Are You in Tune?

Total Page:16

File Type:pdf, Size:1020Kb

Are You in Tune? Are You in Tune? A Phenomenological Enquiry into Pythagorean Tuning in the Creation of New Music Miranda Jensen ORCID: 0000-0002-0920-7695 This thesis is being submitted for the total fulfilment of the Doctor of Philosophy. August 2017 I Victorian College of the Arts University of Melbourne Abstract This research explores the experiential and practical performance aspects arising through using Pythagorean Tuning. The focus is primarily on the application of the tuning system in the creation, performance and apprehension of new music. In Western cultures, equal temperament is the dominant tuning standard to the extent that musicians and audiences may not be aware of other tuning possibilities. However, using non- tempered tuning standards arguably produces a different physical experience in the listener and a different quality of physicality in sound production on a musical instrument. The questions arise: How do people experience non-tempered tuning? How do musicians respond to the demands of playing in tuning systems that are not familiar and may work counter intuitively to the architecture of the instrument they play? Does the experience of the musician using different tuning systems enhance or detract from other performance attributes? This research is supported by practice led enquiry where the primary researcher collaborated with a number of producers to create an original album of contemporary music. A second album was produced which explored a range of musical styles through re-imaging Christmas carols. Together the two albums form the creative submission which provides a diversity of musical styles and artistic approaches using the Pythagorean tuning system. II Declaration I Miranda Jensen declare that this thesis comprises the original work of the author towards the award of Doctor of Philosophy except where indicated in the Preface. Due acknowledgement has been made in the text to all other material used. The thesis is fewer than the maximum word limit in length, exclusive of tables, maps, bibliographies and appendices. Signed___________________________ Miranda Jensen 01/08/2017 III Preface This thesis is the original work of Miranda Jensen and includes a summary of each of the collaborations that contributed to the original album that is part of the creative submission. Within this thesis text has been contributed by some of the collaborators on their experience of the project and where such inclusions are made, credit is attributed to the collaborator. Where creative works are the product of a collaboration with a producer, the instrumental accompaniment is generally the work of the collaborator and the lyric and vocals the work of the primary researcher. In some instances, final mixes were provided by the producer and in other instances they were completed by the primary researcher. No aspect of the thesis or the creative works have been submitted for other qualifications. One of the Christmas Carols submitted as part of the Christmas album was completed prior to enrolment in this degree, however, it was the first experiment of the tuning system in question and contributed to the application process to undertake this study. One of the original songs had been co-written prior to undertaking this degree, however was selected to be produced due to its harmonic structure, similarly a second song was also selected from my back catalogue for inclusion. An independent proof read was performed by a family member who is a secondary school teacher but not familiar with the content covered in this paper. Funding for the presentation of this research at conferences was provided by the Victorian College of the Arts, Faculty Small Grants. Funding was also provided from the same source for the final mastering of the original album. IV Acknowledgments A number of people have supported this research which has been greatly appreciated. Many thanks to my research supervisor Dr Rob Vincs for being the best PhD supervisor you could hope to have. Thanks to the many producers who collaborated and contributed to this research, specifically; Ben Hellmig, Jesse Thom, George Papanicolaou, Caleb Miller, Mark Kowalczuk and Jacky Ligon. Thanks to Grzegorz Machnacki for interest and effort tuning my piano to Pythagorean Tuning. Thanks to Mark Buys for lively discussion and referrals and thanks to John Kynnersley for an independent proof read of the final paper. V Table of Contents Abstract .................................................................................................................. II Declaration ..............................................................................................................III Preface ................................................................................................................... IV Acknowledgments ................................................................................................... V Table of Contents ................................................................................................... VI Table of Figures .................................................................................................... VIII Introduction ............................................................................................................. 1 Chapter 1 - Background ............................................................................................ 2 Pythagorean Philosophy .................................................................................................. 2 Early Examples of Natural Tuning ..................................................................................... 4 Developing Temperament Accuracy ................................................................................. 5 Societal Influences and Environment ................................................................................ 7 Inventions and their Impact on Temperament .................................................................. 8 Influencing Aspects of the 1900’s ..................................................................................... 9 Natural Tuning in the Modern World.............................................................................. 10 Physics of Sound ............................................................................................................ 12 Visual Sound.................................................................................................................. 14 Mathematics of Natural Frequencies .............................................................................. 15 Naturally Occurring Harmonics ........................................................................................... 19 Understanding Temperament or Tuning ............................................................................ 20 Frequency Perception .................................................................................................... 21 Chapter 2 – Aims and Scope of Research ................................................................. 23 Aims of Research ........................................................................................................... 23 Phenomenological Enquiry............................................................................................. 25 Scope ............................................................................................................................ 26 Relevance of this Research ............................................................................................. 28 Process Practical ............................................................................................................ 29 Chapter 3 – Summary of Findings ............................................................................ 34 Timeline of Experiences through Practice and Projects ................................................... 35 Spring Song Live Performance Experimentation................................................................. 36 Practice and Compositional Enquiry ................................................................................... 40 Instrumentation Experimentation ...................................................................................... 41 Practical Tuning Experimentation ....................................................................................... 42 Impact of PT on Performance Practice................................................................................ 43 Creative Submission Dialogue ........................................................................................ 45 Fall in Love ........................................................................................................................... 45 Unstable .............................................................................................................................. 48 A New Day ........................................................................................................................... 49 A Love that You Own ........................................................................................................... 52 Taken by the Beat ................................................................................................................ 53 Beyond Belief....................................................................................................................... 56 Divine ..................................................................................................................................
