Identification of Proteins Involved in Salinity Tolerance in Salicornia Bigelovii

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Proteins Involved in Salinity Tolerance in Salicornia Bigelovii Identification of Proteins Involved in Salinity Tolerance in Salicornia bigelovii by Octavio Rubén Salazar Moya In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy of Science King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia November, 2017 2 EXAMINATION COMMITTEE PAGE The dissertation of Octavio Rubén Salazar Moya is approved by the examination committee. Committee Chairperson: Mark Tester Committee Members: Enrico Martinoia, Heribert Hirt, and Timothy Ravasi 3 COPYRIGHT PAGE © November, 2017 Octavio Rubén Salazar Moya All Rights Reserved 4 ABSTRACT With a global growing demand in food production, agricultural output must increase accordingly. An increased use of saline soils and brackish water would contribute to the required increase in world food production. Abiotic stresses, such as salinity and drought, are also major limiters of crop growth globally - most crops are relatively salt sensitive and are significantly affected when exposed to salt in the range of 50 to 200 mM NaCl. Genomic resources from plants that naturally thrive in highly saline environments have the potential to be valuable in the generation of salt tolerant crops; however, these resources have been largely unexplored. Salicornia bigelovii is a plant native to Mexico and the United States that grows in salt marshes and coastal regions. It can thrive in environments with salt concentrations higher than seawater. In contrast to most crops, S. bigelovii is able to accumulate very high concentrations (in the order of 1.5 M) of Na+ and Cl- in its photosynthetically active succulent shoots. Part of this tolerance is likely to include the storage of Na+ in the vacuoles of the shoots, making S. bigelovii a good model for understanding mechanisms of Na+ compartmentalization in the vacuoles and a good resource for gene discovery. In this research project, phenotypic, genomic, transcriptomic, and proteomic approaches have been used for the identification of candidate genes involved in salinity tolerance in S. bigelovii. The genomes and transcriptomes of 5 three Salicornia species have been sequenced. This information has been used to support the characterization of the salt-induced transcriptome of S. bigelovii shoots and the salt-induced proteome of various organellar membrane enriched fractions from S. bigelovii shoots, which led to the creation of organellar membrane proteomes. Yeast spot assays at different salt concentrations revealed several proteins increasing or decreasing yeast salt tolerance. This work aims to create the basis for Salicornia research by providing a genome, transcriptomes, and organellar proteomes, contributing to salinity tolerance research overall. We identified a set of candidate genes for salinity tolerance with the aim of shedding some light on the mechanisms by which this plant thrives in highly saline environments. 6 ACKNOWLEDGEMENTS I would like to thank Prof. Mark Tester for accepting me in his lab when I was facing the unfortunate situation of my previous supervisor having to leave the university. Without his support, I would not have been able to continue my career in my field of interest. I am truly grateful to have received this lifeline. Of course, I also appreciate all the time we spent together and the discussions that we had. I would also like to thank Dr. Sandra Schmöckel for her assistance and support throughout my Ph.D., she basically acted as my co-supervisor. All the discussions that we had, helped us shape the project. I thank the support of all the “Salties”, particularly to all the students whose conversations always helped to get a smile back into my face. I would like to thank Prof. Nina Fedoroff, she was the reason why I joined KAUST and she started the project with Salicornia. Dr. Suhail Khan was also involved at the start of the Salicornia project and we spent time working together. Dr. Alain Lesimple taught me and worked with me in analytical chemistry, even while he was facing a difficult time. Dr. Muppala Reddy was in charge of Salicornia growth in the greenhouse and helped me understand more about Salicornia. My undergraduate student José Otero, for spending all those long nights in the lab working with me. All the lab support team, who make all the work in the laboratory possible. All the friends that I made in KAUST were very important for me. DooLi Kim, for all her unconditional support during the hard times. Of course, to my committee members for all their time and input while 7 assessing my research project. I would like to thank KAUST for giving me the opportunity to study and fund my research. I would like to thank my family members, who have been always with me. My mother, who has always done her best to support me in any way possible. I would not have been able to do this Ph.D. without all the sacrifices that she has done during her life for me. Thank you, mother, you deserve all the credit. To my aunt, who basically has acted as a second mother throughout my life. You have always supported me and I am very happy that you have looked out for me throughout my life. I also hope this will encourage my cousin, Raúl, whatever you decide to do in life, give it everything. To all my friends back in my country, for their constant support, despite being afar, every time we meet is as if not a single day has passed. There are many people who assisted me and is impossible to mention every single person, but I am grateful to all of you. 8 TABLE OF CONTENTS EXAMINATION COMMITTEE PAGE ....................................................................... 