Assessment of Environmental Effects for Intertidal Ecology

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Environmental Effects for Intertidal Ecology Eastern Bays Shared Path: Assessment of Environmental Effects for Intertidal Ecology EOS Ecology Report No.HUT01-17050-01 | March 2019 Eastern Bays Shared Path: Assessment of Environmental Effects for Intertidal Ecology EOS Ecology Report No.HUT01-17050-01 | March 2019 Prepared for Hutt City Council Prepared by EOS Ecology Shelley McMurtrie Kirsty Brennan Reviewed by Gary Stephenson (Coastal Marine Ecology Consultants) Alex James (EOS Ecology) EOS ECOLOGY | SCIENCE + ENGAGEMENT EXECUTIVE SUMMARY ............................................................................ 1 1 INTRODUCTION ................................................................................ 4 2 METHODS ......................................................................................... 7 2.1 Determination of Proposed Seawalls and Area of Works ............................. 7 2.2 Habitat Types – Broad Scale ......................................................................... 7 2.3 Intertidal Ecology .......................................................................................... 9 2.4 Sediment Contamination ............................................................................ 13 2.5 Data Analysis .............................................................................................. 13 3 EXISTING STATE OF THE ENVIRONMENT ...................................... 15 3.1 Existing Seawalls ........................................................................................ 15 3.2 Hydrodynamics and Sediment Transport .................................................... 21 3.3 Habitat Types – Broad Scale ....................................................................... 23 3.4 Intertidal Ecology (Benthic Invertebrates and Macroalgae) ....................... 26 3.5 Sediment Contamination ............................................................................ 42 4 OVERVIEW OF DESIGN AND CONSTRUCTION METHDOLOGY ...... 44 4.1 Proposed Seawalls and Shared Path Concept ............................................ 44 4.2 Overview of Construction Methodology ..................................................... 51 5 ASSESSMENT OF ENVIRONMENTAL EFFECTS .............................. 53 5.1 Construction Effects .................................................................................... 53 5.2 Operational Effects ...................................................................................... 56 6 RECOMMENDED MITIGATION ....................................................... 70 6.1 Construction Phase Mitigation Measures .................................................. 70 6.2 Operational Phase Mitigation Measures .................................................... 72 7 ACKNOWLEDGMENTS .................................................................... 77 8 REFERENCES .................................................................................. 77 9 APPENDICES ................................................................................... 83 9.1 Appendix 1 – Detailed Map of Proposed Seawall Types ............................ 