Frictions Stir Process Tool for Surface Modification of Different Alloy: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Frictions Stir Process Tool for Surface Modification of Different Alloy: a Review A JOURNAL OF COMPOSITION THEORY ISSN : 0731-6755 Frictions Stir Process Tool for Surface Modification of Different Alloy: A Review RakeshKumar1 1). Ph.D. Research Scholar, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, India. 1) Assistant Professor, Department of Mechanical Engineering, Chandigarh Group of Colleges, Landran, Mohali, Punjab, India.Email: [email protected] Prabhat Kumar2 2) Assistant Professor, Department of Mechanical Engineering, Chandigarh Group of Colleges, Landran, Mohali, Punjab, India. Email: [email protected] Santosh Kumar3 3) Ph.D. Research Scholar, Department of Mechanical Engineering, IKG Punjab Technical University, Kapurthala, Punjab, India. 3) , Assistant professor, Department of Mechanical Engineering, Chandigarh Group of Colleges, Landran, Mohali, Punjab, India Email: [email protected] Abstract- Friction stir processing (FSP) is a solid state process used to improve the local microstructure, mechanical properties (ductility, wear resistance, strength, hardness) and erosion corrosion resistance of similar or dissimilar material but does not weld material together. FSP is carried out to selected depth of the plate thickness and locally eliminates casting defects, increasing fatigue and resistance to corrosion etc. Hence, this paper basically reviews the basic principle, process, and applications of FSP technology as well as its future research directions and development prospects. Keywords – Friction Stir Processing, Surface Modification, Process Parameters and Applications. 1. INTRODUCTION Material deterioration in the form of corrosion, wear and erosion-corrosion are serious issues in marine environment and accounts for multi-million dollar loss to the relevant industries [1]. Due to the direct impact of hard abrasive particles mixed in a corrosive medium is the main root for deterioration and degradation of marine parts subjected to hydrodynamic conditions [1]. Normally, erosion occurs due to the repetitive impacts of hard erodent particles which ultimately start to severe material loss and surface damage. Erosion-corrosion alone has been reported to be responsible 50-75% of total arrest time in such applications [2]. Overall monetary loss because of different types of corrosion accounts US$ 6500 million annually in India. It has been concluded that surface protection of metal component used for sea water handling, propulsion & shipping industry is required to avoid their premature failure. Now a day, in naval platforms, thermal spray coatings are commonly applied to solve E-C problems [3-6]. Several authors deposited different coating on marine components using different thermal spray processes to resist E-C problem. The surface coating reduced E-C problem by the development of strongly and stable adherent oxide layer. However, due to existence of lamellar micro structure of thermal sprayed coatings, pores, splat boundaries, and un-melted powder particles results in anisotropic behavior and poor mechanical and tribological characteristics. This results in sudden failure of coating [1]. Hence, changing the surface characteristics of the parent metal itself without altering the surface chemistry is an effective way to solve the above mentioned limitations. Friction Stir Processing (FSP) is an effective way for improving the surface as well as bulk characteristics through micro structural refinement in metal/materials [7-14]. The metallic parts manufactured by casting process are comparatively complex and low cost. In addition, FSP can be utilized to eliminate many of the defects and to create a wrought microstructure into a cast component [15]. 1.1 Principle of FSP- FSP works on the principle of FSW (Friction Stir Welding) which is a solid state joining method initially developed at the Welding Institute in the U.K. in 1991 [16]. Figure 1 shows the basic principle of FSP. Volume XII Issue VII JULY 2019 Page No: 860 A JOURNAL OF COMPOSITION THEORY ISSN : 0731-6755 Figure 1: Schematics diagram of FSP techniques [17] Friction stir processing consists of a non-consumable rotating tool, which is inserted into work at the interface surfaces along with axial downward force, until tool shoulder reached the work. In FSP, the tool plays two main roles: heating and deformation of substrate material. The heat is induced mainly because of the friction of the rotating shoulder with the substrate material, while the rotating pin stirs the heated substrate material. Due to this the heated material becomes softens and moves around the rotating probe [17]. Thereafter, the material that flows around the tool is exposed to extreme permanent deformation, which results in a remarkable refinement of microstructure in the processed zone. 1.2 Parameters of FSP- The main parameters of FSP are divided into three different groups as depicted in Fig. 2: a) Machine parameters/variables. b) Tool design specification or