Recommended publications
  • Sound Sensor Experiment Guide
    Sound Sensor Experiment Guide Sound Sensor Introduction: Part of the Eisco series of hand held sensors, the sound sensor allows students to record and graph data in experiments on the go. This sensor has two modes of operation. In slow mode it can be used to measure sound-pressure level in decibels. In fast mode it can display waveforms of different sound sources such as tuning forks and wind-chimes so that period and frequency can be determined. With two sound sensors, the velocity of propagation of sound in various media could be determined by timing a pulse travelling between them. The sound sensor is located in a plastic box accessible to the atmosphere via a hole in its side. Sensor Specs: Range: 0 - 110 dB | 0.1 dB resolution | 100 max sample rate Activity – Viewing Sound Waves with a Tuning Fork General Background: Sound waves when transmitted through gases, such as air, travel as longitudinal waves. Longitudinal waves are sometimes also called compression waves as they are waves of alternating compression and rarefaction of the intermediary travel medium. The sound is carried by regions of alternating pressure deviations from the equilibrium pressure. The range of frequencies that are audible by human ears is about 20 – 20,000 Hz. Sounds that have a single pitch have a repeating waveform of a single frequency. The tuning forks used in this activity have frequencies around 400 Hz, thus the period of the compression wave (the duration of one cycle of the wave) that carries the sound is about 2.5 seconds in duration, and has a wavelength of 66 cm.
    [Show full text]
  • The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
    The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely.
    [Show full text]
  • Fftuner Basic Instructions. (For Chrome Or Firefox, Not
    FFTuner basic instructions. (for Chrome or Firefox, not IE) A) Overview B) Graphical User Interface elements defined C) Measuring inharmonicity of a string D) Demonstration of just and equal temperament scales E) Basic tuning sequence F) Tuning hardware and techniques G) Guitars H) Drums I) Disclaimer A) Overview Why FFTuner (piano)? There are many excellent piano-tuning applications available (both for free and for charge). This one is designed to also demonstrate a little music theory (and physics for the ‘engineer’ in all of us). It displays and helps interpret the full audio spectra produced when striking a piano key, including its harmonics. Since it does not lock in on the primary note struck (like many other tuners do), you can tune the interval between two keys by examining the spectral regions where their harmonics should overlap in frequency. You can also clearly see (and measure) the inharmonicity driving ‘stretch’ tuning (where the spacing of real-string harmonics is not constant, but increases with higher harmonics). The tuning sequence described here effectively incorporates your piano’s specific inharmonicity directly, key by key, (and makes it visually clear why choices have to be made). You can also use a (very) simple calculated stretch if desired. Other tuner apps have pre-defined stretch curves available (or record keys and then algorithmically calculate their own). Some are much more sophisticated indeed! B) Graphical User Interface elements defined A) Complete interface. Green: Fast Fourier Transform of microphone input (linear display in this case) Yellow: Left fundamental and harmonics (dotted lines) up to output frequency (dashed line).
