| Ocean Life | Vol. 1 | No. 2 | December 2017| | E-ISSN: 2580

Total Page:16

File Type:pdf, Size:1020Kb

| Ocean Life | Vol. 1 | No. 2 | December 2017| | E-ISSN: 2580 | Ocean Life | vol. 1 | no. 2 | December 2017| | E-ISSN: 2580-4529 | Essi HavulaEssi photoby Nudibrach Bunakenin | Ocean Life | vol. 1 | no. 1 | April 2017 | ONLINE http://smujo.id/ol e-ISSN 2580-4529 PUBLISHER Society for Indonesian Biodiversity CO-PUBLISHER Universitas Papua, Manokwari, Indonesia OFFICE ADDRESS Research Center for Pacific Marine Resources, Institute for Research and Community, Universitas Papua. Old Rectorat Complex Block III No. 7-8, Jl. Gunung Salju, Amban, Manokwari 98314, Papua Barat, Indonesia Tel./Fax.: +62-986-212156/211455, email: [email protected], [email protected], [email protected] PERIOD OF ISSUANCE June, December EDITOR-IN-CHIEF Ricardo F. Tapilatu – Universitas Papua, Manokwari, Indonesia EDITORIAL BOARD Abdolali Movahedinia – Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran Abdul Hamid Toha – Universitas Papua, Manokwari, Indonesia Abdul Malik – Universitas Negeri Makassar, Makassar, Indonesia Aida Sartimbul – Universitas Brawijaya, Malang, Indonesia Allison Green – The Nature Conservancy, Australia Analuddin – Universitas Halu Oleo, Kendari, Indonesia Daisy Wowor – Research Center for Biology, Indonesian Institute of Sciences, Cibinong, Indonesia Eugenius A. Renjaan – Tual State Fisheries Polytechnic, Tual, Indonesia Gerald Allen – Conservation International, Australia Gino V. Limmon – Universitas Pattimura, Ambon, Indonesia Jacobus W. Mosse – Universitas Pattimura, Ambon, Indonesia Kadarusman – Sorong Marine and Fishery Polytechnic, Sorong, Indonesia Leontine E. Becking – Wageningen University & Research, The Netherlands Mohammad Hasan Gerami – Gonbad Kavous Universiy, Gonbad-e Kavous, Iran Nugroho D. Hananto – Research Center for Geotechnology, Indonesian Institute of Sciences, Bandung, Indonesia Ofri Johan – Research and Development Institute for Ornamental Fish Culture Depok, Indonesia Pramaditya Wicaksono – Universita Gadjah Mada, Yogyakarta, Indonesia Romanus Edy Prabowo – Jenderal Soedirman University, Purwokerto, Banyumas, Indonesia Rouhollah Zare – Chabahar Maritime University, Chabahar, Iran Sangeeta Mangubhai – Wildlife Conservation Society, Fiji Country Program, Suva, Fiji Suchana A. Chavanich – Chulalongkorn University, Bangkok, Thailand Thane R. Wibbels – University of Alabama at Birmingham, Alabama, USA Widodo Pranowo – Marine Research Center, Indonesian Ministry of Marine Affairs & Fisheries, Jakarta, Indonesia Yosmina H. Tapilatu – Center for Deep Sea Research, Indonesian Institute of Sciences, Ambon, Indonesia Society for Indonesian Universitas Papua, Biodiversity Manokwari, Indonesia Published by Smujo International for The Society for Indonesian Biodiversity and Universitas Papua Manokwari, Indonesia OCEAN LIFE Volume 1, Number 2, December 2017 E-ISSN: 2580-4529 Pages: 43-48 DOI: 10.13057/oceanlife/o010201 Tide pools diversity in Bojonglarang-Jayanti Nature Reserve, West Java, Indonesia TRI DEWI KUSUMANINGRUM PRIBADI♥, AUFA AULIA KANZA 1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran . Jl. Raya Bandung-Sumedang km.21 Jatinangor 45363, West Java, Indonesia. Tel./Fax. +62-22-7796412, ♥email: [email protected] Manuscript received: 1 July 2016. Revision accepted: 30 June 2017. Abstract. Pribadi TWK, Kanza AA. 2017. Tide pools diversity in Bojonglarang-Jayanti Nature Reserve, West Java, Indonesia. Ocean Life 1: 43-48. Tide pools are micro-ecosystem in the intertidal zone, which have unique characteristics such as extreme water temperature range. Organisms living in it can survive by adapting to these extreme conditions. Study on community structure of macroinvertebrate in tide pools and along with the influencing environmental conditions has been carried out to observe