Microarray Expression Profiling Identifies Genes with Altered
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
BMP Signaling Orchestrates a Transcriptional Network to Control the Fate of Mesenchymal Stem Cells (Mscs)
bioRxiv preprint doi: https://doi.org/10.1101/104927; this version posted February 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells (MSCs) Jifan Feng1, Junjun Jing1,2, Jingyuan Li1, Hu Zhao1, Vasu Punj3, Tingwei Zhang1,2, Jian Xu1 and Yang Chai1,* 1Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA 2State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China 3Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA *Corresponding author: Yang Chai 2250 Alcazar Street – CSA 103 Center for Craniofacial Molecular Biology University of Southern California Los Angeles, CA Phone number: 323-442-3480 [email protected] Running Title: BMP regulates cell fate of MSCs Key Words: BMP, mesenchymal stem cells (MSCs), odontogenesis, Gli1 Summary Statement: BMP signaling activity is required for the lineage commitment of MSCs and transcription factors downstream of BMP signaling may determine distinct cellular identities within the dental mesenchyme. 1 bioRxiv preprint doi: https://doi.org/10.1101/104927; this version posted February 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. -
Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1. -
MBT1 to Promote Repression of Notch Signaling Via Histone Demethylase
1 RBPJ/CBF1 interacts with L3MBTL3/MBT1 to promote repression 2 of Notch signaling via histone demethylase KDM1A/LSD1 3 Tao Xu1,†, Sung-Soo Park1,†, Benedetto Daniele Giaimo2,†, Daniel Hall3, Francesca Ferrante2, 4 Diana M. Ho4, Kazuya Hori4, Lucas Anhezini5,6, Iris Ertl7,8, Marek Bartkuhn9, Honglai Zhang1, 5 Eléna Milon1, Kimberly Ha1, Kevin P. Conlon1, Rork Kuick10, Brandon Govindarajoo11, Yang 6 Zhang11, Yuqing Sun1, Yali Dou1, Venkatesha Basrur1, Kojo S. J. Elenitoba-Johnson1, Alexey I. 7 Nesvizhskii1,11, Julian Ceron7, Cheng-Yu Lee5, Tilman Borggrefe2, Rhett A. Kovall3 & Jean- 8 François Rual1,* 9 1Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; 10 2Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany; 11 3Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati 12 College of Medicine, Cincinnati, OH 45267, USA; 13 4Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; 14 5Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; 15 6Current address: Instituto de Ciências Biológicas e Naturais, Universidade Federal do 16 Triângulo Mineiro, Uberaba, MG 38025-180, Brasil; 17 7Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute, L’Hospitalet 18 de Llobregat, Barcelona, Spain; 19 8Current address: Department of Urology, Medical University of Vienna, Währiger Gürtel 18-20, 20 Vienna, Austria; 21 9Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58, 35390, Giessen, Germany; 22 10Center for Cancer Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 23 48109, USA; 24 11Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, 25 MI 48108, USA; 26 †These authors contributed equally to this work; 27 *Correspondence and requests for materials should be addressed to J.F.R. -
The Regulation of Lunatic Fringe During Somitogenesis
THE REGULATION OF LUNATIC FRINGE DURING SOMITOGENESIS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Emily T. Shifley ***** The Ohio State University 2009 Dissertation Committee: Approved by Professor Susan Cole, Advisor Professor Christine Beattie _________________________________ Professor Mark Seeger Advisor Graduate Program in Molecular Genetics Professor Michael Weinstein ABSTRACT Somitogenesis is the morphological hallmark of vertebrate segmentation. Somites bud from the presomitic mesoderm (PSM) in a sequential, periodic fashion and give rise to the rib cage, vertebrae, and dermis and muscles of the back. The regulation of somitogenesis is complex. In the posterior region of the PSM, a segmentation clock operates to organize cohorts of cells into presomites, while in the anterior region of the PSM the presomites are patterned into rostral and caudal compartments (R/C patterning). Both of these stages of somitogenesis are controlled, at least in part, by the Notch pathway and Lunatic fringe (Lfng), a glycosyltransferase that modifies the Notch receptor. To dissect the roles played by Lfng during somitogenesis, we created a novel allele that lacks cyclic Lfng expression within the segmentation clock, but that maintains expression during R/C somite patterning (Lfng∆FCE1). Lfng∆FCE1/∆FCE1 mice have severe defects in their anterior vertebrae and rib cages, but relatively normal sacral and tail vertebrae, unlike Lfng knockouts. Segmentation clock function is differentially affected by the ∆FCE1 deletion; during anterior somitogenesis the expression patterns of many clock genes are disrupted, while during posterior somitogenesis, certain clock components have recovered. R/C patterning occurs relatively normally in Lfng∆FCE1/∆FCE1 embryos, likely contributing to the partial phenotype rescue, and confirming that Lfng ii plays separate roles in the two regions of the PSM. -