83 9.2 Appendix 2 – Habitat Maps – Broad Scale Assessment ............................. 86 9.3 Appendix 3 – EOS Ecology Ecological Survey Sites .................................... 92 9.4 Appendix 4 – Benthic Invertebrate Fauna Overview .................................. 94 EOS ECOLOGY | SCIENCE + ENGAGEMENT EOS ECOLOGY | SCIENCE + ENGAGEMENT Eastern Bays Shared Path: Assessment of Environmental Effects for Intertidal Ecology 1 EXECUTIVE SUMMARY $!#% %&%%%* &01%#$! #%$%#%*%$$% !# '$%* # !$%#$*$%$ !#% ##'%$%#*$ % *#%(# */!$%#!%#!&# $($% !# '%. #.!&#! $$%#&%&#$%%# #$%% $% #$&#$% !# '%#$%$%!% (#$ !% % &%&# $ ' #$- * ($ $$ % !# ' $$$$% '# % %$ %% % !# ! $ !# #(' %#% *0$!*%% '#%#% # &%$1- # .$ %% !! $&#'*$ % '#%#%$ # (# &#% *4238 &4239% $#%#$ #%#%'# %-%#%%% % $%#*$#0--, ##% *% * %1($ &% !# %* #%*% '#* $%## *#(%$&$%#% %*##%#0# $1,$($ $ #$ #%#$0#'$1- % % 82'#%#%%)(# &93!&"&#%$,(%%$ % &. !#( % !% % ! # # % % $%($!#%)- '#%#% %) $#'% #(## ## %!# %#-$ $%*%% &%* ($ %*%# 0#!#$%:8< % %&1,(%% $$ 08-4< &1, 04-4< &1, 04-3< &1 % * %# $!$ #!#$% # % 3< % % &- # (# ( #$ (%%!# %#(#%($! $$% % #$!$% $$$$%& &%*- % % # $!$ %, % % 4: '#%#% %) (# %- ( ! *% %), $!-049<1 $!- 044<1, $ ( $ # !! $ 043<1 (# % $% &%%) '#,(% #!! $$ ($!#- # (# % &##(%%$&#'*#(% *33 %93!&"&#%$ %* # $!$- &%* ! $% % $&#'* # ($ $ ( & )!% # %$ # % 0 (# #% $1# *$ #%#%%%,$ $# % % # * $ # &%$ &$(#%% # &#- %)%%#%' $%&%#%#% #$%!&%(#!#$%*#% &-+ !!#% '%#%$% & %) #$$ & % '& &%*- !# % #$ !# ! $ % %# ' $( #!% % #$ %% ( # % $, %# ($ $%# &%* ! $% -)#$$($& (# %)$%$( $&# ##$$% #,($%%)$%*($ ($% %$($&# ##$ %+ #- ('#,### ##$%#(%.$!'#% - !$ '& $ & $ &#$ (# %# &% # ($!# (% % $&#'* %#% #$- ('# $#'% $ ! ! %# $$ 0 $1 (% #$ $$ %$ #%$%%$ $!$*!#$%#%#&%$& %#- !# ! $ ( #$ & % $%#&% $# !% $( 5-3 08;<1 % 6-6$%#% $ #%( ##% *% #%# $% &#0)&*$ * #1- % % # ( $($ * % )$% %!#% ( 2-7: , ( EOS ECOLOGY | SCIENCE + ENGAGEMENT Report No. HUT01-17050-01 2 March 2019 &$#$(% &%$ % $%##3 40%%!# %#-%#( 50583:>4(#%!# ! $$(% $%% %)$%$(-%#*!# ' #$ # #0 # % % ( $( %% )%$ * % )$% $( % - !!# )%*60<396>4$ (% '%&$(%%%#%# % 0 !!# )%*<;> %!# %%#*$$(0%# !% %!# ! $( #$- =8> % !# % % ( % $(0 % !# ! $ $( %*!$- %# %*!$ ( &# (%%%#%+ / &&#'$(-%#!&#'$(#'%%.($%%$ &#'$($ *&$ '% 0!!# )%*3::>4 %!# %%$!% ' & #%#!&#'$(-65>#'%%-9>$&#'(-7=>%%$&##% $%%0!!# )%*609> %!# %% $$%$ 6;$#%$$! %$3$%!$-$%!$ # #!$4-(&$%#!% %#)$%#!$0 &% % $$$ #% &!% %$#!% $(- &#$% $ $&$"&%* !# ! $ # %# % $/ % (# - (#** #*0 #% %*#%*#$ $ #%$% -(%!# ' $%!# %% $ #* %0! %%%$ &#$% %#%$&%#$$!# ' $&!!%#*#! #%3 &#%#,#-756=4$$&$ % '#%$&##%#! #%0 % $ '$ %% % $ (# % )$% $($ # % #!- % % % )$% $($(& &%% !# ' % #%$(0 (%$%% ! &# #% %-% #%$($% $(! &#&$$! ##$%)%&#$&# !! % % &#'$ &$ # # # ' ##0 &# % $%#&% !$- %# $ )!%% % %!#%% ( #%( #$0 #%&#'$($-% $%#&% %!#%()% #%'%#$# %!# ! $% %$(. #%#'%%- % $%#&% %!#%()% #%%#%#$# %!# ! $% %$(0 % $%#&% %!#%(!!# )%*60:5-((%! ##*$% '#% % 0 #%$%#$&#% $%#&% !$#%$% %#$ *$%%# % % #$ (%# %% (% %% &$1$ !# &%$0 $%#&% % * $ !# ' %% ( # !#% % $%#&% '# % % # !0 $%#&% + (%% % #%75%#$!# $%#&% $% 3 %%%%#* #% $%#&% $% !#%%%$%(%*4-( $ %# %'# %*& # %#'-(%# % $% '%$ (#&* $#0(%# % $%#&% #($$#*% % %% %#''# %*$% 2 # %% &$ !# &%$0 $! % * # (%$## #%%'%$$$ !# ! $0 &% %%%%%!# ! $$% !##*#!)$%$($#%#%#%($($ (# !#' &$* %# (# - % #!% % $( !# $ $ % '$ % ' $%!% %#% *0#$$ %% %!