species that can survive in such extreme conditions. Quantitatively, descriptive study on biotic and abiotic parameters was done by observing the tide pools, which passed 500-meter transect line parallel to the shoreline. Analyses of the biotic parameters included varied species, dominant species, species richness, species diversity index, dominance index, important value index, and macroalgal coverage. The observed abiotic parameters comprised water and air temperature, light intensities, conductivity, salinity, depth of tide pools in low tide conditions, extensive of tide pools, pH, and DO (Dissolved Oxygen). Results in physical parameter measurements showed that the water temperature, light intensity, and conductivity were at the high category, while air temperature, salinity, and depth of water were in the normal category. The results showed 31 species of macroinvertebrate of 21 families and 6 classes, with the highest relative abundance on Ophionereis dubia by 0.56. Macroalgal was dominated by Sargassum polycystum with 7.62% coverage. Species Diversity Index of macroinvertebrate was 2.53, with Dominance Index 0.85. These indexes indicated the dominance of particular macroinvertebrate species, which have the tendency to be adaptive to extreme water temperature range. Keywords: Batu Kukumbung, diversity, tide pools. INTRODUCTION in tide pools in terms of biochemistry, ecophysiology, morphology, and the population level (Celis-Plá et al. As a micro-ecosystem in the intertidal zone, tide pool is 2015). The abundance of macroinvertebrate, which an interesting habitat due to its high biodiversity and dense relatively settled at the bottom of the water column populations in a relatively small area. It is specific especially in intertidal zone, is very important in microecocosystems in the rocky intertidal zone and a correlation to the food chain. Ecological excessive pressure natural habitat for organisms with wide environmental can reduce the abundance of these organisms therefore it range, including temperature with the range of up to 15oC can disrupt the ecosystems as a whole. (King, 2009). Tidal cycles cause living organisms to be Macroinvertebrate community structure in able to adapt to environmental conditions with extreme microecosystem tide pools at the coastline of Batu ranges like temperature, light intensity, and also the Kukumbung needs to be studied due to the ecological nutrients concentration. functions of the coastline as part of the Nature Reserve There has been growing concern about the effect of Bojonglarang-Jayanti. Therefore, studying the influence to global warming on species distribution, and former studies determine the community structure inside tide pools and have suggested climate-driven species distribution shift environmental conditions is needed to give further both in terrestrial and marine (Hawkins et al. 2009). comprehension to the adaptability of species to However, few studies have focused on the mechanical environmental pressure. processes involved in species range shift. It remains largely unexplored, thereby limiting the capacity of ecologists to predict ecological alteration in terms of species MATERIALS AND METHODS adaptability. The composition, abundance, and distribution of Study area macroinvertebrate can be influenced by water quality. The The location of the study was in Batu Kukumbung disruption to the environment associated with climate coastline, Bojonglarang-Jayanti Nature Reserve, West Java, change (e.g., coastal eutrophication, an increase in UV Indonesia (107o24’E; 7o30’S) (Figure 1). light) can affect Cecil organisms such as macroinvertebrate 44 OCEAN LIFE 1 (2): 43-48, December 2017 Nature reserve Settlements Field Dry field Bushes Rice fiels Source: Figure 1. Location of the study site is in Batu Kukumbung coastline ( ), Bojonglarang-Jayanti Nature