Cyanocobalamin-A Case for Withdrawal

Total Page:16

File Type:pdf, Size:1020Kb

Cyanocobalamin-A Case for Withdrawal 686 Journal of the Royal Society of Medicine Volume 85 November 1992 Cyanocobalamin- a case for withdrawal: discussion paper A G Freeman MD FRCP Meadow Rise, 3 Lakeside, Swindon SN3 IQE Keywords: anaemia, pernicious; optic neuropathies; chronic cyanide intoxication; hydroxocobalamin; cyanocobalamin It seems evident that controversy still surrounds the reduced ability to detoxify the cyanide in the tobacco- treatment of pernicious anaemia and other vitamin smoke to which they are exposed'0. B12 deficiency disorders. The long quest for the 'anti- Patients with tobacco amblyopia who have normal pernicious anaemia factor' in the liver seemed to serum vitamin B12 levels need not continue therapy have ended in 1948 when pure cyanocobalamin was with intramuscular hydroxocobalamin once their isolated. This was found to be very active thera- visual acuity and visual fields have returned to peutically when given by intramuscular injection and normal providing they abstain from further smoking. was non-toxic in extremely high doses'. However, those patients who have low serum vitamin Lederle, in a recent commentary2, advocates that B12 levels or evidence of -defective vitamin B12 patients with pernicious anaemia should now be absorption will need to continue-indefinitely with treated with oral cyanocobalamin. He is not without hydroxocobalamin irrespective of their smoking support in that 40% of patients with pernicious habits as will all patients with pernicious anaemia anaemia in Sweden are being similarly treated3. and other vitamin B12 deficiency disorders who are He further states that such!- treatment is cheap at risk of developing- optic neuropathy if they and effective, produces clinical and haematological are smokers. remissions, and that most patients would prefer There is certainly no place for either oral or it if given the choice. He considers that a wider intramuscular cyanocobalamin in the treatment of appreciation of its effectiveness would be of value to such patients in that hydroxocobalamin and not physicians and that this is 'Medicine's best kept cyanocobalamin, is a powerful cyanide antagonist. secret' and that 'it is time to let the secret out'. Because confusion still persisted among doctors It is now known that there are at least four forms of over the various commercial forms of vitamin B12 vitamin B12 (cobalamin), ie cyanocobalamin, hydroxo- available for therapeutic use and their adverse effects cobalamin and two coenzymes forms which are in neuro-ophthalmological disorders, we presented a biochemically active, namely methylcobalamin and case for withdrawal of cyanocobalamin in favour of adenosylo-cobalamin4. hydroxocobalamin and submitted t-his in 1970 tothe Evidence has been presented that oral treatment Committee on Safety of Medicines'2. with vitamin B12 cannot replace body stores in As no action was taken by the manufacturers, we patients with Addisonian pernicious anaemia where asked again in 1978 'Svhy has cyanocobalamin not there is a lack ofgastric intrinsic factor due to an auto- been withdrawn?'. We laid particular emphasis on the immune gastritis causing malabsorption of vitamin fact- that some patients fail to respond to treatment B12 or in those who have undergone total gastrectomy- because, although hydroxocobalamin had been pres- or ileal resection. Such patients will require life-long cnbed, cyanocobalamin had been administered instead. parenteral vitamin B12 therapy. The, diagnosis may then be questioned, treatment In the United Kingdom, intramuscular hydroxo- stopped and the patient with tobacco amblyopia be cobalamin has replaced cyanocobalamin as it is condemned to a life of poor sight'3. retained in the body longer than cyanocobalamin and In 1981, the Committee on Safety ofMedicines drew thus for maintenance therapy needs only be given at attention to our thesis that hydroxocobalamin is intervals of 3 months5-7. effective in treatment of certain bptie neuropathies, In strongly opposing any treatment for pernicious of which tobacco amblyopia is an example, but anaemia other than parenteral hydroxocobalamin on cyanocobalamin is not. Since tobacco amblyopia may a life-time basis once the diagnosis has been confirmed occur in patients with pernicious anaemia it is clearly I would emphasize that hydroxocobalamin is also a preferable to use hydroxocobalamin routinely instead