2 COPYRIGHT PAGE ....................................................................................................... 3 ABSTRACT ....................................................................................................................... 4 ACKNOWLEDGEMENTS ............................................................................................ 6 LIST OF ABBREVIATIONS ........................................................................................ 12 LIST OF GENES AND PROTEINS ............................................................................ 17 LIST OF ILLUSTRATIONS ......................................................................................... 20 LIST OF TABLES ........................................................................................................... 24 Chapter 1. Literature review ....................................................................................... 27 1.1 Introduction ..................................................................................................... 27 1.2 Salinity tolerance mechanisms of land plants ............................................. 32 1.2.1 Shoot ion independent toxicity .................................................................. 33 1.2.2 Shoot ion toxicity ......................................................................................... 37 1.3 The role and mechanisms of Na+ accumulation in the vacuoles .............. 41 1.3.1 Ion transport across the tonoplast ............................................................. 42 1.3.2 Proteins involved in Na+ accumulation in vacuoles............................... 45 1.4 Salicornia as a model plant for understanding salinity tolerance ............. 56 1.4.1 Salinity tolerance in Salicornia .................................................................... 58 1.4.2 Evidence of vacuolar Na+/H+ antiporter activity in Salicornia ............. 61 1.5 Aim of the project ............................................................................................ 64 Chapter 2. Genome assembly and annotation of Salicornia species....................... 66 9 2.1 Introduction ..................................................................................................... 66 2.2 Materials and methods ................................................................................... 69 2.2.1 Plant material, library preparation, and genome sequencing ............... 69 2.2.2 Read trimming and genome assembly ..................................................... 71 2.2.3 Genome selection, completeness, and annotation .................................. 72 2.3 Results and discussion .................................................................................... 73 2.3.1 Genome sequencing .................................................................................... 73 2.3.2 Genome assembly using Illumina reads .................................................. 76 2.3.3 Salicornia bigelovii genome assembly using SMRT sequencing and hybrid assemblies .................................................................................................... 88 2.4 Conclusion ........................................................................................................ 90 Chapter 3. Salicornia bigelovii phenotype under salinity ......................................... 92 3.1 Introduction ..................................................................................................... 92 3.2 Materials and methods ................................................................................... 94 3.2.1 Plant material and growth .......................................................................... 94 3.2.2 Plant ion content and phenotype .............................................................. 95 3.3 Results and discussion ...................................................................................
Recommended publications
  • Feedstock List (As of 3/2018)