Reserve, West Java, Indonesia Procedures using Shannon-Wiener’s formula (1949). Index of Data were collected for 10 days in May 2015. Sampling dominance was expressed by Simpson’s Index (Odum, was done during low tide within a specified time of the 1971), therefore it was executed by calculating Simpson’s tidal prediction from Geospatial Information Agency. Diversity Index (Simpson, 1949). Collection of samples used survey methods by setting 500- The macroalgal coverage was measured using formula meter long transects parallel to the shoreline. by Saito and Atobe (1970) in English et al. (1994) which Measurements were done for the abiotic and biotic has already been modified, with plot transect of 100x100 parameters at each tide pool that passed by the transect cm2 and grid of 10x10 cm2. line. Abiotic parameters included extent and depth of tide pool, air and water temperature, light intensities (Lutron LX100, Taiwan) pH, DO (Dissolved Oxygen), salinity, and RESULTS AND DISCUSSION conductivity (Eutech Cyberscan, Singapore) while biotic parameters were macroinvertebrate and other organisms in Abiotic parameters the tide pools. This study also measured the abiotic factors in the tide The macroinvertebrate data were taken with survey pools during observation to have good comprehension of sampling method which was modified from Welch (1948) the interaction of abiotic and biotic factors. (Table 1). 2 2 with a 1x1 m plot transect with the grid of 10x10 cm . Samples taken for identification were stored in a labeled Table 1. The abiotic parameter of tide pools in Batu Kukumbung plastic bag and given 4% formalin. Identification was done coastline, Bojonglarang-Jayanti Nature Reserve, West Java, in the laboratory using identification book of Dharma Indonesia (2005). Parameter Unit Range Value Data analyses Extent of Tidepool m2 0.84 – 121.3 Index of species richness was measured using the Water temperature °C 20.5 – 39.5 formula created
Recommended publications
  • Risk Analysis: Vessel Biofouling
    Risk Analysis: Vessel Biofouling ISBN 978-0-478-37548-0 (print) ISBN 978-0-478-37549-7 (online) 15 February 2011 Risk Analysis: Vessel Biofouling 15 February 2011 Approved for general release Christine Reed Manager, Risk Analysis Ministry of Agriculture and Forestry Requests for further copies should be directed to: Publication Adviser MAF Information Bureau P O Box 2526 WELLINGTON Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the MAF website at http://www.biosecurity.govt.nz/regs/imports/ihs/risk © Crown Copyright - Ministry of Agriculture and Forestry i Contributors to this risk analysis 1. Primary author/s Dr Andrew Bell Senior Adviser MAF Biosecurity New Zealand Risk Analysis, Marine Wellington Simon Phillips Adviser MAF Biosecurity New Zealand Risk Analysis, Marine Wellington Dr Eugene Georgiades Senior Adviser MAF Biosecurity New Zealand Risk Analysis, Marine Wellington Dr Daniel Kluza Senior Adviser MAF Biosecurity New Zealand Risk Analysis, Marine Wellington 2. Secondary contributors Dr Christopher Denny Adviser MAF Biosecurity New Zealand Border Standards Wellington 3. External peer review John Lewis Principal Marine Consultant ES Link Services Pty Ltd Melbourne, Victoria, Australia Richard Piola Senior Scientist Cawthron Institute Nelson, New Zealand The draft risk analysis has also been internally reviewed by: Liz Jones (Border Standards); Justin McDonald (Post-Clearance); Melanie Newfield (Risk Analysis); Howard Pharo (Risk Analysis); Sandy Toy (Risk Analysis). The contribution of all the reviewers is gratefully acknowledged. ii Contents Page Executive summary 1 Definitions 7 1. Introduction 8 1.1. Background 8 1.2. Scope 13 1.3. References 14 2. Methodology 19 2.1.
    [Show full text]
  • ABSTRACT Title of Dissertation: PATTERNS IN
    ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range.