potent cyanide antagonist whereas cyanocobalamin is of cyanocobalamin'4. This view is supported by not. Thus oral or intramuscular cyanocobalamin Linnell and co-workers who, in support of our is ineffective in the treatment ofpatients with tobacco contention, stated that there was no condition in amblyopia or retrobulbar neuritis in pernicious which it has been claimed that cyanocobalamin was anaemia, examples ofoptic neuropathy due to chronic preferable to hydroxocobalamin and that there cyanide intoxication8. was no place for its continued use15. Despite these Healthy smokers with normal vision have raised recommendations it appears that cyanocobalamin has cyanocobalamin levels and raised plasma and urinary not been withdrawn for therapeutic use'6. thiocyanate levels, products of effective cyanide Even the World Health Organization's Committee detoxication as compared with the levels in healthy on the selection of essential drugs listed only cyano- non-smokers9. Patients with tobacco amblyopia, even cobalamin'7, thus placing an incalculable number if they smoke more than their healthy counterparts, of patients with tobacco and tropical amblyopia have much lower levels of plasma cyanocobalamin and optic neuropathy in pernicious anaemia at and thiocynate in their body fluids indicative of a risk. Journal of the Royal Society of Medicine Volume 85 November 1992 687 Since our original work on the aetiology oftobacco References amblyopia'8 and retrobulbar neuritis in Addisonian 1 Matthews DM, Linnell JC. Vitamin B12: an area of pernicious anaemia19 more than 30 years ago, I have darknss BAM 1979ii:5333-5 - been particularly concerned with the neuro-ophthal- 2 Lederle FA. Oral cobalamin for pernicious anaemia. mological manifestations of deficiency diseases and JAMA 199426b94-5- 3 Berlin R. Written communication, Nov. 1989 (cited by degenerative neuropathies. Clinical and laboratory Lederle FA, JAMA 1991;265:94-5) studies on the pathogenesis of such disorders have 4 Matthews DM. Distribution ofcobalamins in the animal been continued in many centres and the precise role body. In: Zagalak B, Friedrich W, eds. Vitamin B12: ofchronic cyanide intoxication has merited plarticular Proceedings ofthe 3rd European Symposium. Berlin: De attention. As a result of the development and Gruyter, 1979:681-94 application of the chromo-bioautographic method of 5 Drugs and Therapeutics Bulletin 1984;22:43-4 estimating individual plasma-cobalamins in neuro- 6 Chipping PM. Vitamin B12 deficiency. Prescribers' J ophthalmological disorders, it may in the future be 1988;28:117-24 possible to identify patients at risk in genetically 7 British National Formulary. March 1991:296-7 determined disorders, such as Leber's optic atrophy, 8 Freeman AG. Optic neuropathy and chronic cyanide Isuch intoxication: a review. J R Soc Med 1988;18:103-6 and thus initiate effective prophylactic measures 9 Wilson J, Linnell JC, Matthews DM. Plaacqbalmin as stopping smoking and giving hydroxocobalamin' in neuro-ophthalmelogal diseases. Lancet 1971i:777-8 intramuscularly before the onset ofirreversible visual 10 Wilson J, Matthews D)4. Metabolic inter-relationships failure8.' between cyanide, thiocyanate and vitamin B12 in Besides being present in tobacco-smoke and alcohol, smokerse and non-smokers. Cltn Sci 1966;#31:1-7 cyanide has a world-wide distribution in the plant 11 k'6ulds WS, Bronte-Stewart JM, ChiAolm IA. Serum kingdom. Optic neuropathy, often afsdciated with thiocyahate concentrstions intobaccb amblyoia. Nature nerve deafness, my6lopathy -with yramidal tract (A,tnd) 1968;218:586 involvement, and sensory ataxia, is particuiilAiy 12 Foulds WS, Freeman AG,- Phillips CI, Wilson J. prone to occur in tropical and subtropical counthes Cyanocobalamin: a casefor withdrawal. Lancet 1970;:35 13 Freeman AG, Wilson J, F'ou1ds WS, Phillips CI. Why where nutrition is poor and the indigenouds popu- has cyanocobalamin, not been withdrawn? Lancet lation suffers from a low protein and sulphur- 1978;i:777-8 containing amino acid intake ind high cyanide 14 Commitee pn Safety of Medicines, Current problems, exposure from a dietary source such as unprocessed July 1981:6 cassava roots20. 