    Feedstock List (as of 3/2018) FOG: Fats / Oils / Greases Wastes / Oil Seeds Algae / Aquatic Species Industrial Aloe (Aloe vera) Meadowfoam (Limnanthes alba) Brown grease Cyanobacteria Babassu (Attalea speciosa) Mustard (Sinapis alba) Crude glycerine Halophytes (e.g., Salicornia bigelovii) *Camelina (Camelina sativa)* Nuts Fish oil Lemna (Lemna spp.) *Canola, winter (Brassica napus[occasionally rapa Olive (Olea europaea) Industrial effluent (palm) Macroalgae or campestris])* *Carinata (Brassica carinata)* Palm (Elaeis guineensis) Shrimp oil (Caridea) Mallow (Malva spp.) Castor (Ricinus communis) Peanut, Cull (Arachis hypogaea) Tall oil pitch Microalgae Citrus (Citron spp.) Pennycress (Thlaspi arvense) Tallow / Lard Spirodela (Spirodela polyrhiza) Coconut (Cocos nucifera) Pongamia (Millettia pinnata) White grease Wolffia (Wolffia arrhiza) Corn, inedible (Zea mays) Poppy (Papaver rhoeas) Waste vegetable oil Cottonseed (Gossypium) *Rapeseed (Brassica napus)* Yellow grease Croton megalocarpus Oryza sativa Croton ( ) Rice Bran ( ) Cuphea (Cuphea viscossisima) Safflower (Carthamus tinctorius) Flax / Linseed (Linum usitatissimum) Sesame (Sesamum indicum) Gourds / Melons (Cucumis melo) Soybean (Glycine max) Grapeseed (Vitis vinifera) Sunflower (Helianthus annuus) Hemp seeds (Cannabis sativa) Tallow tree (Triadica sebifera) Jojoba (Simmondsia chinensis) Tobacco (Nicotiana tabacum) Jatropha (Jatropha curcas) Calophyllum inophyllum Kamani ( ) Lesquerella (Lesquerella fenderi) Cellulose Woody Grasses Residues Other Types: Arundo (Arundo donax) Bagasse
    [Show full text]
  • Effect of Salinity and Waterlogging on Growth and Survival of Salicornia Europaea L., and Inland Halophyte
    Effect of Salinity and Waterlogging on Growth and Survival of Salicornia europaea L., an Inland Halophyte1 CAROLYN HOWES KEIFFER, BRIAN C. MCCARTFIY, AND IRWIN A. UNGAR, Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 ABSTRACT. Salicornia europaea seedlings were exposed to various salinity and water depths for 11 weeks under controlled, growth chamber conditions. Weekly measurements were made of height, number of nodes, and number of branches per plant. Growth and survival of plants grown with the addition of NaCl were significantly greater (P <0.0001) than for plants which were not given a salt treatment. Although there were no significant (P >0.05) growth differences among plants under different water level conditions within the salt treatment group, plants which were grown without NaCl demonstrated significant decreases in growth in higher water levels, with the greatest growth occurring in the low water treatment group. All plants given a salt treatment survived until the end of the experiment. However, high mortality occurred among the plants that were not salt-treated, with all plants grown under waterlogged conditions dying by week six. The high mortality exhibited by this treatment group indicates that Salicornia, which is typically found in low marsh or inland salt marsh situations, was unable to overcome the combined stress of being continuously waterlogged in a freshwater environment. OHIO J. SCI. 94 (3): 70-73, 1994 INTRODUCTION matter and methane formation is the terminal process in The distribution of plant species in saline environments fresh water marshes (Van Diggelen 1991). Therefore, of inland North America is closely associated with soil plants living in saline waterlogged soils face four major water potentials and other factors influencing the level of problems: 1) inhibition of aerobic root respiration which salinity stress, including microtopography, precipitation, may interfere with the uptake and transport of nutrients and depth of the water table (Ungar et al.
    [Show full text]
  • Southwestern Rare and Endangered Plants
    The Importance of Competition in the Isolation and Establishment of Helianthus Paradoxus (Asteraceae) 1 OSCAR W. VAN AUKEN AND JANIS. K. BUSH Department of Earth and Environmental Sciences, University of Texas at San Antonio, San Antonio, TX 78249 1Author for correspondence and reprints. FAX 210-458-5658; E-mail [email protected] ABSTRACT: Helianthus paradoxus (the Pecos or puzzle sunflower) is a threatened, federally listed annual species that is found in a few locations in west Texas and New Mexico. Two greenhouse experiments were conducted to evaluate the ability of H. paradoxus to compete with its progenitors and a with potential ecosystem competitor, Distichlis spicata (saltgrass) in simulated salt marsh and non-salt marsh environments. The results were usually dependent on soil salinity. Helianthus paradoxus was the better competitor in high saline soil and its progenitor H. annuus (common sunflower) was the better competitor in low saline soil. However, H. paradoxus was the better competitor in both high and low saline soils when compared to it progenitor H. petiolaris (plains sunflower) and to D. spicata, an ecosystem competitor. The ability of H. paradoxus to tolerate higher saline conditions, and perhaps even restrict the more geographically widespread H. annuus in saline soils may have allowed H. paradoxus to establish, become genetically isolated and survive as a species in inland salt marshes. Data presented here indicate that while H. paradoxus can grow in low saline soil, interference from H. annuus in low saline soils could restrict H. paradoxus to saline environments within salt marshes. The ability of H. paradoxus to out-compete D.