# ! $&#'$($ '#%)$%$($-$%!&#'(!# '$!% %&%*- ($$$#* # %$&#''&#%)! $&# % !# ! $ % %)%&# $&#% %&#'$(!# '! %%%%0&$%($($#*% !# ' %%#%%%$ %)$% $($0 ('#- # 65> % % !# ! $ ( #$ % ( $($ ' # ' # % & % % # % % % (1 %+ 0&' EOS ECOLOGY | SCIENCE + ENGAGEMENT Eastern Bays Shared Path: Assessment of Environmental Effects for Intertidal Ecology 3 '() " ! # $ # $ ! % & %# $ & ! EOS ECOLOGY | SCIENCE + ENGAGEMENT Report No. HUT01-17050-01 4 March 2019 1 INTRODUCTION (%')$)*))).$*#!89)'#(%$')()').)(( #)$"%'$+().$' %()'#(#.!()(!$#%')$ '#'+#)()'#.($!!#)$#.')#,' .!6%()'#%)#'%!##*"'$(,!!()$%'$+)5$'5%*'%$(()'*)*'())' '(!#))$()$'"(*'(#)$%'$+)'()()%)$,'( %)# )$ *)*' ( !+! '(4 ( ()'# .( ' ) '$) ,!! %'$+ ( $##)$# $' '(#)( # ) ()'# .( )$ ,$' %!(1($$!(1($%(#%*!)'#(%$')!)(#)'()$*))).4 ),!!!($$##))$) %!## #*$") !! # !),. ' )( #1 # ) *)*'1 )'$* )$ !!#)$# ). $## *% # $##)# )$ %!## #, !)( . $) ) ,!#'#(%$')#.# !!#)$#).$*#!4 %'$)$*(($# '#'+1),#$#)$,'#)#$')'##$.(.1#) ($*)'##$.(.8#.$#)9)$()$*'#8 *')$ 6 '# ' #)'()$#9 8)#)1<:;C94(.(' #$,#$!!)+!.()()'#.(##!*8'$"#$'))$($*)9 $#)$,'1$''#)$.1 $,'..1$' .1 #.1*#(#.1.(.1##.$#) 8#()$*'#94 !$# ) !#) $ ) %'$) -)#)1 8%%'$-")!. >4> " ),# $#) $,' # #. $#)6()$*'#1 *' ;91 @CD $ ) -()# '$7'$*' #)' ( %'$%$( )$ # )$ !!$,$'<4?7=4?",)('%)#*%'(,!!4%'$%$((,!!).%(+# (!) ( $# "*!)5')' (((("#) 8 9 . '# $)#!-%')(#$"%((# #)')! $!$.1 +*# $!$.1 )''()'! $!$.1 $()!%'$(((1!#(%#+(*!1+! (#1'')$#1%!####$#(#)#1##"#)4$+'!!-)#)$,$' ((%%'$-")!. =4; "$+'>4> "$!#!($'!#!#)4)=4; "!#)$($'!#())$#1B>D,!! *'+(,!!(8@D(#!1@BD$*!1AD)'%!1=D$*!6)'%!91$!!$,.'+)"#)8;>D91# (( 8()%(1 "# ()%( # '"%(9 8<D9 8*' <2 %%#- ;94 %'$%$( (# %!#( 8)#) <:;B9 !#)( )' =4? " $' <4? " ,) %),.),#))'!##) ($'!#"##)))'()#)$-)#)-()#$$)%'#)$)%),.(,'#)$) #)')! /$# # $()! '# ' 8 94 ) %'$) ,$' (1;4< "'$+)"# ,)'(%'#(8 9!+!#)'$'$*)()*''#)#)')!/$#4 *)$)!$((($')$$*%)$#$)('%) # (,!!1 #$*'("#) ( (*(&*#)!. # %'$%$( $' )' !$)$#(3 $#) $,' 1 $,'..#$' .4 ')$##"#).') .'($#($')()$#1,)"%'$+$()!%'$))$#($#'. #)4 $""(($#$!$.)$*#') ##)')!$!$.(((("#)1)$#!*(%')$ )(((("#)$#+'$#"#)!)(89#'($*'$#(#)%%!)$#(4-)#)$)('%$') ( !") )$ # (((("#) $ )( $# ) #)')! #) $!$. 8%*# # #*# #+')')(1#"'$!91#-!*(#.)!(((("#)$))($#(*)!$!$.1 +))$# # +*# (((("#)( 8$+' # +'"'(1 <:;C91 ('(( (((("#)( 8$+' # +'"'(1 <:;C91 $()! %.(! %'$((( 8$+' # !!(1 <:;C91 #$*'("#) 8$+' # ##5"!!1<:;C# *')'0'###1<:;C91'(,)'(%((8$+'# "(1<:;C91 $' ()$'",)' 8, , + # ( )$ -!* * )$ ) # %'")) )+). *#' ) $#! !#94 %$)#)! )( $ #$*'("#) $# #)')! # (*)! '( ( %'$+ # (*%%!"#)'. '%$') 8 *')' 0 '###1 <:;C9 # ( (* ( #$) $+' # )( *''#)'%$')4 EOS ECOLOGY | SCIENCE + ENGAGEMENT Eastern Bays Shared Path: Assessment of Environmental Effects for Intertidal Ecology 5 Point Howard Sorrento Bay Lower Hutt Eastern Wellington Harbour Bays Lowry Bay Wellington CBD Project area
Recommended publications
  • (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: the Genera Nodilittorina, Austrolittorina and Afrolittorina
