Anthony J. Scalzo, MD Shan Yin, MD InTrODUcTIOn The first large-scale production of chemical and biological weapons occurred during the 20th century. World War I introduced the use of toxic gases such as chlorine, cyanide, an arsine as a means of chemical warfare. With recent events, such as the airplane attacks on the World Trade Center in New York City, people have become increasingly fearful of potential large-scale terrorist attacks. Consequently, there has been a heightened interest in disaster preparedness especially involving chemical and biological agents. The U.S. Federal Emergency Management Agency (FEMA) recommends an "all-hazards" approach to emergency planning. This means creating a simultaneous plan for intentional terrorist events as well as for the more likely unintentional public health emergencies, such as earthquakes, floods, hazardous chemical spills, and infectious outbreaks. Most large-scale hazardous exposures are determined by the type of major industries that exist and/or the susceptibility to different types of natural disasters in a given area. For example, in 1984 one of the greatest man-made disasters of all times occurred in Bhopal, India, when a Union Carbide pesticide plant released tons of methylisocyanate gas over a populated area, killing scores of thousands and injuring well over 250,000 individuals. The 2011 earthquake and tsunami in Japan demonstrated the vulnerability of nuclear power stations to natural disasters and the need to prepare for possible widespread nuclear contamination and radiation exposure. -
World Health Organization Model List of Essential Medicines, 21St List, 2019
World Health Organizatio n Model List of Essential Medicines 21st List 2019 World Health Organizatio n Model List of Essential Medicines 21st List 2019 WHO/MVP/EMP/IAU/2019.06 © World Health Organization 2019 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. World Health Organization Model List of Essential Medicines, 21st List, 2019. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.