    [Show full text]
  • Florida Keys Species List
    FKNMS Species List A B C D E F G H I J K L M N O P Q R S T 1 Marine and Terrestrial Species of the Florida Keys 2 Phylum Subphylum Class Subclass Order Suborder Infraorder Superfamily Family Scientific Name Common Name Notes 3 1 Porifera (Sponges) Demospongia Dictyoceratida Spongiidae Euryspongia rosea species from G.P. Schmahl, BNP survey 4 2 Fasciospongia cerebriformis species from G.P. Schmahl, BNP survey 5 3 Hippospongia gossypina Velvet sponge 6 4 Hippospongia lachne Sheepswool sponge 7 5 Oligoceras violacea Tortugas survey, Wheaton list 8 6 Spongia barbara Yellow sponge 9 7 Spongia graminea Glove sponge 10 8 Spongia obscura Grass sponge 11 9 Spongia sterea Wire sponge 12 10 Irciniidae Ircinia campana Vase sponge 13 11 Ircinia felix Stinker sponge 14 12 Ircinia cf. Ramosa species from G.P. Schmahl, BNP survey 15 13 Ircinia strobilina Black-ball sponge 16 14 Smenospongia aurea species from G.P. Schmahl, BNP survey, Tortugas survey, Wheaton list 17 15 Thorecta horridus recorded from Keys by Wiedenmayer 18 16 Dendroceratida Dysideidae Dysidea etheria species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 19 17 Dysidea fragilis species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 20 18 Dysidea janiae species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 21 19 Dysidea variabilis species from G.P. Schmahl, BNP survey 22 20 Verongida Druinellidae Pseudoceratina crassa Branching tube sponge 23 21 Aplysinidae Aplysina archeri species from G.P. Schmahl, BNP survey 24 22 Aplysina cauliformis Row pore rope sponge 25 23 Aplysina fistularis Yellow tube sponge 26 24 Aplysina lacunosa 27 25 Verongula rigida Pitted sponge 28 26 Darwinellidae Aplysilla sulfurea species from G.P.
    [Show full text]
  • Appendix C-3 James Price Point Intertidal Survey, Browse LNG Development WEL No
    Browse LNG Precinct ©WOODSIDE Browse Liquefied Natural Gas Precinct Strategic Assessment Report (Draft for Public Review) December 2010 Appendix C-3 James Price Point Intertidal Survey, Browse LNG Development WEL No. JA0006RH0086 Rev 2 Browse Kimberley LNG DFS10 – Intertidal Survey JAMES PRICE POINT INTERTIDAL SURVEY Rev 5 26 July 2010 Browse Kimberley LNG DFS10 – Intertidal Survey JAMES PRICE POINT INTERTIDAL SURVEY Rev 5 26 July 2010 Sinclair Knight Merz ABN 37 001 024 095 11th Floor, Durack Centre 263 Adelaide Terrace PO Box H615 Perth WA 6001 Australia Tel: +61 8 9268 4400 Fax: +61 8 9268 4488 Web: www.skmconsulting.com COPYRIGHT: The concepts and information contained in this document are the property of Sinclair Knight Merz Pty Ltd. Use or copying of this document in whole or in part without the written permission of Sinclair Knight Merz constitutes an infringement of copyright. The SKM logo trade mark is a registered trade mark of Sinclair Knight Merz Pty Ltd. James Price Point Intertidal Survey Limitation Statement The sole purpose of this report and the associated services performed by the Consolidated Environmental Services (CES) is to provide the findings of an intertidal survey conducted at James Price Point, in accordance with the scope of services set out in the contract between CES and the Client (Woodside Energy Limited; WEL). That scope of services, as described in this report, was developed with the Client. CES derived information in this report from that available publically and that provided by the Client, and facilitated by CES at the time or times outlined in this report.
    [Show full text]
  • BULLETIN (Mailed to Financial Members of the Society Within Victoria) Price 50¢ Conus Marmoreus EDITOR: Linne EDITOR Val Cram
    THE MALACOLOGICAL SOCIETY OF AUSTRALASIA Inc. VICTORIAN BRANCH BULLETIN (Mailed to financial members of the Society within Victoria) Price 50¢ Conus marmoreus EDITOR: Linne EDITOR Val Cram. Tel. No. 9792 9163 ADDRESS: 6 Southdean Street, Dandenong, Vic. 3175 EMAIL: [email protected] VIC. BR. BULL. NO. 258 APRIL/MAY 2011 NOTICE OF MEETING The next meeting of the Branch will be held on the 18th April at the Melbourne Camera Club Building, cnr. Dorcas & Ferrars Sts South Melbourne at 8pm. This will be a members night unless otherwise advised. The May meeting will be on the 16th . Members are encouraged to bring along presentations or just images on disc or USB as we now have a lap top and data projector of our own. Raffles & Supper as usual. Articles are urgent required to enable us to publish at least 6 pages in future bulletins. Secretary Michael Lyons Tel. No. 9894 1526 Chairman Fred Bunyard Tel. No. 9439 2147 Printed courtesy of Steve Herberts Office, Parliamentary Member for Eltham VIC. BR. BULL. NO. 258 2. APRIL/MAY 2011 An unusual colour form of Ischnochiton (Ischnoradsia) australis (Sowerby, 1840) (Polyplacophora: Ischnochitonidae). At the ‘MALSOC’ Victorian Branch meeting on Monday 21 March, 2011, Michael Lyons brought in a light bluish chiton found at Kilcunda, Victoria for display and query as to its identity. Except for its lighter colour, it did not look very dissimilar to Edgar’s (2008: 262) illustration of the New Zealand green chiton, Chiton glaucus Gray, 1828, a species that has been introduced into south-eastern Tasmania but so far not recorded from the Australian mainland.