parameters. c) Material characteristics. Figure 2: Types of FSP variables [18]. The important mechanical characteristics of base metals depend upon the process parameters. More heat input is necessary for materials that have high melting point namely Cu alloy, Ti alloy steels etc [19].Balasubramanian, V., 2008 [20] explain that major mechanical properties like hardness, yield strength and ductility of base material are essential that control the plastic distortion during FSW. In high heat conductivity materials (titanium alloys, copper alloys and steels), more heat input is essential to achieve defect free processing [21].The greater heat conductivity of metals would allow higher heat Volume XII Issue VII JULY 2019 Page No: 861 A JOURNAL OF COMPOSITION THEORY ISSN : 0731-6755 loss by conduction process [22]. To control thermal characteristics a supporting plate below the work material should be used in SP [23, 24]. a) Machine variables- The important machine variables are traverses speed and rotating rate of the tool. Tool transverse speeds and rotational speeds find some amount of heat developed in the work material [25]. Sufficient amount of heat Produced in stir zone is essential for the development of defect free processing [26]. b) Tool design variables- Tool geometry comprises of shoulder diameter, probe shape, pin feature and size of pin etc. During FSP flow of plasticized metals is mainly influenced by rotational, traverse motion and tool geometry of the FSP tool [27, 28]. Tool angles are very important in FSP because it effect the material flow, heat generation, as well as microstructure etc [26].The effective tilt angle (1-3°) is very essential to keep the work material reservoir below the tool. In addition the use of wide shoulder diameter responsible for high heat development and improve material flow. However, smaller shoulder diameter result in development of shortcoming in the composite material [29].The most important tool materials mainly used in FSP for light alloys are distinct grade steels, whereas harder materials like cermets, tungsten based alloys and Poly cubic boron are used [30]. c) Consequence of cooling- Very small dimensional grains can be attained by sufficient cooling arrangement of materials. Cooling also fulfill the addition function of minimizing the tool wear [31]. 1.3 Merits and demerits of FSP- a) Merits- 1. FSP is a permanent deformation process that causes, metal mixing, and heat exposure, resulting in densification, remarkable micro-structural refinement, and corrosion resistance, improve mechanical properties (tensile strength, micro-hardness, toughness, ductility) and provides homogeneity of the processed zone [32]. 2. FSP is a energy efficient and green method used to enhance resistance to wear, corrosion, creep and fatigue of automotive and aerospace components, without producing any harmful gases and noise [32]. 3. FSP is an economical tool, which require less time for processing and finishing process, environmental friendly [33]. 4. It enhances productivity. b) Demerits of FSP- Although, FSP has minor limitation, but it can be reduced by further research which includes, need of backing plate, rigid clamping of the substrate, high initial cost. II. LITERATURE REVIEW Various authors used FSP for modification of microstructure and mechanical properties of different alloys which are summarized inTable 1 to Table 3. Table -1 Application of FSP for Al alloy S.N Authors Year Substrate Tool Profile Parameters Conclusions o. Studied the effect of FSP on Al 1050 alloy in terms of mechanical properties (tensile strength and Rotational speed= hardness) and grain refinement at cylindrical Al 1050 alloy 560–1840 rpm, different rotational speed. The result Kwon et shoulder and a indicates that the tensile strength and 1 2003 (45×100×5mm transverse speed = al. [34] sub conical hardness of the processed alloy ) 155mm/min, single headpin increased by 46 % and 37% pass. respectively at 560 rpm. Also improvement in grain refinement was observed as compared to unprocessed alloy. Volume XII Issue VII JULY 2019 Page No: 862 A JOURNAL OF COMPOSITION THEORY ISSN : 0731-6755 Experimentally examined the influence of FSP on mech. properties A319 and cylindrical of the A356 &A319 alloys. They Tool speed=1000 rpm, Santella et A356 alloys profile with a announced that dendritic translation microstructures were abolished from 2 al. [35] 2005 (3×20×150mm hemispherical speed=1.7mm/s, the stir zone. Also a major ) tip improvementin mechanical properties like fatigue life, tensile strengths and ductility. straight Investigated the effect of
Recommended publications
  • On Friction Stir Processing Zone, Tensile Properties and Micro-Hardness of AA5083 Joints Produced by Friction Stir Welding Ravindra S