    © Copyright Australian Museum, 2004 Records of the Australian Museum (2004) Vol. 56: 75–122. ISSN 0067-1975 The Subfamily Littorininae (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: The Genera Nodilittorina, Austrolittorina and Afrolittorina DAVID G. REID* AND SUZANNE T. WILLIAMS Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom [email protected] · [email protected] ABSTRACT. The littorinine gastropods of the temperate southern continents were formerly classified together with tropical species in the large genus Nodilittorina. Recently, molecular data have shown that they belong in three distinct genera, Austrolittorina, Afrolittorina and Nodilittorina, whereas the tropical species are members of a fourth genus, Echinolittorina. Austrolittorina contains 5 species: A. unifasciata in Australia, A. antipodum and A. cincta in New Zealand, and A. fernandezensis and A. araucana in western South America. Afrolittorina contains 4 species: A. africana and A. knysnaensis in southern Africa, and A. praetermissa and A. acutispira in Australia. Nodilittorina is monotypic, containing only the Australian N. pyramidalis. This paper presents the first detailed morphological descriptions of the African and Australasian species of these three southern genera (the eastern Pacific species have been described elsewhere). The species-level taxonomy of several of these has been confused in the past; Afrolittorina africana and A. knysnaensis are here distinguished as separate taxa; Austrolittorina antipodum is a distinct species and not a subspecies of A. unifasciata; Nodilittorina pyramidalis is separated from the tropical Echinolittorina trochoides with similar shell characters. In addition to descriptions of shells, radulae and reproductive anatomy, distribution maps are given, and the ecological literature reviewed.
    [Show full text]
  • Risk Analysis: Vessel Biofouling
    Risk Analysis: Vessel Biofouling ISBN 978-0-478-37548-0 (print) ISBN 978-0-478-37549-7 (online) 15 February 2011 Risk Analysis: Vessel Biofouling 15 February 2011 Approved for general release Christine Reed Manager, Risk Analysis Ministry of Agriculture and Forestry Requests for further copies should be directed to: Publication Adviser MAF Information Bureau P O Box 2526 WELLINGTON Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the MAF website at http://www.biosecurity.govt.nz/regs/imports/ihs/risk © Crown Copyright - Ministry of Agriculture and Forestry i Contributors to this risk analysis 1. Primary author/s Dr Andrew Bell Senior Adviser MAF Biosecurity New Zealand Risk Analysis, Marine Wellington Simon Phillips Adviser MAF Biosecurity New Zealand Risk Analysis, Marine Wellington Dr Eugene Georgiades Senior Adviser MAF Biosecurity New Zealand Risk Analysis, Marine Wellington Dr Daniel Kluza Senior Adviser MAF Biosecurity New Zealand Risk Analysis, Marine Wellington 2. Secondary contributors Dr Christopher Denny Adviser MAF Biosecurity New Zealand Border Standards Wellington 3. External peer review John Lewis Principal Marine Consultant ES Link Services Pty Ltd Melbourne, Victoria, Australia Richard Piola Senior Scientist Cawthron Institute Nelson, New Zealand The draft risk analysis has also been internally reviewed by: Liz Jones (Border Standards); Justin McDonald (Post-Clearance); Melanie Newfield (Risk Analysis); Howard Pharo (Risk Analysis); Sandy Toy (Risk Analysis). The contribution of all the reviewers is gratefully acknowledged. ii Contents Page Executive summary 1 Definitions 7 1. Introduction 8 1.1. Background 8 1.2. Scope 13 1.3. References 14 2. Methodology 19 2.1.