    [Show full text]
  • 228100 N, Tomando El Camino De Los Conucos Hasta El Entronque
    228100 N, tomando el camino de los Conucos hasta el entronque de Zapato en 101700 E, 231400 N, siguiendo por el camino de Zapato hasta el final en 100700 E, 231600 N, girando al N hasta el estero de Santa Catalina por el cual sale al mar en 100300 E, 234950 N, se continúa por la línea de costa hasta el nacimiento del estero Los Morros en 096800 E, 234900 N, el cual se dirige hasta el punto N de Barra Sorda en 094300 E, 235400 N, por la orilla NO de esta barra en su límite con los manglares hasta cruzar el camino de Faro Roncali al estero Palmarito en 091900 E, 231900 N, en dirección S a 150 m del terraplén del Sur hasta el Pantano de Caleta Larga en 092800 E, 229950 N, donde bordea el Pantano hasta 092600 E, 229850 N, siguiendo la línea recta virtual hasta 090800 E, 228750 N, punto inicial de este derrotero. • A los efectos de controlar adecuadamente las acciones que puedan repercutir negativamente sobre esta área protegida se establece una Zona de Amortiguamiento que comprende los 500 metros a partir del límite externo del área y que se indica en el Anexo Cartográfico. Anexo 3 Listado de especies de la flora Flora terrestre Flora marina División RHODOPHYTA Orden CORALLINALES Familia CORALLINACEA 1. Amphiroa beauvoisii Lamouroux 2. Amphiroa fragilissima (Linnaeus) Lamouroux 3. Amphiroa rigida Lamouroux 4. Haliptilon cubense (Montagne ex Kützing) Garbary et Johansen 5. Haliptilon subulatum (Ellis et Solander) Johansen 6. Hydrolithon farinosum (Lamouroux) Penrose et Chamberlain 7. Jania adhaerens Lamouroux 8.
    [Show full text]
  • Johannes Thiele and His Contributions to Zoology. Part 2. Genus-Group Names (Mollusca)
    NEMOURIA Occasional Papers of the Delaware Museum of Natural History NUMBER 39 SEPTEMBER 30, 1991 JOHANNES THIELE AND HIS CONTRIBUTIONS TO ZOOLOGY. PART 2. GENUS-GROUP NAMES (MOLLUSCA) Kenneth J. Boss 1 and Rudiger Bieler2 ABSTRACT. This is the second part of a series on the German zoologist Johannes Thiele (1860-1935) and comprises a critical listing of the genus-group taxa which he described as new to malacology. Each of these names is accompanied by author and bibliographic references, original status, type-species with its original binominal spelling and bibliographic source and some data on subsequent taxonomic placements. Thiele introduced a total of 291 such names in the Phylum Mollusca, distributed as follows: 11 Aplacophora; 39 Polyplacophora; 200 Gastropoda (138 Prosobranchia; 20 Opisthobranchia and 42 Pulmonata); 31 Bivalvia; 10 Cephalopoda; there were no new scaphopod or monoplacophoran names. Of these, later authors recognized as valid 85 at the generic level, 110 at the subgeneric level; 71 are considered to be synonyms, and the remaining 25 are unjustified emendations or errors. INTRODUCTION As part of a series on the scientific contributions of Johannes Thiele, the eminent German zoologist, we provide here an alphabetical listing and analysis of all the genus-group taxa introduced by him in his publications on mollusks as delineated by Bieler & Boss (1989). A total of 291 names is included in the following format: (1) genus-group name; (2) author(s); (3) year of publication; (4) condensed bibliographic reference; (5) original status as given by Thiele; (6) subsequent status 1Museum of Comparative Zoology, Harvard University, Serial Publication Cambridge, Massachussetts 02138, U.S.A.