    [Show full text]
  • B a N I S T E R I A
    B A N I S T E R I A A JOURNAL DEVOTED TO THE NATURAL HISTORY OF VIRGINIA ISSN 1066-0712 Published by the Virginia Natural History Society The Virginia Natural History Society (VNHS) is a nonprofit organization dedicated to the dissemination of scientific information on all aspects of natural history in the Commonwealth of Virginia, including botany, zoology, ecology, archaeology, anthropology, paleontology, geology, geography, and climatology. The society’s periodical Banisteria is a peer-reviewed, open access, online-only journal. Submitted manuscripts are published individually immediately after acceptance. A single volume is compiled at the end of each year and published online. The Editor will consider manuscripts on any aspect of natural history in Virginia or neighboring states if the information concerns a species native to Virginia or if the topic is directly related to regional natural history (as defined above). Biographies and historical accounts of relevance to natural history in Virginia also are suitable for publication in Banisteria. Membership dues and inquiries about back issues should be directed to the Co-Treasurers, and correspondence regarding Banisteria to the Editor. For additional information regarding the VNHS, including other membership categories, annual meetings, field events, pdf copies of papers from past issues of Banisteria, and instructions for prospective authors visit http://virginianaturalhistorysociety.com/ Editorial Staff: Banisteria Editor Todd Fredericksen, Ferrum College 215 Ferrum Mountain Road Ferrum, Virginia 24088 Associate Editors Philip Coulling, Nature Camp Incorporated Clyde Kessler, Virginia Tech Nancy Moncrief, Virginia Museum of Natural History Karen Powers, Radford University Stephen Powers, Roanoke College C. L. Staines, Smithsonian Environmental Research Center Copy Editor Kal Ivanov, Virginia Museum of Natural History Copyright held by the author(s).
    [Show full text]
  • 5. KALIDIUM Moquin-Tandon in Candolle, Prodr. 13(2): 46, 146
    Flora of China 5: 355-356. 2003. 5. KALIDIUM Moquin-Tandon in Candolle, Prodr. 13(2): 46, 146. 1849. 盐爪爪属 yan zhua zhua shu Shrubs small, much branched; branches not jointed. Leaves alternate, terete or undeveloped, fleshy, basally decurrent. Inflorescence pedunculate, spicate. Flowers spirally arranged, (1 or)3 borne in axil of a fleshy bract, appearing sunken into fleshy rachis, without bractlets, bisexual. Perianth 4- or 5-lobed, spongy in fruit, flat on top surface. Stamens 2. Ovary ovoid; stigmas 2, papillate. Fruit a utricle, enclosed by perianth. Seed vertical, compressed; testa subleathery; embryo semi-annular; perisperm present. Five species: C and SW Asia, SE Europe; five species in China. 1a. Leaves 4–10 mm; spikes 3–4 mm in diam. .................................................................................................................... 1. K. foliatum 1b. Leaves less than 3 mm or undeveloped; spikes 1.5–3 mm in diam. 2a. Branchlets slender; flowers 1 per bract ..................................................................................................................... 5. K. gracile 2b. Branchlets stout; flowers 3 per bract. 3a. Leaves developed, 1–3 mm, ovate, adaxially curved, apex acute ............................................................... 2. K. cuspidatum 3b. Leaves undeveloped, tuberculate, less than 1 mm, apex obtuse. 4a. Plants 10–25 cm tall, branched from base; leaves of branchlets narrow and obconic at base ......... 3. K. schrenkianum 4b. Plants 20–70 cm tall, branched from middle; leaves of branchlets sheathing at base ............................ 4. K. caspicum 1. Kalidium foliatum (Pallas) Moquin-Tandon in Candolle, 1b. Leaves 1–1.5 mm; plants densely Prodr. 13(2): 147. 1849. branched .................................................... 2b. var. sinicum 盐爪爪 yan zhua zhua 2a. Kalidium cuspidatum var. cuspidatum Salicornia foliata Pallas, Reise Russ. Reich. 1: 482.