    [Show full text]
  • State of the Environment Rocky Shore Monitoring Report 2015-2017
    State of the Environment Rocky Shore Monitoring Report 2015-2017 Technical Report 2017-79 Taranaki Regional Council Private Bag 713 ISSN: 1178-1467 (Online) STRATFORD Document: 1845984 (Word) Document: 1918743 (Pdf) October 2017 Executive summary Section 35 of the Resource Management Act 1991 requires local authorities to undertake monitoring of the region’s environment, including land, air, marine and freshwater. The rocky shore component of the State of the Environment Monitoring (SEM) programme for Taranaki was initiated by the Taranaki Regional Council in the 1994-1995 monitoring year and has subsequently continued each year. This report covers the state and trends of intertidal hard shore communities in Taranaki. As part of the SEM programme, six representative reef sites were monitored twice a year (spring and summer surveys) using a fixed transect, random quadrat survey design. For each survey, a 50 m transect was laid parallel to the shore and substrate cover, algal cover and animal cover/abundance in 25 x 0.25 m2 random quadrats were quantified. Changes in the number of species per quadrat (species richness) and Shannon-Wiener index per quadrat (diversity) were assessed at the six reef sites over the 23 years of the SEM programme (spring 1994 to summer 2017). Of the six sites surveyed, the intertidal communities at Manihi (west Taranaki) were the most species rich (median = 19.4 species per quadrat) and diverse (median Shannon Wiener index = 1.05 per quadrat) due to the low supply of sand and the presence of pools that provided a stable environment with many ecological niches. The intertidal communities at Waihi (south Taranaki) were the least species rich (median = 11.5 species per quadrat) and diverse (median Shannon Wiener index = 0.84 per quadrat) due to the high energy wave environment, lack of stable habitat and periodic sand inundation.
    [Show full text]
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • Echinolittorina Peruviana (Lamarck, 1822): Antecedentes De La Especie
    Sociedad Malacológica de Chile (SMACH) Amici Molluscarum 18: 39-42 (2010) Echinolittorina peruviana (Lamarck, 1822): antecedentes de la especie Viviana M. Castillo y Donald I. Brown Laboratorio de Biología de la Reproducción y del Desarrollo, Departamento de Biología y Ciencias Ambientales, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile. E-mail: [email protected] Clasificación Clase Gastropoda Cuvier, 1795 en cuya base interna se observa una línea blanca, Subclase Orthogastropoda Ponder y Lindberg, 1997 curvada hacia la columela, que es cóncava a recta Superorden Caenogastropoda Cox, 1960 de color café lechoso o muy oscuro (Guzmán et al ., Orden Sorbeoconcha Ponder y Lindberg, 1997 1998). La protoconcha no se observa (Reid, Suborden Hypsogastropoda Ponder y Lindberg, 1997 2002a). Los individuos adultos poseen externa- Infraorden Littorinimorpha Golikov y Starobogatov, 1975 mente una coloración muy característica, con Superfamilia Littorinoidea Children, 1834 líneas blancas y negras verticales en forma de zig- Familia Littorinidae Gray, 1840 zag (Guzmán et al ., 1998; Reid, 2002a); en cam- Subfamilia Littorininae Children, 1834 bio, los juveniles son de color negro (Jordán y Género Echinolittorina Habe, 1956 Ramorino, 1975). La cabeza y los tentáculos son de color negro, con un borde blanco alrededor del ojo; la rádula tiene una longitud que fluctúa entre 2,8 y Sinonimia 3,4 mm (Reid, 2002a). Para Echinolittorina peruviana (Lamarck, 1822) se han recuperado de la literatura los siguientes sinónimos (Reid, 2002a; Guzmán et al ., 1998): Distribución geográfica Phasianella peruviana Lamarck, 1822 Su distribución latitudinal, según distintos autores, Littorina peruviana Gray, 1839 tiene como límite sur Valparaíso (Chile) Turbo zebra Wood, 1828 (Marincovich, 1973; Álamo y Valdivieso, 1987); Littorina zebra Phillipi, 1847 sin embargo, Aldea y Valdovinos (2005) recien- Littorina zebra var.