    [Show full text]
  • The Hell Harp of Hieronymus Bosch. the Building of an Experimental Musical Instrument, and a Critical Account of an Experience of a Community of Musicians
    1 (114) Independent Project (Degree Project), 30 higher education credits Master of Fine Arts in Music, with specialization in Improvisation Performance Academy of Music and Drama, University of Gothenburg Spring 2019 Author: Johannes Bergmark Title: The Hell Harp of Hieronymus Bosch. The building of an experimental musical instrument, and a critical account of an experience of a community of musicians. Supervisors: Professor Anders Jormin, Professor Per Anders Nilsson Examiner: Senior Lecturer Joel Eriksson ABSTRACT Taking a detail from Hieronymus Bosch’s Garden Of Earthly Delights as a point of departure, an instrument is built for a musical performance act deeply involving the body of the musician. The process from idea to performance is recorded and described as a compositional and improvisational process. Experimental musical instrument (EMI) building is discussed from its mythological and sociological significance, and from autoethnographical case studies of processes of invention. The writer’s experience of 30 years in the free improvisation and new music community, and some basic concepts: EMIs, EMI maker, musician, composition, improvisation, music and instrument, are analyzed and criticized, in the community as well as in the writer’s own work. The writings of Christopher Small and surrealist ideas are main inspirations for the methods applied. Keywords: Experimental musical instruments, improvised music, Hieronymus Bosch, musical performance art, music sociology, surrealism Front cover: Hieronymus Bosch, The Garden of Earthly
    [Show full text]
  • Imaginary Marching Band Paper 2
    The Imaginary Marching Band: An Experiment in Invisible Musical Interfaces Scott Peterman Parsons, The New School for Design 389 6th Avenue #3 New York, NY 10014 USA +1 917 952 2360 [email protected] www.imaginarymarchingband.com ABSTRACT INTRODUCTION The Imaginary Marching Band is a series of open- The Imaginary Marching Band is not just an source wearable instruments that allow the wearer to experiment in interaction design or music generation. create real music simply by pantomiming playing an This is a project geared towards a larger goal: the instrument. liberation of spontaneous creativity from the theater, Keywords studio, and writing desk and to embed it into our daily lives. MIDI Interface, Wearable Computer, Fashionable Technology, Digital Music, Invisible It is also a performance piece, an actual band who will Instruments be performing at a variety of festivals and institutions around the world this summer and fall. This project is open-source, both as software and as hardware. The hope is to encourage others to experiment within this area of design: the creation of invisible interfaces that mimic real world actions, and in so doing inspire a sense of play and enhance - rather than diminish - the creative experience. INSPIRATION But almost none of these instruments have brought the The twentieth century saw frequent bursts of Dionysian joy of actually creating music to a wider innovation in the manufacture and design of musical audience, nor the act of performance out into the “real” instruments. From early novelties by Russolo and world; if anything, these inventions appeal exclusively Theramin to mid-century instrument modification by to the most experimental of musical spaces.
    [Show full text]
  • Tuning Forks As Time Travel Machines: Pitch Standardisation and Historicism for ”Sonic Things”: Special Issue of Sound Studies Fanny Gribenski
    Tuning forks as time travel machines: Pitch standardisation and historicism For ”Sonic Things”: Special issue of Sound Studies Fanny Gribenski To cite this version: Fanny Gribenski. Tuning forks as time travel machines: Pitch standardisation and historicism For ”Sonic Things”: Special issue of Sound Studies. Sound Studies: An Interdisciplinary Journal, Taylor & Francis Online, 2020. hal-03005009 HAL Id: hal-03005009 https://hal.archives-ouvertes.fr/hal-03005009 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Tuning forks as time travel machines: Pitch standardisation and historicism Fanny Gribenski CNRS / IRCAM, Paris For “Sonic Things”: Special issue of Sound Studies Biographical note: Fanny Gribenski is a Research Scholar at the Centre National de la Recherche Scientifique and IRCAM, in Paris. She studied musicology and history at the École Normale Supérieure of Lyon, the Paris Conservatory, and the École des hautes études en sciences sociales. She obtained her PhD in 2015 with a dissertation on the history of concert life in nineteenth-century French churches, which served as the basis for her first book, L’Église comme lieu de concert. Pratiques musicales et usages de l’espace (1830– 1905) (Arles: Actes Sud / Palazzetto Bru Zane, 2019).