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-3, Issue-5, June 2014 Effect of Tool Pin Profile and Welding Parameters on Friction Stir Processing Zone, Tensile Properties and Micro-hardness of AA5083 Joints Produced by Friction Stir Welding Ravindra S. Thube Abstract—AA5083 aluminium alloy has gathered wide Based on friction heating at the faying surfaces of two sheets acceptance in the fabrication of light weight structures requiring to be joined, in the FSW process a tool with a specially a high strength to weight ratio. Compared to the fusion welding designed rotating probe travels down the length of contacting processes that are routinely used for joining structural metal plates, producing a highly plastically deformed zone aluminium alloys, friction stir welding (FSW) process is an through the associated stirring action. The localized thermo emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a mechanical affected zone is produced by friction between the non-consumable tool to generate frictional heat in the abutting tool shoulder and the plate top surface, as well as plastic surfaces. The welding parameters and tool pin profile play major deformation of the material in contact with the tool [5]. The roles in deciding the weld quality. In this investigation, an probe is typically slightly shorter than the thickness of the attempt has been made to understand the effect of tool speed work-piece and its diameter is typically slight larger than the (rpm) and tool pin profile on Friction Stir Processing (FSP) zone thickness of the work-piece [6].
    [Show full text]
  • Review on Multi-Pass Friction Stir Processing of Aluminium Alloys
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2020 doi:10.20944/preprints202007.0514.v1 Review Review on Multi-Pass Friction Stir Processing of Aluminium Alloys Oritonda Muribwathoho1, Sipokazi Mabuwa1* and Velaphi Msomi1 1 Cape Peninsula University of Technology, Mechanical Engineering Department, Bellville, 7535, South Africa; [email protected]; [email protected] * Correspondence: [email protected]; Tel.: 27 21 953 8778 Abstract: Aluminium alloys have evolved as suitable materials for automotive and aircraft industries due to their reduced weight, excellent fatigue properties, high-strength to weight ratio, high workability/formability, and corrosion resistance. Recently, the joining of similar and dissimilar metals have achieved huge success in various sectors. The processing of soft metals like aluminium, copper, iron and nickel have been fabricated using friction stir processing. Friction stir processing (FSP) is a microstructural modifying technique that uses the same principles as the friction stir welding technique. In the majority of studies on FSP, the effect of process parameters on the microstructure was characterized after a single pass. However, multiple passes of FSP is another method to further modify the microstructure in aluminium castings. This study is aimed at reviewing the impact of multi-pass friction stir processed joints of aluminium alloys and to identify a knowledge gap. From the literature that is available on multi-pass FSP, it has been observed that the majority of the literature focused on the processing of plates than the joints. There is limited literature reporting on multi-pass friction stir processed joints. This then creates a need to study further on multi-pass friction stir processing on dissimilar aluminium alloys.
    [Show full text]
  • Analysis of Microstructure, Microhardness, Tensile Strength and Wear Properties of Al 6082/Sic Composite Using Multi-Pass Friction Stir Processing
    International Journal of Mechanical And Production Engineering, ISSN: 2320-2092, Volume- 5, Issue-4, Aprl.-2017 http://iraj.in ANALYSIS OF MICROSTRUCTURE, MICROHARDNESS, TENSILE STRENGTH AND WEAR PROPERTIES OF AL 6082/SIC COMPOSITE USING MULTI-PASS FRICTION STIR PROCESSING 1SAHIL NAGIA, 2DEVAL KULS HRESTHA, 3PRABHAT KUMAR, 4V. JEGANATHAN, 5RANGANATH M. S INGARI 1, 2, 3, 4, 5Department of Mechanical Engineering, Delhi Technological University, Delhi, India Email: [email protected], [email protected] Abstract - High strength to weight ratio, light weight and various thermal, mechanical and recycling properties makes aluminium alloys an ideal choice for various industrial applications in sectors as varied as aeronautics, automotive, beverage containers, construction and energy transportation. Due to the rapid injection of molten aluminium into metal moulds under high pressure, casting defects and an abnormal structure, such as cold flake, are easily formed in the base metal. These defects significantly degrade the mechanical properties of the base metal. In order to satisfy the recent demands of advanced engineering applications, Aluminium matrix composites (AMCs) have emerged as a promising alternative. Among the various metal matrix composites manufacturing and forming methods, Friction Stir Processing (FSP) has gained recent attention. This work aims at analysing the microstructure, microhardness, tensile strength and wear properties of Al 6082/SiC composites fabricated by single, double and triple passes via FSP. The ultimate tensile strength of the processed material came out to be less than the parent material and the results showed that with the increase in the number of passes, the tensile properties of composites including ultimate tensile strength (UTS) and yield strength (YS) improved.