15 Linnell JC, Matthews DM, England JM Therapeutic Ifthe indiscriminate dumping of industrial cyanide misuse of cyanocobalamin. Lancet 1978ii:1053-4 waste continues unchecked with the inherent risk of 16 Monthly Index ofMedical Specialities, January 1991:178 pollution of food and water supplies there' may well 17 Terry SI, Nicholson GD. Survival of cyanocobalamin. come a time when more widespread chronic cyanide Lancet 1978i-:848 neurotoxicity occurs in the'Western hemfsphere from 18 Heaton JM, McCormick AJA, Freeman AG. Tobacco amblyopia: a clinical. manifestation of vitamin B12 a dietary source in persons with-a genetic or acquired deficiency.-Lancet 1958ji:286-90 error of cyanide or vitamin B12 metabolism2l. 19 Freeman AG, Heaton JM. The aetiology ofretrobulbar Looking to the future, it is possible that other neuritis in Addisonian pernicious anaemia. Lancet cyanide antagonists, with the obvious advantage 'of 196i1i:908-11 oral administration, will becbme available. In this 20 Osuntokum BO, Osuntokun 0. Tropical amblyopia. Am event, all patients with tobacco and nutritional J Ophthalmol 1971;72:708-16 amblyopia and optic neuropathy, myelopathy or 21 Freenan AG. Chronic cyanide intoxication. BZM neuropathy ofobscure origin, should be very carefully 1981;282:1321 screened for evidence ofvitamin B12 deficiency before 22 Freeman AG. Food and cyanide. BMJ 1972ii:49 embarking on any therapy other than intramuscular hydroxocobalamin22. (Accepted 18 November- 1991).
Recommended publications
  • Methionine Synthase Supports Tumor Tetrahydrofolate Pools
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.05.284521; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Methionine synthase supports tumor tetrahydrofolate pools Joshua Z. Wang1,2,#, Jonathan M. Ghergurovich1,3,#, Lifeng Yang1,2, and Joshua D. Rabinowitz1,2,* 1 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA 2 Department of Chemistry, Princeton University, Princeton, New Jersey, USA 3 Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA # These authors contributed equally to this work. *Corresponding author: Joshua Rabinowitz Department of Chemistry and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Rd, Princeton, NJ 08544, USA Phone: (609) 258-8985; e-mail: [email protected] Conflict of Interest Disclosure: J.D.R. is a paid advisor and stockholder in Kadmon Pharmaceuticals, L.E.A.F. Pharmaceuticals, and Rafael Pharmaceuticals; a paid consultant of Pfizer; a founder, director, and stockholder of Farber Partners and Serien Therapeutics. JDR and JMG are inventors of patents in the area of folate metabolism held by Princeton University. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.05.284521; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Mammalian cells require activated folates to generate nucleotides for growth and division. The most abundant circulating folate species is 5-methyl tetrahydrofolate (5-methyl- THF), which is used to synthesize methionine from homocysteine via the cobalamin-dependent enzyme methionine synthase (MTR).
    [Show full text]
  • The Vitamin B12 Coenzyme
    THE VITAMIN B12 COENZYME D. DoLPHIN, A. W. JoHNSON, R. RoDRIGO and N. SHAW Department of Chemistry, University of Nottingham, U.K. INTRODUCTION In 19•58 Barker and his associatesl-3 recognized a new coenzyme which controlled the conversion of glutamate into ß-methylaspartate by Clostridium tetanomorpkim. The coenzyme was shown4 to be related to !f;-vitamin B12, i.e. contair ing an adenine nucleotide grouping in place of the 5,6-dimethyl­ benziminawle nucleotide of vitamin B12, although similar coenzymes con­ taining btnziminazole or 5,6-dimethylbenziminazole were produced by growing C. tetanomorphum in the presence of the a ppropriate base5. Other variations of the nucleotide base have been achieved using Propionibacterium arabinosum in the presence of other purines and benziminazoles6• The pres­ ence of;:he coenzymes in a wide variety of micro-organisms such as several species of Actinomycetes including Streptomyces olivaceus and S. griseus has been dem( mstrated by the glutamate isomerase assay7 or by isolation. I t appears thü Vitamin B12 and its analogues are always biosynthesized in the form of their coenzymes. Preliminary physical and chemical studies sug­ gested that in the 5,6-dimethylbenzirninazolyl cobamide coenzyme the cyanide gr )up of vitamin B12, cyanocobalamin, was replaced by an adenine nucleoside':, 5, 8 and the determination9 of the complete structure (I; R = 5'-de·)xyadenosyl) of the coenzyme by X-ray analysis revealed the existence c f an essentially covalent bond between the cobalt atom and the S'.. carbon üom of the additional 5'-deoxyadenosine group. The molecule Me CH 2• CO· NH2 In the vitamin 8 12 coenzyme R =5' - deoxyadenosyl = Me Me 539 D.