    [Show full text]
  • Broad-Spectrum Antimicrobial Properties of Medicinally Important Plant Jatropha Curcas L
    Volume 4, Issue 3, September – October 2010; Article 002 ISSN 0976 – 044X BROAD-SPECTRUM ANTIMICROBIAL PROPERTIES OF MEDICINALLY IMPORTANT PLANT JATROPHA CURCAS L. Amit Sharma*, Sonal Saxena, Uzma Rani, Shilpa Rajore, Amla Batra Plant Biotechnology Laboratory, Department of Botany, University of Rajasthan, Jaipur, India Email: [email protected] ABSTRACT In the present study the effectiveness of Jatropha curcas on inactivation of some microorganisms i.e. Escherichia coli, Pseudomonas fluorescens, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis were determined. The filter paper disc method was used for screening of crude ethanolic extract of leaves for antimicrobial activity. The paper discs saturated with extract were placed on the surface of the sterilized nutrient agar medium that had been inoculated with the test organisms by using a sterile swab. The diameters of microbial inhibition zones were measured after 24 hours of incubation at 37°C. According to the methodology used, it was possible to conclude that the ethanolic extract presented antimicrobial activity against Escherichia coli, Pseudomonas fluorescens, Pseudomonas aeruginosa and Staphylococcus aureus. No antimicrobial activity was found against Bacillus subtilis. Ethanolic extract of Jatropha leaves presented the largest inhibition zones (i.e. 11mm.) against E. coli. Keywords: Jatropha curcas L., Ethanolic extract, E. coli, P. fluorescens, P. aeruginosa, S. aureus, B. subtilis. INTRODUCTION MATERIALS AND METHODS Human beings have been utilizing plants for basic Plant material preventive and curative health care since time Plant material used for this study was collected from immemorial. Recent estimations suggest that over 9,000 University Botanical Garden, Botany Department, plants have been known for medicinal applications in University of Rajasthan, Jaipur, India.
    [Show full text]
  • CHENOPODIACEAE 藜科 Li Ke Zhu Gelin (朱格麟 Chu Ge-Ling)1; Sergei L
    Flora of China 5: 351-414. 2003. CHENOPODIACEAE 藜科 li ke Zhu Gelin (朱格麟 Chu Ge-ling)1; Sergei L. Mosyakin2, Steven E. Clemants3 Herbs annual, subshrubs, or shrubs, rarely perennial herbs or small trees. Stems and branches sometimes jointed (articulate); indumentum of vesicular hairs (furfuraceous or farinose), ramified (dendroid), stellate, rarely of glandular hairs, or plants glabrous. Leaves alternate or opposite, exstipulate, petiolate or sessile; leaf blade flattened, terete, semiterete, or in some species reduced to scales. Flowers monochlamydeous, bisexual or unisexual (plants monoecious or dioecious, rarely polygamous); bracteate or ebracteate. Bractlets (if present) 1 or 2, lanceolate, navicular, or scale-like. Perianth membranous, herbaceous, or succulent, (1–)3–5- parted; segments imbricate, rarely in 2 series, often enlarged and hardened in fruit, or with winged, acicular, or tuberculate appendages abaxially, seldom unmodified (in tribe Atripliceae female flowers without or with poorly developed perianth borne between 2 specialized bracts or at base of a bract). Stamens shorter than or equaling perianth segments and arranged opposite them; filaments subulate or linear, united at base and usually forming a hypogynous disk, sometimes with interstaminal lobes; anthers dorsifixed, incumbent in bud, 2-locular, extrorse, or dehiscent by lateral, longitudinal slits, obtuse or appendaged at apex. Ovary superior, ovoid or globose, of 2–5 carpels, unilocular; ovule 1, campylotropous; style terminal, usually short, with 2(–5) filiform or subulate stigmas, rarely capitate, papillose, or hairy on one side or throughout. Fruit a utricle, rarely a pyxidium (dehiscent capsule); pericarp membranous, leathery, or fleshy, adnate or appressed to seed. Seed horizontal, vertical, or oblique, compressed globose, lenticular, reniform, or obliquely ovoid; testa crustaceous, leathery, membranous, or succulent; embryo annular, semi-annular, or spiral, with narrow cotyledons; endosperm much reduced or absent; perisperm abundant or absent.