    [Show full text]
  • ACHIEVING ULTRAFINE GRAINS in Mg AZ31B-O ALLOY by CRYOGENIC FRICTION STIR PROCESSING and MACHINING
    University of Kentucky UKnowledge Theses and Dissertations--Manufacturing Systems Engineering Manufacturing Systems Engineering 2011 ACHIEVING ULTRAFINE GRAINS IN Mg AZ31B-O ALLOY BY CRYOGENIC FRICTION STIR PROCESSING AND MACHINING Anwaruddin Mohammed University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Mohammed, Anwaruddin, "ACHIEVING ULTRAFINE GRAINS IN Mg AZ31B-O ALLOY BY CRYOGENIC FRICTION STIR PROCESSING AND MACHINING" (2011). Theses and Dissertations--Manufacturing Systems Engineering. 1. https://uknowledge.uky.edu/ms_etds/1 This Master's Thesis is brought to you for free and open access by the Manufacturing Systems Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Manufacturing Systems Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies.
    [Show full text]
  • Friction Stir Processing of Aluminum Alloys
    University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2004 FRICTION STIR PROCESSING OF ALUMINUM ALLOYS RAJESWARI R. ITHARAJU University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation ITHARAJU, RAJESWARI R., "FRICTION STIR PROCESSING OF ALUMINUM ALLOYS" (2004). University of Kentucky Master's Theses. 322. https://uknowledge.uky.edu/gradschool_theses/322 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS FRICTION STIR PROCESSING OF ALUMINUM ALLOYS Friction stir processing (FSP) is one of the new and promising thermomechanical processing techniques that alters the microstructural and mechanical properties of the material in single pass to achieve maximum performance with low production cost in less time using a simple and inexpensive tool. Preliminary studies of different FS processed alloys report the processed zone to contain fine grained, homogeneous and equiaxed microstructure. Several studies have been conducted to optimize the process and relate various process parameters like rotational and translational speeds to resulting microstructure. But there is only a little data reported on the effect of the process parameters on the forces generated during processing, and the resulting microstructure of aluminum alloys especially AA5052 which is a potential superplastic alloy. In the present work, sheets of aluminum alloys were friction stir processed under various combinations of rotational and translational speeds.
    [Show full text]
  • Effect of Friction Stir Processing on Mechanical Properties and Microstructure of the Cast Pure Aluminum
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 12, DECEMBER 2013 ISSN 2277-8616 Effect Of Friction Stir Processing On Mechanical Properties And Microstructure Of The Cast Pure Aluminum Alaa Mohammed Hussein Wais, Dr. Jassim Mohammed Salman, Dr. Ahmed Ouda Al-Roubaiy Abstract: Friction stir processing (FSP) has the potential for locally enhancing the properties of pure AL. A cylindrical tool with threaded pin was used. the effect of FSP has been examined on sand casting hypereutectic pure AL. The influence of different processing parameters has been investigated at a fundamental level. Effect of (FSP) parameters such as transverse speed (86,189,393) mm/min, rotational speed (560,710, 900) rpm on microstructure and mechanical properties were studied. Different mechanical tests were conducted such as (tensile, microhardness and impact tests). Temperature distribution has been investigated by using infrared (IR) camera; the thermal images were analyzed to point out the temperature degree on limited points. The results show that the heat generation increase when rotational speed increase and decrease when transverse speed increase. Hardness and impact measurements were taken across the process zone( PZ), and tensile testing were carried out at room temperatures. After FSP, the microstructure of the cast pure Al was greatly refined. However, FSP caused very little changes to the hardness of the material, while tensile and impact properties were greatly improved. Keywords: Friction stir processing,(FSP), Microstructure, Heat Distribution, Mechanical Properties. ———————————————————— 1- INTRODUCTION Therefore, in order to generate flat surface for FSP,2mm of Recently, a new processing technique, friction stir material was milled away from the top and bottom surface processing (FSP), was developed by Mishra et al, Friction of each plate before FSP.