    [Show full text]
  • Folic Acid, Pyridoxine, and Cyanocobalamin Combination
    ORIGINAL INVESTIGATION Folic Acid, Pyridoxine, and Cyanocobalamin Combination Treatment and Age-Related Macular Degeneration in Women The Women’s Antioxidant and Folic Acid Cardiovascular Study William G. Christen, ScD; Robert J. Glynn, ScD; Emily Y. Chew, MD; Christine M. Albert, MD; JoAnn E. Manson, MD Background: Observational epidemiologic studies indi- and visually significant AMD, defined as confirmed in- cate a direct association between homocysteine concentra- cident AMD with visual acuity of 20/30 or worse attrib- tion in the blood and the risk of age-related macular degen- utable to this condition. eration (AMD), but randomized trial data to examine the effect of therapy to lower homocysteine levels in AMD are Results:Afteranaverageof7.3yearsoftreatmentandfollow- lacking. Our objective was to examine the incidence of AMD up, there were 55 cases of AMD in the combination treat- in a trial of combined folic acid, pyridoxine hydrochloride ment group and 82 in the placebo group (relative risk, 0.66; (vitamin B6), and cyanocobalamin (vitamin B12) therapy. 95% confidence interval, 0.47-0.93 [P=.02]). For visually significant AMD, there were 26 cases in the combination Methods: We conducted a randomized, double-blind, treatment group and 44 in the placebo group (relative risk, placebo-controlled trial including 5442 female health care 0.59; 95% confidence interval, 0.36-0.95 [P=.03]). professionals 40 years or older with preexisting cardio- vascular disease or 3 or more cardiovascular disease risk Conclusions: These randomized trial data from a large factors. A total of 5205 of these women did not have a cohort of women at high risk of cardiovascular disease diagnosis of AMD at baseline and were included in this indicate that daily supplementation with folic acid, pyri- analysis.
    [Show full text]
  • IV-23 N. Hydroxocobalamin (Cyanokit®)
    N. Hydroxocobalamin (Cyanokit®) I. Classification •Cyanide antidote II. Actions •Binds cyanide ions with more affinity than hemoglobin molecule •Cyanide ion and hydroxocobalamin form cyanocobalamin (Vitamin B12) which is then excreted in the urine. III. Indications •Known or suspected cyanide poisoning - patients at high risk (industrial accidents, fire victims with smoke inhalation, known overdose, etc) with one more more of the following symptoms: - Altered mental status, confusion, seizures, coma - Headache - Chest pain or tightness - Shortness of breath, bradypnea, tachypnea - Hypertension (early), hypotension (late), cardiovascular collapse - Nausea, vomiting - Cardiac arrest - Mydriasis (dilated pupils) IV. Contraindications •Known allergic reaction to hydroxocobalamin or cyanocobalamin V. Adverse effects A. Cardiovascular •Ventricular extrasystoles •Tachycardia •Transient hypertension B. Neurological •Memory impairment •Dizziness •Restlessness C. Respiratory •Dyspnea •Dry Throat •Throat tightness D. Gastrointestinal •Abdominal discomfort •Dysphagia •Vomiting, diarrhea •Hematochezia E. General •Allergic reaction, pruritis, anaphylaxis •Hot flush SUBJECT : PATIENT CARE GUIDELINES AND STANDING ORDERS FOR BLS AND ALS UNITS REFERENCE NO. III-01 PUBLICATION : 1/11/21 IV-23 VI. Administration A. Do not administer hydroxocobalamin through the same IV site/set as the following medications: dopamine, fentanyl, dobutamine, diazepam, nitroglycerin, pentobarbital, propofol, thiopental, sodium thiosulfate, sodium nitrite and ascorbic acid. You must start a second IV to administer hydroxocobalamin in patient’s receiving these medications. B. Adult: •5 grams IV/IO over 15 minutes (Stocked as single 5gm bottle, or two 2.5 gm bottles) -Single 5 gm Bottle - Reconstituted with 200 ml Normal Saline. -Two 2.5 gm Bottles, give over 7.5 minutes each. - Each vial reconstituted with 100 ml Normal Saline. C. Pediatric •100 mg/kg IV/IO of hydroxocobalamin (reconstituted with Normal Saline the same as adults) over 15 minutes.