    [Show full text]
  • Mollusca of New Caledonia
    Plate 12 Mollusca of New Caledonia Virginie HEROS, Pierre LOZOUET, Philippe MAESTRATI, Rudo von COSEL, Delphine BRABANT, Philippe BOUCHET Museum National d'Histoire Naturelle, Paris [email protected] The first record of a land mollusc (Placostyllls fibratus (Martyn, 1789» from New Caledonia can unequivocally be traced to the voyage of Cook that discovered the island in 1774. By contrast, the marine molluscs of New Caledonia ironically remained out of reach to European natural history cabinets until well jnto the 19th century. New Caledonia remained untouched by the circum­ navigating expeditions of the 1830-1840s onboard, e.g., the Astrolabe, the Zilie or the Uranie. Seashells may have been collected in New Caledonia by whalers and other merchants in search of sandalwood or beche-de-mer, and then traded, but by the time they reached European conchologists, all indication of their geographical origin had faded away. It is impossible to tell whether Indo-West Pacific species originally described from localities such as «Mers du Sud» or «Southern Seas» were originally collected in, e.g., Fiji, Tahiti, Australia or New Caledonia. However, even if New Caledonian shells may have arrived on the European market or in cabinets, it must have been in very small amount, as such an emblematic species of the New Caledonia molluscan fauna as Nalltilus maeromphalus was not named until 1859. In fact, it was not until Xavier Montrouzier set foot in New Caledonia that the island was placed on the map of marine conchology. From there on, three major periods can be recognized in the history of New Caledonia marine malacology.
    [Show full text]
  • Molluscs of the Northern Mariana Islands, with Special Reference to the Selectivity of Oceanic Dispersal Barriers1
    Molluscs of the Northern Mariana Islands, With Special Reference to the Selectivity of Oceanic Dispersal Barriers1 GEERAT J. VERMEIJ Department of Zoology, University of Maryland, College Park, Maryland 20742 E. ALISON KAY Department of Zoology, University of Hawaii, Honolulu, Hawaii 96822 LUCIUS G. ELDREDGE University of Guam Marine Laboratory, UOG Station, Mangilao, Guam 96913 Abstract- The shelled molluscan fauna of the Northern Marianas, a chain of volcanic islands in the tropical western Pacific, consists of at least 300 species. Of these, 18 are unknown from or are very rare in the biologically better known southern Marianas. These northern-restricted species are over-represented among limpets and in the middle to high intertidal zones of the northern Marianas. At least 22 gastropods which are common in the intertidal zone and on reef flats of the southern Marianas are absent in the northern Marianas. The northern Marianas lie within the presumed source area of the planktonically derived part of the Hawaiian marine fauna. The ocean barrier between the northern Marianas and the Hawaiian chain appears to select against archaeogastropods and against intertidal species but is unselective with respect to adult size and to other aspects of gastropod shell architecture. These findings are consistent with those for other dispersal barriers. Introduction The Mariana Islands form the southern part of an island chain which extends northward through the Bonin, Volcano, and lzu Islands to central Honshu, Japan. Whereas the marine biota of the southern Marianas (Guam, Rota, Tinian, and Saipan) is becoming relatively well known, that of the northern Marianas (Fig. 1) is largely unstudied.