    [Show full text]
  • Andrián Pertout
    Andrián Pertout Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition Volume 1 Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy Produced on acid-free paper Faculty of Music The University of Melbourne March, 2007 Abstract Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition encompasses the work undertaken by Lou Harrison (widely regarded as one of America’s most influential and original composers) with regards to just intonation, and tuning and scale systems from around the globe – also taking into account the influential work of Alain Daniélou (Introduction to the Study of Musical Scales), Harry Partch (Genesis of a Music), and Ben Johnston (Scalar Order as a Compositional Resource). The essence of the project being to reveal the compositional applications of a selection of Persian, Indonesian, and Japanese musical scales utilized in three very distinct systems: theory versus performance practice and the ‘Scale of Fifths’, or cyclic division of the octave; the equally-tempered division of the octave; and the ‘Scale of Proportions’, or harmonic division of the octave championed by Harrison, among others – outlining their theoretical and aesthetic rationale, as well as their historical foundations. The project begins with the creation of three new microtonal works tailored to address some of the compositional issues of each system, and ending with an articulated exposition; obtained via the investigation of written sources, disclosure
    [Show full text]
  • <I>Manifestations</I>: a Fixed Media Microtonal Octet
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2017 Manifestations: A fixed media microtonal octet Sky Dering Van Duuren University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Composition Commons Recommended Citation Van Duuren, Sky Dering, "Manifestations: A fixed media microtonal octet. " Master's Thesis, University of Tennessee, 2017. https://trace.tennessee.edu/utk_gradthes/4908 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Sky Dering Van Duuren entitled "Manifestations: A fixed media microtonal octet." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Music, with a major in Music. Andrew L. Sigler, Major Professor We have read this thesis and recommend its acceptance: Barbara Murphy, Jorge Variego Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Manifestations A fixed media microtonal octet A Thesis Presented for the Master of Music Degree The University of Tennessee, Knoxville Skylar Dering van Duuren August 2017 Copyright © 2017 by Skylar van Duuren.
    [Show full text]
  • The Tuning Fork: an Amazing Acoustics Apparatus
    FEATURED ARTICLE The Tuning Fork: An Amazing Acoustics Apparatus Daniel A. Russell It seems like such a simple device: a U-shaped piece of metal and Helmholtz resonators were two of the most impor- with a stem to hold it; a simple mechanical object that, when tant items of equipment in an acoustics laboratory. In 1834, struck lightly, produces a single-frequency pure tone. And Johann Scheibler, a silk manufacturer without a scientific yet, this simple appearance is deceptive because a tuning background, created a tonometer, a set of precisely tuned fork exhibits several complicated vibroacoustic phenomena. resonators (in this case tuning forks, although others used A tuning fork vibrates with several symmetrical and asym- Helmholtz resonators) used to determine the frequency of metrical flexural bending modes; it exhibits the nonlinear another sound, essentially a mechanical frequency ana- phenomenon of integer harmonics for large-amplitude lyzer. Scheibler’s tonometer consisted of 56 tuning forks, displacements; and the stem oscillates at the octave of the spanning the octave from A3 220 Hz to A4 440 Hz in steps fundamental frequency of the tines even though the tines of 4 Hz (Helmholtz, 1885, p. 441); he achieved this accu- have no octave component. A tuning fork radiates sound as racy by modifying each fork until it produced exactly 4 a linear quadrupole source, with a distinct transition from beats per second with the preceding fork in the set. At the a complicated near-field to a simpler far-field radiation pat- 1876 Philadelphia Centennial Exposition, Rudolph Koenig, tern. This transition from near field to far field can be seen the premier manufacturer of acoustics apparatus during in the directivity patterns, time-averaged vector intensity, the second half of the nineteenth century, displayed his and the phase relationship between pressure and particle Grand Tonometer with 692 precision tuning forks ranging velocity.