    [Show full text]
  • The Potential Protective Role of Vitamin K in Diabetic Neuropathy
    VITAMINS The potential protective role of vitamin K in diabetic neuropathy DILIP MEHTA Viridis Biopharma 6/10 Jogani Industrial Complex ew cases of diabetes are symptomatic pain relief (3-5). V. N. Purav Marg, Chunabhatti increasing worldwide at a rapid Mumbai 400022, India The etiopathology of peripheral pace, with the total number of neuropathy is poorly understood and many [email protected] people with diabetes was projected factors, including dietary deficiencies, may www.viridisbiopharma.com Nto rise from 171 million in 2000 to 366 million contribute to the clinical manifestation of the in 2030 – an increase of nearly 200 million in condition. Deficiency of vitamin B12 (also only three decades. There are more cases of known as cobalamin), which results in a lack diabetes in women and urban populations, of a related compound, methylcobalamin, is with diabetes in developing countries projected manifested by megaloblastic anemia, and to double in the coming years (1). has been associated with significant Based on reports from the Centers for neurological pathology, especially peripheral Disease Control and Prevention, type 2 neuropathy (6-8). Vitamin B12 is also diabetes dult onset diabetes affects associated with the onset of diabetic approximately 9.3% of the general neuropathy. In patients with diabetic population in the United States in contrast to neuropathy, vitamin B12 deficiency may be 25.9% among those 65 years or older (2). aggravated by the use of antidiabetic agents Diabetes mellitus accounts for 90% of the such as metformin (9-11). Even short-term cases of diabetes patients (3,4). treatment with metformin causes a decrease The prevalence of type 2 diabetes in serum cobalamin, folic acid and an increases with age, higher then 25 body increase in homocysteine, which leads to mass index and the presence of the disease peripheral neuropathy in patients with in family history.
    [Show full text]
  • Guidelines on Food Fortification with Micronutrients
    GUIDELINES ON FOOD FORTIFICATION FORTIFICATION FOOD ON GUIDELINES Interest in micronutrient malnutrition has increased greatly over the last few MICRONUTRIENTS WITH years. One of the main reasons is the realization that micronutrient malnutrition contributes substantially to the global burden of disease. Furthermore, although micronutrient malnutrition is more frequent and severe in the developing world and among disadvantaged populations, it also represents a public health problem in some industrialized countries. Measures to correct micronutrient deficiencies aim at ensuring consumption of a balanced diet that is adequate in every nutrient. Unfortunately, this is far from being achieved everywhere since it requires universal access to adequate food and appropriate dietary habits. Food fortification has the dual advantage of being able to deliver nutrients to large segments of the population without requiring radical changes in food consumption patterns. Drawing on several recent high quality publications and programme experience on the subject, information on food fortification has been critically analysed and then translated into scientifically sound guidelines for application in the field. The main purpose of these guidelines is to assist countries in the design and implementation of appropriate food fortification programmes. They are intended to be a resource for governments and agencies that are currently implementing or considering food fortification, and a source of information for scientists, technologists and the food industry. The guidelines are written from a nutrition and public health perspective, to provide practical guidance on how food fortification should be implemented, monitored and evaluated. They are primarily intended for nutrition-related public health programme managers, but should also be useful to all those working to control micronutrient malnutrition, including the food industry.