NKX2-8 Antibody (Pab)
21.10.2014NKX2-8 antibody (pAb) Rabbit Anti -Human/Mouse/Rat NK2 homeobox 8 (NKXH, NKX2 -9) Instruction Manual Catalog Number PK-AB718-6753 Synonyms NKX2-8 Antibody: NK2 homeobox 8, NKXH, NKX2-9 Description NKX2-8 (NK2 homeobox 8) is a member of a family of transcription factors that are involved in embryonic development and cell fate. It is expressed in the ventral foregut, the developing heart, the epithelial layers of the branchial arches and in the dorsal mesoderm. In conjunction with related protein, NKX2-5, NKX2-8 may play a role in cardiac embryonic development. NKX2-8 is also thought to be involved in lung development and is suspected of being an oncogene in lung cancer that is activated by way of gene amplification at chromosome 14q13. Quantity 100 µg Source / Host Rabbit Immunogen NKX2-8 antibody was raised against a 19 amino acid synthetic peptide near the center of human NKX2-8. Purification Method Affinity chromatography purified via peptide column. Clone / IgG Subtype Polyclonal antibody Species Reactivity Human, Mouse, Rat Specificity NKX2-8 antibody is predicted to not cross-react with other NK2 homeobox family members. Formulation Antibody is supplied in PBS containing 0.02% sodium azide. Reconstitution During shipment, small volumes of antibody will occasionally become entrapped in the seal of the product vial. For products with volumes of 200 μl or less, we recommend gently tapping the vial on a hard surface or briefly centrifuging the vial in a tabletop centrifuge to dislodge any liquid in the container’s cap. Storage & Stability Antibody can be stored at 4ºC for three months and at -20°C for up to one year. -
Notch Signaling in Breast Cancer: a Role in Drug Resistance
cells Review Notch Signaling in Breast Cancer: A Role in Drug Resistance McKenna BeLow 1 and Clodia Osipo 1,2,3,* 1 Integrated Cell Biology Program, Loyola University Chicago, Maywood, IL 60513, USA; [email protected] 2 Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60513, USA 3 Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60513, USA * Correspondence: [email protected]; Tel.: +1-708-327-2372 Received: 12 September 2020; Accepted: 28 September 2020; Published: 29 September 2020 Abstract: Breast cancer is a heterogeneous disease that can be subdivided into unique molecular subtypes based on protein expression of the Estrogen Receptor, Progesterone Receptor, and/or the Human Epidermal Growth Factor Receptor 2. Therapeutic approaches are designed to inhibit these overexpressed receptors either by endocrine therapy, targeted therapies, or combinations with cytotoxic chemotherapy. However, a significant percentage of breast cancers are inherently resistant or acquire resistance to therapies, and mechanisms that promote resistance remain poorly understood. Notch signaling is an evolutionarily conserved signaling pathway that regulates cell fate, including survival and self-renewal of stem cells, proliferation, or differentiation. Deregulation of Notch signaling promotes resistance to targeted or cytotoxic therapies by enriching of a small population of resistant cells, referred to as breast cancer stem cells, within the bulk tumor; enhancing stem-like features during the process of de-differentiation of tumor cells; or promoting epithelial to mesenchymal transition. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance through reduction or elimination of breast cancer stem cells. However, Notch inhibitors have yet to be clinically approved for the treatment of breast cancer, mainly due to dose-limiting gastrointestinal toxicity. -
A Fusion of Pathology in Diabetic Neuropathy MEOX2 Linked With
RESEARCH HIGHLIGHTS NEUROLOGICAL DISORDERS A fusion of pathology in diabetic neuropathy The fusion of proinsulin-expressing bone of factors have been implicated in the the researchers showed that the treatment of marrow cells with neurons could be a process. diabetic rats with insulin led to a reduction in key event in the development of diabetic Chan and colleagues had previously the number of proinsulin-positive cells and neuropathy, according to a recent report found proinsulin- and insulin-positive prevented the prolongation of motor nerve by Lawrence Chan and colleagues. cells — which are normally confined conduction velocity — a sign of neuropathy Diabetic peripheral neuropathy is the to the pancreas — in various organs in — confirming that the appearance of these leading cause of non-traumatic limb mouse and rat models of diabetes, and had cells was due to hyperglycaemia. amputations. The symptoms can be shown that most of these extrapancreatic How the mechanism described by Chan