    [Show full text]
  • Pdf 193.18 K
    Journal of Food Biosciences and Technology, Islamic Azad University, Science and Research Branch, Vol. 9, No. 2, 21-28, 2019 Respiration Rate and Some Physicochemical Characteristics of Salicornia bigelovii as a Leafy Green Vegetable B. Tajeddin a*, H. Behmadi b a Associate Professor of Packaging Engineering, Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. b Assistant Professor of Food Science and Technology, Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. Received: 22 December 2018 Accepted: 8 June 2019 ABSTRACT: Salicornia is a valuable halophyte annual plant in the most species. This salinity tolerance plant that grows in salt water marshes are found all over the world. Since salinity is a major stress factor, Salicornia is a priceless edible vegetable, considered to be a favourable resource for cultivation in arid and semiarid coastal zones. However, the important thing is that its properties should be well known especially as a leafy vegetable. On the other hand, Salicornia bigelovii is a perishable vegetable, with short storage life under ambient conditions. Thus, knowing its characteristics can be a great help to preserve it longer. Accordingly, the physicochemical properties, chemical composition and respiration rate of Salicornia biglovii grown in Aq-Qalla Salinity Research Station, Golestan Agricultural and Natural Resources Research and Education Center, Iran were investigated in this paper. The results showed that the moisture content, total soluble solids content, pH, titratable acidity, ascorbic acid content, salinity content, respiration rate, maximum force, displacement, and color indices (L*, a*, b*) of S. bigelovii are 89.67%, 15.83%, 6.11, 0.05%, 0.03%, 56ds/m, 26.80 mgCO2/kg.hr, 1.4 N, 1.47 mm, and 23.69, -6.77, 15.73, respectively.
    [Show full text]
  • Common Edible Seaweeds in the Gulf of Alaska
    eliciousor millennia, Alaska edible Natives have seaweedssubsisted COMMON EDIBLE Don the wild edibles—plants, animals, and F seaweeds—found in abundance along Alaska’s shores. In this book, Dr. Dolly Garza, a Haida-Tlingit Indian, shows you how to look for, identify, harvest, preserve, and prepare several species of seaweeds SEAWEEDS and one plant for tasty snacks or for the dinner table. IN THE GULF OF ALASKA A University of Alaska Fairbanks professor emerita, Dolly was raised in southeast Alaska Second Edition where her family routinely harvested seaweeds as a diet staple, a practice they continue today. Dolly enjoys sharing her traditional Native knowledge through presentations to Elderhostel groups, youth groups, and others. In this book she shares with you her lifetime of first-hand knowledge about the pleasures of harvesting, preparing, and eating some of the most common and delectable wild edibles found along Gulf of Alaska shores. US $10.00 CAN $10.00 DOLLY GARZA Seaweeds book cover.indd 1 3/28/12 9:30 AM COMMON EDIBLE SEAWEEDS IN THE GULF OF ALASKA Second Edition DOLLY GARZA Published by Alaska Sea Grant, University of Alaska Fairbanks SG-ED-46 Elmer E. Rasmuson Library Cataloging in Publication Data Garza, Dolly A. Common edible seaweeds in the Gulf of Alaska / Dolly Garza. — Fair- banks, Alaska : Alaska Sea Grant College Program, University of Alaska Fairbanks. p. : ill. ; cm. - (Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-46) 1. Marine algae as food—Alaska—Alaska, Gulf of. 2. Cookery (Marine algae) I. Title. II. Series: Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-46.