    [Show full text]
  • Potential Benefits of Methylcobalamin: a Review
    Open Access Austin Journal of Pharmacology and Therapeutics Review Article Potential Benefits of Methylcobalamin: A Review Gupta JK* and Qureshi Shaiba Sana Department of Pharmacology, GLA University Mathura, Abstract India Methylcobalamin is an active form of vitamin B12 that helps in synthesis *Corresponding author: Jeetendra Kumar Gupta, of methionine and S-adenosylmethionine. It is required for integrity of myelin, Department of Pharmacology, Institute of Pharmaceutical neuronal function, proper red blood cell formation and DNA synthesis. The largest Research, GLA University Mathura, India group of vitamin B12 deficiency is found in typical vegetarians all over the world, which can be alleviated with its analogue Methylcobalamin. It is a beneficial Received: August 17, 2015; Accepted: September 30, drug to most of the common disorders like cardiovascular disorders, diabetes, 2015; Published: October 08, 2015 anemia, hyperhomocysteinemia and degenerative disorders. Methylcobalamin helps in the synthesis of neuronal lipids, regeneration of axonal nerves and has neuroprotective activity, which promote neurons to function in proper way and thus improves Alzheimer disease, Parkinsonism, Dementia and neuropathic syndromes. It is an approved treatment for peripheral neuropathy. Keywords: Mecobalamin; Neuropathy; Anemia; Nootropic; Dietary supplement Abbreviations essential for cell growth and replication. Sometimes the liver cannot convert cyanocobalamin into adequate amount of methylcobalamin SAMe: S-Adenosyl Methionine; ERK: Extracellular Signal- needed for proper neuronal functioning. Through enhanced Regulated Kinases; PKB: Protein Kinase B; B-globulin: Beta Globulin; methylation, it exerts its nerve cell protective effect and accelerates ENFD: Epidermal Nerve Fiber Density; DPN: Diabetic Peripheral its growth. A lot of energy is required for cyanocobalamin to remove Neuropathy; NSAIDs: Non Steroidal Anti Inflammatory Drugs; THF: its cyanide and replaces it with methyl group [3].
    [Show full text]
  • Vitamin B12 Vitamin D Iodine and Selenium
    Frequently Asked Questions for VEG 1 General 1. Why has VEG 1 been developed? VEG 1 was developed to provide a convenient way of avoiding the most common weak points in a varied vegan diet: vitamin B12, iodine, vitamin D and selenium. Vitamin B12 Vitamin B12 is almost entirely absent from modern plant foods which are not contaminated by bacteria and insects. Even unwashed, organically grown plants do not contain a significant amount of B12. Vegans often have intakes of vitamin B12 well below recommended intakes. Low vitamin B12 intake by vegans routinely leads to reduced activity of some important enzymes and increased levels of homocysteine and methylmalonic acid (MMA). Even moderately elevated homocysteine is associated with increased risk of death, depression, stroke, dementia and birth defects, though it remains unclear how many of these associations reflect true cause and effect. Vegans who do not get vitamin B12 from fortified food or supplements are at increased risk of clinical deficiency symptoms such as anaemia and nervous system damage. The most common early symptoms of vitamin B12 deficiency are tiredness (from anaemia), numbness and tingling (from nervous system damage) and sore tongue. VEG 1 is designed to provide sufficient absorbed vitamin B12 to match national and international recommended intakes. It is designed to be chewed as this increases the reliability of vitamin B12 absorption by dispersing and dissolving the tablet. Vitamin D In the winter – whenever our shadows at midday are more than twice as long as we are – our skin cannot produce vitamin D effectively and even small dietary intakes may become important to avoid deficiency.
    [Show full text]
  • Vitamin and Mineral Requirements in Human Nutrition
    P000i-00xx 3/12/05 8:54 PM Page i Vitamin and mineral requirements in human nutrition Second edition VITPR 3/12/05 16:50 Page ii WHO Library Cataloguing-in-Publication Data Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements (1998 : Bangkok, Thailand). Vitamin and mineral requirements in human nutrition : report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21–30 September 1998. 1.Vitamins — standards 2.Micronutrients — standards 3.Trace elements — standards 4.Deficiency diseases — diet therapy 5.Nutritional requirements I.Title. ISBN 92 4 154612 3 (LC/NLM Classification: QU 145) © World Health Organization and Food and Agriculture Organization of the United Nations 2004 All rights reserved. Publications of the World Health Organization can be obtained from Market- ing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permis- sion to reproduce or translate WHO publications — whether for sale or for noncommercial distri- bution — should be addressed to Publications, at the above address (fax: +41 22 791 4806; e-mail: [email protected]), or to Chief, Publishing and Multimedia Service, Information Division, Food and Agriculture Organization of the United Nations, 00100 Rome, Italy. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization and the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • The Efficacy and Safety of Intramuscular Injections Of
    Original Article Singapore Med J 2011; 52(12) : 868 The efficacy and safety of intramuscular injections of methylcobalamin in patients with chronic nonspecific low back pain: a randomised controlled trial Chiu C K, Low T H, Tey Y S, Singh V A, Shong H K ABSTRACT both singly or in combination with other forms Introduction:Chronic, nonspecific low back of treatment. pain is a difficult ailment to treat and poses an economic burden in terms of medical Keywords: methylcobalamin, nonspecific low expenses and productivity loss. The aim of back pain, vitamin B12 this study was to determine the efficacy and Singapore Med J 2011; 52(12): 868-873 safety of intramuscular metylcobalamin in the treatment of chronic nonspecific low back INTRODUCTION pain. Low back pain (LBP) affects a substantial proportion of the population. Almost every person will encounter an Methods: This was a double-blinded, episode of back pain at some point in one’s life. Back randomised, controlled experimental study. pain does not discriminate based on gender, age, race or 60 patients were assigned to either the culture. It disables the working adult from performing his methylcobalamin group or the placebo group. duties and paralyses the society due to the cost incurred The former received intramuscular injections in terms of treatment and productivity loss. In 1988, a of 500 mcg parenteral methylcobalamin in 1 survey was conducted in a semirural area in Malaysia. Department of ml solution three times a week for two weeks, Orthopaedic A total of 2,594 individuals from a multi-racial (Malay, Surgery, and the placebo group received 1 ml normal Chinese, Indian) community were interviewed.