    [Show full text]
  • | Ocean Life | Vol. 1 | No. 2 | December 2017| | E-ISSN: 2580
    | Ocean Life | vol. 1 | no. 2 | December 2017| | E-ISSN: 2580-4529 | Essi HavulaEssi photoby Nudibrach Bunakenin | Ocean Life | vol. 1 | no. 1 | April 2017 | ONLINE http://smujo.id/ol e-ISSN 2580-4529 PUBLISHER Society for Indonesian Biodiversity CO-PUBLISHER Universitas Papua, Manokwari, Indonesia OFFICE ADDRESS Research Center for Pacific Marine Resources, Institute for Research and Community, Universitas Papua. Old Rectorat Complex Block III No. 7-8, Jl. Gunung Salju, Amban, Manokwari 98314, Papua Barat, Indonesia Tel./Fax.: +62-986-212156/211455, email: [email protected], [email protected], [email protected] PERIOD OF ISSUANCE June, December EDITOR-IN-CHIEF Ricardo F. Tapilatu – Universitas Papua, Manokwari, Indonesia EDITORIAL BOARD Abdolali Movahedinia – Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran Abdul Hamid Toha – Universitas Papua, Manokwari, Indonesia Abdul Malik – Universitas Negeri Makassar, Makassar, Indonesia Aida Sartimbul – Universitas Brawijaya, Malang, Indonesia Allison Green – The Nature Conservancy, Australia Analuddin – Universitas Halu Oleo, Kendari, Indonesia Daisy Wowor – Research Center for Biology, Indonesian Institute of Sciences, Cibinong, Indonesia Eugenius A. Renjaan – Tual State Fisheries Polytechnic, Tual, Indonesia Gerald Allen – Conservation International, Australia Gino V. Limmon – Universitas Pattimura, Ambon, Indonesia Jacobus W. Mosse – Universitas Pattimura, Ambon, Indonesia Kadarusman – Sorong Marine and Fishery Polytechnic, Sorong, Indonesia Leontine E. Becking
    [Show full text]
  • Four Marine Digenean Parasites of Austrolittorina Spp. (Gastropoda: Littorinidae) in New Zealand: Morphological and Molecular Data
    Syst Parasitol (2014) 89:133–152 DOI 10.1007/s11230-014-9515-2 Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: morphological and molecular data Katie O’Dwyer • Isabel Blasco-Costa • Robert Poulin • Anna Falty´nkova´ Received: 1 July 2014 / Accepted: 4 August 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract Littorinid snails are one particular group obtained. Phylogenetic analyses were carried out at of gastropods identified as important intermediate the superfamily level and along with the morpholog- hosts for a wide range of digenean parasite species, at ical data were used to infer the generic affiliation of least throughout the Northern Hemisphere. However the species. nothing is known of trematode species infecting these snails in the Southern Hemisphere. This study is the first attempt at cataloguing the digenean parasites Introduction infecting littorinids in New Zealand. Examination of over 5,000 individuals of two species of the genus Digenean trematode parasites typically infect a Austrolittorina Rosewater, A. cincta Quoy & Gaim- gastropod as the first intermediate host in their ard and A. antipodum Philippi, from intertidal rocky complex life-cycles. They are common in the marine shores, revealed infections with four digenean species environment, particularly in the intertidal zone representative of a diverse range of families: Philo- (Mouritsen & Poulin, 2002). One abundant group of phthalmidae Looss, 1899, Notocotylidae Lu¨he, 1909, gastropods in the marine intertidal environment is the Renicolidae Dollfus, 1939 and Microphallidae Ward, littorinids (i.e. periwinkles), which are characteristic 1901. This paper provides detailed morphological organisms of the high intertidal or littoral zone and descriptions of the cercariae and intramolluscan have a global distribution (Davies & Williams, 1998).
    [Show full text]
  • Linking Behaviour and Climate Change in Intertidal Ectotherms: Insights from 1 Littorinid Snails 2 3 Terence P.T. Ng , Sarah
    1 Linking behaviour and climate change in intertidal ectotherms: insights from 2 littorinid snails 3 4 Terence P.T. Nga, Sarah L.Y. Laua, Laurent Seurontb, Mark S. Daviesc, Richard 5 Staffordd, David J. Marshalle, Gray A.Williamsa* 6 7 a The Swire Institute of Marine Science and School of Biological Sciences, The 8 University of Hong Kong, Pokfulam Road, Hong Kong SAR, China 9 b Centre National de la Recherche Scientifique, Laboratoire d’Oceanologie et de 10 Geosciences, UMR LOG 8187, 28 Avenue Foch, BP 80, 62930 Wimereux, France 11 c Faculty of Applied Sciences, University of Sunderland, Sunderland, U.K. 12 d Faculty of Science and Technology, Bournemouth University, U.K. 13 e Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, 14 Gadong BE1410, Brunei Darussalam 15 16 Corresponding author: The Swire Institute of Marine Science, The University of Hong 17 Kong, Cape d' Aguilar, Shek O, Hong Kong; [email protected] (G.A. Williams) 18 19 Keywords: gastropod, global warming, lethal temperature, thermal safety margin, 20 thermoregulation 21 22 Abstract 23 A key element missing from many predictive models of the impacts of climate change 24 on intertidal ectotherms is the role of individual behaviour. In this synthesis, using 25 littorinid snails as a case study, we show how thermoregulatory behaviours may 26 buffer changes in environmental temperatures. These behaviours include either a 27 flight response, to escape the most extreme conditions and utilize warmer or cooler 28 environments; or a fight response, where individuals modify their own environments 29 to minimize thermal extremes. A conceptual model, generated from studies of 30 littorinid snails, shows that various flight and fight thermoregulatory behaviours may 31 allow an individual to widen its thermal safety margin (TSM) under warming or 32 cooling environmental conditions and hence increase species’ resilience to climate 33 change.