    [Show full text]
  • Good Vibrations (Part 1 of 2): [Adapted from NASA’S Museum in a Box]
    National Aeronautics and Space Administration Good Vibrations (Part 1 of 2): [Adapted from NASA’s Museum in a Box] What is it? The transfer of energy from one material to another can be measured in different ways. One that you may not initially think of is sound. Sound can be good, as it allows us to communicate and interact with our surroundings, but sound can also cause disturbance. For example, aircraft noise can be quite loud and cause disturbance in neighborhoods. Scientists and engineers are working hard to reduce these sounds in different ways. In this activity, students will interact with tuning forks to learn about sound. This activity discusses topics related to National Science Education Standards: 4-PS4-3: Generate and compare multiple solutions that use patterns to transfer information. - This activity uses two different models to “see” sound waves, and covers discussions of the transfer of information from one material to another through waves. Materials (per team of 4 to 8 students): Equipment, provided by NASA: - Set of 4 Tuning Forks - Ping pong ball with attached string Equipment, not provided by NASA: - Container of Water (plastic food storage container would work well) - Soft item for activating tuning forks (book spine works well) Materials (per student): Printables: - Tuning Fork Worksheet Artifact included in this kit: - Fluid Mechanics Lab “Dimple Car” and Information Sheet Recommended Speakers from Ames: Please note that our Speakers Bureau program is voluntary and we cannot guarantee the availability of any speaker. To request a speaker, please visit http://speakers.grc.nasa.gov. www.nasa.gov 1 Dean Kontinos (Hypervelocity Air and Space Vehicles) Ernie Fretter (Arc-Jet, Re-entry Materials) Mark Mallinson (Space, Satellites, Moon, Shuttle Technology) Set-Up Recommendations: - Prepare copies of the Tuning Fork Worksheet.
    [Show full text]
  • Tuning the Harp with a Tuner and By
    TUNING THE HARP WITH A TUNER and TUNING BY EAR Courtesy of and by: Elizabeth Volpé Bligh www.elizabethvolpebligh.com Principal Harp, Retired, Vancouver Symphony Harp Faculty, VSOI, VSO School of Music Adjunct Professor, UBC School of Music, President, West Coast Harp Society-AHS BC Chapter I sometimes make the mistake of assuming that everyone knows how to use an electronic tuner, or to tune by ear. There is some misinformation on the Internet, so don't believe everything you see on this subject. I saw one video that said to tune with all the pedals in the natural position (don't do that)! I have articles on my web site about this subject and others. Harp Column magazine, May’s 2020 has articles on tuning and recommendations of tuning apps. https://harpcolumn.com/blog/top-apps-for-tuning/ Tune your harp every day. The harp will stay in tune better, and your tuning skills will improve. Always tune with pedals in the flat position and the discs unengaged. On a lever harp, the levers should be unengaged. This means that when you are tuning a C flat, the tuner will read its enharmonic note, "B". The F flat will read as "E". Some tuners read accidental notes only as sharps or flats, so be aware of the enharmonic names of the notes you are tuning, i.e. E flat = D#, A flat = G#. Most North American harpists tune their A in the range from 440 to 442. Check the tuner's calibration every time you use it, in case you have accidentally pressed the calibration button and it has gone higher or lower.
    [Show full text]
  • Divisions of the Tetrachord Are Potentially Infinite in Number
    EDITOR'S INTRODUCTION ''''HEN I WAS A young student in California, Lou Harrison suggested that I send one of my first pieces, Piano Study #5 (forJPR) to a Dr. Chalmers, who might publish it in his journal Xenbarmonikon. Flattered and fascinated, I did, and John did, and thus began what is now my twenty year friendship with this polyglot fungus researcher tuning guru science fiction devotee and general everything expert. Lou first showed me the box of papers, already called Divisions ofthe Tetracbord, in 1975. I liked the idea of this grand, obsessive project, and felt that it needed to be availablein a way that was, likeJohn himself, out of the ordinary. When Jody Diamond, Alexis Alrich, and I founded Frog Peak Music (A Composers' Collective) in the early 80S, Divisions (along with Tenney's then unpublished Meta + Hodos) was in my mind as one of the publishing collective's main reasons for existing, and for calling itself a publisher of"speculative theory." The publication of this book has been a long and arduous process. Re­ vised manuscripts traveled with me from California to Java and Sumatra (John requested we bring him a sample of the local fungi), and finally to our new home in New Hampshire. The process of writing, editing, and pub­ lishing it has taken nearly fifteen years, and spanned various writing tech­ nologies. (When John first started using a word processor, and for the first time his many correspondents could actually read his long complicated letters, my wife and I were a bit sad-we had enjoyed reading his com­ pletely illegible writing aloud as a kind of sound poetry).
    [Show full text]