widespread, from numbness, pain and insulin-producing cells originated in the and colleagues relates to several other tingling of the extremities to problems bone marrow. In their latest study, the factors that have been implicated in with the digestive tract, bladder infections researchers discovered that in diabetic diabetic neuropathy, including oxidative and impotence. But the chain of events mice and rats with neuropathy, bone- stress and growth factor deficiency, that leads to nerve damage in diabetes is marrow-derived cells that expressed remains an open question. not well described, and current treatments proinsulin fused with neurons in the Rebecca Craven are designed to relieve discomfort and sciatic nerve and dorsal root ganglion, References and links prevent further tissue damage. -
ES-62 Suppression of Arthritis Reflects Epigenetic Rewiring of Synovial Fibroblasts to a Joint-Protective Phenotype
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.331942; this version posted October 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ES-62 suppression of arthritis reflects epigenetic rewiring of synovial fibroblasts to a joint-protective phenotype Marlene Corbet1, Miguel A Pineda1, Kun Yang1, Anuradha Tarafdar1, Sarah McGrath1, Rinako Nakagawa2, Felicity E Lumb3, William Harnett3* and Margaret M Harnett1* 1Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 2Immunity and Cancer, Francis Crick Institute, London NW1 1AT, UK 3Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK * Joint corresponding authors: [email protected] (MMH), [email protected] (WH) Short title: ES-62 rewires synovial fibroblasts to a resolving phenotype 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.331942; this version posted October 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The parasitic worm product, ES-62 protects against collagen-induced arthritis, a mouse model of rheumatoid arthritis (RA) by suppressing the synovial fibroblast (SF) responses perpetuating inflammation and driving joint destruction. Such SF responses are shaped during disease progression by the inflammatory microenvironment of the joint that promotes remodelling of their epigenetic landscape, inducing an “aggressive” pathogenic SF phenotype. Critically, exposure to ES-62 in vivo induces a stably imprinted “safe” phenotype that exhibits responses more typical of healthy SFs. -
Rbpj-Dependent and -Independent Notch2 Signaling Regulates
RBPJ-DEPENDENT AND -INDEPENDENT NOTCH2 SIGNALING REGULATES CILIARY BODY DEVELOPMENT IN THE MOUSE EYE By Yi Zhou B.S., Tsinghua University, 2010 Submitted to the graduate degree program in Anatomy and Cell Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________ Ting Xie, Ph.D., Co-Chair ________________________________ William Kinsey, Ph.D., Co-Chair ________________________________ Dale Abrahamson, Ph.D. ________________________________ Peter Smith, Ph.D. ________________________________ Jerry Workman, Ph.D. Date Defended: Jan 6th, 2016 The Dissertation Committee for Yi Zhou certifies that this is the approved version of the following dissertation: RBPJ-DEPENDENT AND -INDEPENDENT NOTCH2 SIGNALING REGULATES CILIARY BODY DEVELOPMENT IN THE MOUSE EYE ________________________________ Ting Xie, Ph.D., Co-Chair ________________________________ William Kinsey, Ph.D., Co-Chair Date Approved: Jan 15th, 2016 ii ABSTRACT The ciliary body (CB) is a two-layered structure in the anterior eye, which is composed of the pigmented outer ciliary epithelium (OCE) and the non-pigmented inner ciliary epithelium (ICE). It is responsible for aqueous humor secretion and lens accommodation. Despite the important roles in maintaining normal eye functions, its development still remains poorly understood. The Notch signaling pathway is an evolutionarily conserved pathway that has diverse functions during tissue development and homeostasis. Canonical Notch signaling is mediated through the recombination signal binding protein for immunoglobulin kappa J region (RBPJ)-dependent transcription activation and repression. In this study, I have demonstrated that Notch2 and RBPJ are important regulators of CB development by conditionally deleting them in the developing CB. -
UNIVERSITY of CALGARY a Novel Neurodevelopmental Disorder Within the Hutterite Population Maps to 16P and a Possible Causative M
UNIVERSITY OF CALGARY A Novel Neurodevelopmental Disorder within the Hutterite Population Maps to 16p and a Possible Causative Mutation in THOC6 was Identified by Chandree Lynn Beaulieu A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF MEDICAL SCIENCES CALGARY, ALBERTA JANUARY, 2010 © Chandree Lynn Beaulieu Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-62049-6 Our file Notre référence ISBN: 978-0-494-62049-6 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
Supplementary Table 1
Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7