    [Show full text]
  • Gastropods Diversity in Thondaimanaru Lagoon (Class: Gastropoda), Northern Province, Sri Lanka
    Journal of Geoscience and Environment Protection, 2021, 9, 21-30 https://www.scirp.org/journal/gep ISSN Online: 2327-4344 ISSN Print: 2327-4336 Gastropods Diversity in Thondaimanaru Lagoon (Class: Gastropoda), Northern Province, Sri Lanka Amarasinghe Arachchige Tiruni Nilundika Amarasinghe, Thampoe Eswaramohan, Raji Gnaneswaran Department of Zoology, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka How to cite this paper: Amarasinghe, A. Abstract A. T. N., Eswaramohan, T., & Gnaneswa- ran, R. (2021). Gastropods Diversity in Thondaimanaru lagoon (TL) is one of the three lagoons in the Jaffna Penin- Thondaimanaru Lagoon (Class: Gastropo- sula, Sri Lanka. TL (N-9.819584, E-80.134086), which is 74.5 Km2. Fringing da), Northern Province, Sri Lanka. Journal these lagoons are mangroves, large tidal flats and salt marshes. The present of Geoscience and Environment Protection, 9, 21-30. study is carried out to assess the diversity of gastropods in the northern part https://doi.org/10.4236/gep.2021.93002 of the TL. The sampling of gastropods was performed by using quadrat me- thod from July 2015 to June 2016. Different sites were selected and rainfall Received: January 25, 2020 data, water temperature, salinity of the water and GPS values were collected. Accepted: March 9, 2021 Published: March 12, 2021 Collected gastropod shells were classified using standard taxonomic keys and their morphological as well as morphometrical characteristics were analyzed. Copyright © 2021 by author(s) and A total of 23 individual gastropods were identified from the lagoon which Scientific Research Publishing Inc. belongs to 21 genera of 15 families among them 11 gastropods were identified This work is licensed under the Creative Commons Attribution International up to species level.
    [Show full text]
  • Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of Central Chile
    Journal of South American Earth Sciences 17 (2004) 73–88 www.elsevier.com/locate/jsames Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of central Chile Sven N. Nielsena,*, Daniel Frassinettib, Klaus Bandela aGeologisch-Pala¨ontologisches Institut und Museum, Universita¨t Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany bMuseo Nacional de Historia Natural, Casilla 787, Santiago, Chile Abstract Species of Vetigastropoda (Fissurellidae, Turbinidae, Trochidae) and one species of Neritimorpha (Neritidae) from the Navidad area, south of Valparaı´so, and the Arauco Peninsula, south of Concepcio´n, are described. Among these, the Fissurellidae comprise Diodora fragilis n. sp., Diodora pupuyana n. sp., two additional unnamed species of Diodora, and a species resembling Fissurellidea. Turbinidae are represented by Cantrainea sp., and Trochidae include Tegula (Chlorostoma) austropacifica n. sp., Tegula (Chlorostoma) chilena n. sp., Tegula (Chlorostoma) matanzensis n. sp., Tegula (Agathistoma) antiqua n. sp., Bathybembix mcleani n. sp., Gibbula poeppigii [Philippi, 1887] n. comb., Diloma miocenica n. sp., Fagnastesia venefica [Philippi, 1887] n. gen. n. comb., Fagnastesia matanzana n. gen. n. sp., Calliostoma mapucherum n. sp., Calliostoma kleppi n. sp., Calliostoma covacevichi n. sp., Astele laevis [Sowerby, 1846] n. comb., and Monilea riorapelensis n. sp. The Neritidae are represented by Nerita (Heminerita) chilensis [Philippi, 1887]. The new genus Fagnastesia is introduced to represent low-spired trochoideans with a sculpture of nodes below the suture, angulated whorls, and a wide umbilicus. This Miocene Chilean fauna includes genera that have lived at the coast and in shallow, relatively warm water or deeper, much cooler water. This composition therefore suggests that many of the Miocene formations along the central Chilean coast consist of displaced sediments.