    [Show full text]
  • Species Selected by the CITES Plants Committee Following Cop14
    PC19 Doc. 12.3 Annex 3 Review of Significant Trade: Species selected by the CITES Plants Committee following CoP14 CITES Project No. S-346 Prepared for the CITES Secretariat by United Nations Environment Programme World Conservation Monitoring Centre PC19 Doc. 12.3 UNEP World Conservation Monitoring Centre 219 Huntingdon Road Cambridge CB3 0DL United Kingdom Tel: +44 (0) 1223 277314 Fax: +44 (0) 1223 277136 Email: [email protected] Website: www.unep-wcmc.org ABOUT UNEP-WORLD CONSERVATION CITATION MONITORING CENTRE UNEP-WCMC (2010). Review of Significant Trade: The UNEP World Conservation Monitoring Species selected by the CITES Plants Committee Centre (UNEP-WCMC), based in Cambridge, following CoP14. UK, is the specialist biodiversity information and assessment centre of the United Nations Environment Programme (UNEP), run PREPARED FOR cooperatively with WCMC, a UK charity. The CITES Secretariat, Geneva, Switzerland. Centre's mission is to evaluate and highlight the many values of biodiversity and put authoritative biodiversity knowledge at the DISCLAIMER centre of decision-making. Through the analysis The contents of this report do not necessarily and synthesis of global biodiversity knowledge reflect the views or policies of UNEP or the Centre provides authoritative, strategic and contributory organisations. The designations timely information for conventions, countries employed and the presentations do not imply and organisations to use in the development and the expressions of any opinion whatsoever on implementation of their policies and decisions. the part of UNEP or contributory organisations The UNEP-WCMC provides objective and concerning the legal status of any country, scientifically rigorous procedures and services. territory, city or area or its authority, or These include ecosystem assessments, support concerning the delimitation of its frontiers or for the implementation of environmental boundaries.
    [Show full text]
  • Salicornia L., Chenopodiaceae)
    TAXON 56 (4) • November 2007: 1143–1170 Kadereit & al. • Phylogeny and biogeography of Salicornia A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae) Gudrun Kadereit1*, Peter Ball2, Svetlana Beer3, Ladislav Mucina4, Dmitry Sokoloff 5, Patrick Teege1, Ahmet E. Yaprak5 & Helmut Freitag6 1 Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany 2 Biology Department, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada 3 Higher Plants Department, Moscow State University, 119992 Moscow, Russia 4 Dept. of Botany & Zoology, Evolutionary Plant Biology & Conservation Group, Stellenbosch University, 7602 Matieland, South Africa 5 Ankara University, Science Faculty, Department of Biology, Besevler/Ankara, Turkey 6 Arbeitsgruppe Systematik und Morphologie der Pflanzen, Universität Kassel, 34109 Kassel, Germany * Author for correspondence ([email protected]) In this study we analysed ETS sequence data of 164 accessions belonging to 31 taxa of Salicornia, a wide- spread, hygrohalophytic genus of succulent, annual herbs of Chenopodiaceae subfam. Salicornioideae, to investigate phylogenetic and biogeographical patterns and hypothesise about the processes that shaped them. Furthermore, our aim was to understand the reasons for the notorious taxonomic difficulties in Salicornia. Salicornia probably originated during the Miocene somewhere between the Mediterranean and Central Asia from within the perennial Sarcocornia
    [Show full text]
  • Paleocene–Eocene Palynomorphs from the Chicxulub Impact Crater, Mexico
    Palynology ISSN: 0191-6122 (Print) 1558-9188 (Online) Journal homepage: https://www.tandfonline.com/loi/tpal20 Paleocene–Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: angiosperm pollen Vann Smith, Sophie Warny, David M. Jarzen, Thomas Demchuk, Vivi Vajda & Sean P.S. Gulick To cite this article: Vann Smith, Sophie Warny, David M. Jarzen, Thomas Demchuk, Vivi Vajda & Sean P.S. Gulick (2020): Paleocene–Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: angiosperm pollen, Palynology, DOI: 10.1080/01916122.2019.1705417 To link to this article: https://doi.org/10.1080/01916122.2019.1705417 View supplementary material Accepted author version posted online: 17 Dec 2019. Published online: 23 Jan 2020. Submit your article to this journal Article views: 55 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tpal20 PALYNOLOGY https://doi.org/10.1080/01916122.2019.1705417 Paleocene–Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: angiosperm pollen Vann Smitha,b , Sophie Warnya,b, David M. Jarzenc, Thomas Demchuka, Vivi Vajdad and Sean P.S. Gulicke aDepartment of Geology and Geophysics, LSU, Baton Rouge, LA, USA; bMuseum of Natural Science, LSU, Baton Rouge, LA, USA; cCleveland Museum of Natural History, Cleveland, OH, USA; dSwedish Museum of Natural History, Stockholm, Sweden; eInstitute for Geophysics and Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, TX, USA ABSTRACT KEYWORDS At the end of the Cretaceous Period, an asteroid collided with the Earth and formed the Chicxulub Mexico; Paleocene; impact structure on the Yucatan Platform.
    [Show full text]