    [Show full text]
  • Leucine Improved Growth Performance, Muscle Growth, And
    cells Article Leucine Improved Growth Performance, Muscle Growth, and Muscle Protein Deposition Through AKT/TOR and AKT/FOXO3a Signaling Pathways in Hybrid Catfish Pelteobagrus vachelli × Leiocassis longirostris 1, 1, 1, 2,3 2,3 2,3 Ye Zhao y, Jin-Yang Li y, Qin Jiang y, Xiao-Qiu Zhou , Lin Feng , Yang Liu , Wei-Dan Jiang 2,3, Pei Wu 2,3, Jian Zhou 4, Juan Zhao 2 and Jun Jiang 1,3,* 1 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (Y.Z.); [email protected] (J.-Y.L.); [email protected] (Q.J.) 2 Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; fi[email protected] (X.-Q.Z.); [email protected] (L.F.); [email protected] (Y.L.); [email protected] (W.-D.J.); [email protected] (P.W.); [email protected] (J.Z.) 3 Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China 4 Fisheries Institute of Sichuan Academy of Agricultural Science, Chengdu 611731, China; [email protected] * Correspondence: fi[email protected]; Tel.: +86-28-8629-1133 These authors contributed equally to this work. y Received: 25 October 2019; Accepted: 29 January 2020; Published: 30 January 2020 Abstract: (1) Background: l-leucine (Leu) plays a positive role in regulating protein turnover in skeletal muscle in mammal. However, the molecular mechanism for the effects of Leu on muscle growth and protein deposition is not clearly demonstrated in fish. This study investigated the effects of dietary Leu on growth performance and muscle growth, protein synthesis, and degradation-related signaling pathways of hybrid catfish (Pelteobagrus vachelli Leiocassis longirostris ).
    [Show full text]
  • Hydroxocobalamin for Injection) for Intravenous Infusion Alternative Therapies, If Available, in Patients with Known Anaphylactic Initial U.S
    HIGHLIGHTS OF PRESCRIBING INFORMATION -------------------------------CONTRAINDICATIONS----------------------------- These highlights do not include all the information needed to use None (4) CYANOKIT safely and effectively. See full prescribing information for CYANOKIT. ------------------------WARNINGS AND PRECAUTIONS----------------------- Risk of Anaphylaxis and Other Hypersensitivity Reactions: Consider CYANOKIT® (hydroxocobalamin for injection) for intravenous infusion alternative therapies, if available, in patients with known anaphylactic Initial U.S. Approval: 1975 reactions to hydroxocobalamin or cyanocobalamin. (5.2) Risk of Renal Injury: Acute renal failure with acute tubular necrosis, renal ----------------------------RECENT MAJOR CHANGES-------------------------- impairment and urine calcium oxalate crystals have been reported Warnings and Precautions, Risk of Renal Injury (5.3) 12/2018 following CYANOKIT therapy. Monitor renal function for 7 days Warnings and Precautions, Use of Blood Cyanide Assay (5.7) 12/2018 following CYANOKIT therapy. (5.3) Risk of Increased Blood Pressure: Substantial increases in blood pressure ----------------------------INDICATIONS AND USAGE--------------------------- may occur following CYANOKIT therapy. Monitor blood pressure during CYANOKIT is indicated for the treatment of known or suspected cyanide treatment. (5.4) poisoning. (1) -------------------------------ADVERSE REACTIONS------------------------------ ------------------------DOSAGE AND ADMINISTRATION---------------------- Most common
    [Show full text]