    [Show full text]
  • Observations of Rocky Shore Habitats in Lower Otago Harbour ______
    ___________________________________________________ Observations of Rocky Shore Habitats in Lower Otago Harbour ___________________________________________________ - 1 of 46 - Observations of Rocky Shore Habitats in Lower Otago Harbour A supplemental study to accompany “Benthic Habitat Structures and Macrofauna of Lower Otago Harbour”1. FINAL DRAFT – 1 June 2009 Produced for: Port Otago Limited PO Box 8 Port Chalmers 9023 Produced by: Brian Paavo Benthic Science Limited 1 Porterfield Street Macandrew Bay, Dunedin New Zealand 9014 Phone/Fax +64-03-476-1712 Mobile +64-021-189-3459 www.benthicscience.com Draft Delivery: 2 April 2009 - 2 of 46 - - 3 of 46 - Table of Contents ...................................................................................................................................................2 Summary....................................................................................................................................5 Introduction...............................................................................................................................6 Methods.....................................................................................................................................7 Survey Locations .................................................................................................................7 Survey Methods ..................................................................................................................7 Image Acquisition, Processing, Qualitative Analysis,
    [Show full text]
  • The Biodiversity of Marine Gastropods of Thailand in the Late Decade
    Malaysian Journal of Science 32 (SCS Sp Issue) : 47-64 (2013) The Biodiversity of Marine Gastropods of Thailand in the Late Decade. Kitithorn Sanpanich1*and Teerapong Duangdee2 1Institute of Marine Science, Burapha University, Tambon Saensook, Amphur Moengchonburi, Chonburi, 20131 Thailand. 2Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900 Thailand. *[email protected] (Corresponding author) ABSTRACT This study is mainly based on the collection of marine gastropods along the east coast of the Gulf of Thailand which had been carried out along the coastline in 55 sites from the province of Chonburi to Trad during April 2005 – December 2009. As many habitats as possible were examined at each sites from sandy beaches, muddy sand, rocky shore, and coral reefs. A total of 306 species of gastropods were collected and had been classifi ed in53families 116genera.The most widespread species were Planaxis sulcatus (Planaxidae) and Polinices mammilla (Naticidae) found in 37 sites, followed by Echinolittorina malaccana (Littorinidae) in 35 sites. The highest diversity was 187 species in Trat whereas Koh Mark had the most abundance in this area. The lowest diversity was in Chanthaburi, 88 species, whereas Koh Nomsoa was the most abundant site.The diversity of gastropods in Chonburi was 152 species, whereas Koh Samaesarn and Koh Juang were the most abundant site. 137 species had been found in Rayong and Koh Munnai was the most abundant site. The data from this study had been compared with the resent studies in the late decade from the west coast of the Gulf of Thailand and Andaman Sea.The total gastropods in the late decade were 454 species 205 genera 69 families.
    [Show full text]
  • Checklist of the Mollusca of Cocos (Keeling) / Christmas Island Ecoregion
    RAFFLES BULLETIN OF ZOOLOGY 2014 RAFFLES BULLETIN OF ZOOLOGY Supplement No. 30: 313–375 Date of publication: 25 December 2014 http://zoobank.org/urn:lsid:zoobank.org:pub:52341BDF-BF85-42A3-B1E9-44DADC011634 Checklist of the Mollusca of Cocos (Keeling) / Christmas Island ecoregion Siong Kiat Tan* & Martyn E. Y. Low Abstract. An annotated checklist of the Mollusca from the Australian Indian Ocean Territories (IOT) of Christmas Island (Indian Ocean) and the Cocos (Keeling) Islands is presented. The checklist combines data from all previous studies and new material collected during the recent Christmas Island Expeditions organised by the Lee Kong Chian Natural History Museum (formerly the Raffles Museum of Biodiversty Resarch), Singapore. The checklist provides an overview of the diversity of the malacofauna occurring in the Cocos (Keeling) / Christmas Island ecoregion. A total of 1,178 species representing 165 families are documented, with 760 (in 130 families) and 757 (in 126 families) species recorded from Christmas Island and the Cocos (Keeling) Islands, respectively. Forty-five species (or 3.8%) of these species are endemic to the Australian IOT. Fifty-seven molluscan records for this ecoregion are herein published for the first time. We also briefly discuss historical patterns of discovery and endemism in the malacofauna of the Australian IOT. Key words. Mollusca, Polyplacophora, Bivalvia, Gastropoda, Christmas Island, Cocos (Keeling) Islands, Indian Ocean INTRODUCTION The Cocos (Keeling) Islands, which comprise North Keeling Island (a single island atoll) and the South Keeling Christmas Island (Indian Ocean) (hereafter CI) and the Cocos Islands (an atoll consisting of more than 20 islets including (Keeling) Islands (hereafter CK) comprise the Australian Horsburgh Island, West Island, Direction Island, Home Indian Ocean Territories (IOT).
    [Show full text]