    [Show full text]
  • Fossil Flora and Fauna of Bosnia and Herzegovina D Ela
    FOSSIL FLORA AND FAUNA OF BOSNIA AND HERZEGOVINA D ELA Odjeljenje tehničkih nauka Knjiga 10/1 FOSILNA FLORA I FAUNA BOSNE I HERCEGOVINE Ivan Soklić DOI: 10.5644/D2019.89 MONOGRAPHS VOLUME LXXXIX Department of Technical Sciences Volume 10/1 FOSSIL FLORA AND FAUNA OF BOSNIA AND HERZEGOVINA Ivan Soklić Ivan Soklić – Fossil Flora and Fauna of Bosnia and Herzegovina Original title: Fosilna flora i fauna Bosne i Hercegovine, Sarajevo, Akademija nauka i umjetnosti Bosne i Hercegovine, 2001. Publisher Academy of Sciences and Arts of Bosnia and Herzegovina For the Publisher Academician Miloš Trifković Reviewers Dragoljub B. Đorđević Ivan Markešić Editor Enver Mandžić Translation Amra Gadžo Proofreading Amra Gadžo Correction Sabina Vejzagić DTP Zoran Buletić Print Dobra knjiga Sarajevo Circulation 200 Sarajevo 2019 CIP - Katalogizacija u publikaciji Nacionalna i univerzitetska biblioteka Bosne i Hercegovine, Sarajevo 57.07(497.6) SOKLIĆ, Ivan Fossil flora and fauna of Bosnia and Herzegovina / Ivan Soklić ; [translation Amra Gadžo]. - Sarajevo : Academy of Sciences and Arts of Bosnia and Herzegovina = Akademija nauka i umjetnosti Bosne i Hercegovine, 2019. - 861 str. : ilustr. ; 25 cm. - (Monographs / Academy of Sciences and Arts of Bosnia and Herzegovina ; vol. 89. Department of Technical Sciences ; vol. 10/1) Prijevod djela: Fosilna flora i fauna Bosne i Hercegovine. - Na spor. nasl. str.: Fosilna flora i fauna Bosne i Hercegovine. - Bibliografija: str. 711-740. - Registri. ISBN 9958-501-11-2 COBISS/BIH-ID 8839174 CONTENTS FOREWORD ...........................................................................................................
    [Show full text]
  • BULLETIN (Mailed to Financial Members of the Society Within Victoria) Price 50¢ Conus Marmoreus EDITOR: Linne EDITOR Val Cram
    THE MALACOLOGICAL SOCIETY OF AUSTRALASIA Inc. VICTORIAN BRANCH BULLETIN (Mailed to financial members of the Society within Victoria) Price 50¢ Conus marmoreus EDITOR: Linne EDITOR Val Cram. Tel. No. 9792 9163 ADDRESS: 6 Southdean Street, Dandenong, Vic. 3175 EMAIL: [email protected] VIC. BR. BULL. NO. 258 APRIL/MAY 2011 NOTICE OF MEETING The next meeting of the Branch will be held on the 18th April at the Melbourne Camera Club Building, cnr. Dorcas & Ferrars Sts South Melbourne at 8pm. This will be a members night unless otherwise advised. The May meeting will be on the 16th . Members are encouraged to bring along presentations or just images on disc or USB as we now have a lap top and data projector of our own. Raffles & Supper as usual. Articles are urgent required to enable us to publish at least 6 pages in future bulletins. Secretary Michael Lyons Tel. No. 9894 1526 Chairman Fred Bunyard Tel. No. 9439 2147 Printed courtesy of Steve Herberts Office, Parliamentary Member for Eltham VIC. BR. BULL. NO. 258 2. APRIL/MAY 2011 An unusual colour form of Ischnochiton (Ischnoradsia) australis (Sowerby, 1840) (Polyplacophora: Ischnochitonidae). At the ‘MALSOC’ Victorian Branch meeting on Monday 21 March, 2011, Michael Lyons brought in a light bluish chiton found at Kilcunda, Victoria for display and query as to its identity. Except for its lighter colour, it did not look very dissimilar to Edgar’s (2008: 262) illustration of the New Zealand green chiton, Chiton glaucus Gray, 1828, a species that has been introduced into south-eastern Tasmania but so far not recorded from the Australian mainland.
    [Show full text]