    [Show full text]
  • Superplastic Behavior of Friction Stir Processed ZK60 Magnesium Alloy
    Materials Transactions, Vol. 52, No. 12 (2011) pp. 2278 to 2281 #2011 The Japan Institute of Metals RAPID PUBLICATION Superplastic Behavior of Friction Stir Processed ZK60 Magnesium Alloy G. M. Xie1;*, Z. A. Luo1,Z.Y.Ma2, P. Xue2 and G. D. Wang1 1State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, P. R. China 2Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China Six millimeter thick extruded ZK60 magnesium alloy plate was subjected to friction stir processing (FSP) at 400 rpm and 100 mm/min, producing fine and uniform recrystallized grains with predominant high-angle grain boundaries of 73%. Maximum elongation of 1800% was achieved at a relatively high temperature of 325C and strain rate of 1 Â 10À3 sÀ1. Grain boundary sliding was identified to be the primary deformation mechanism in the FSP ZK60 alloy by superplastic data analyses and surface morphology observation. The superplastic deformation kinetics of the FSP ZK60 alloy was faster than that of the high-ratio differential speed rolled ZK60 alloy. [doi:10.2320/matertrans.M2011231] (Received July 28, 2011; Accepted September 27, 2011; Published November 16, 2011) Keywords: friction stir processing (FSP), magnesium, microstructure, superplasticity 1. Introduction superplastic deformation dominated by grain boundary sliding (GBS). ZK60 alloy is one of commercial magnesium alloys that At the present time, the investigation on the FSP aluminum exhibit sound mechanical
    [Show full text]
  • Predicting Microstructure Evolution for Friction Stir Extrusion Using a Cellular Automaton Method
    Modelling and Simulation in Materials Science and Engineering PAPER Predicting microstructure evolution for friction stir extrusion using a cellular automaton method To cite this article: Reza Abdi Behnagh et al 2019 Modelling Simul. Mater. Sci. Eng. 27 035006 View the article online for updates and enhancements. This content was downloaded from IP address 128.255.19.185 on 29/06/2019 at 22:20 Modelling and Simulation in Materials Science and Engineering Modelling Simul. Mater. Sci. Eng. 27 (2019) 035006 (23pp) https://doi.org/10.1088/1361-651X/ab044b Predicting microstructure evolution for friction stir extrusion using a cellular automaton method Reza Abdi Behnagh1, Avik Samanta2, Mohsen Agha Mohammad Pour1, Peyman Esmailzadeh1 and Hongtao Ding2 1 Faculty of Mechanical Engineering, Urmia University of Technology, Urmia, Iran 2 Department of Mechanical Engineering, University of Iowa, Iowa City, United States of America E-mail: [email protected] Received 7 November 2018, revised 24 January 2019 Accepted for publication 4 February 2019 Published 6 March 2019 Abstract Friction stir extrusion (FSE) offers a solid-phase synthesis method consolidating discrete metal chips or powders into bulk material form. In this study, an FSE machine tool with a central hole is driven at high rotational speed into the metal chips contained in a chamber, mechanically stirs and consolidates the work material. The softened consolidated material is extruded through the center hole of the tool, during which material microstructure undergoes significant trans- formation due to the intensive thermomechanical loadings. Discontinuous dynamic recrystallization is found to have played as the primary mechanism for microstructure evolution of pure magnesium chips during the FSE process.
    [Show full text]
  • Effect of Friction Stir Processing on Microstructural, Mechanical
    metals Article Effect of Friction Stir Processing on Microstructural, Mechanical, and Corrosion Properties of Al-Si12 Additive Manufactured Components Ghazal Moeini 1,*, Seyed Vahid Sajadifar 2 , Tom Engler 3, Ben Heider 3 , Thomas Niendorf 2 , Matthias Oechsner 3 and Stefan Böhm 1 1 Department for Cutting and Joining Processes, University of Kassel, Kurt-Wolters-Str. 3, 34125 Kassel, Germany; [email protected] 2 Institute of Materials Engineering, University of Kassel, Moenchebergstraße 3, 34125 Kassel, Germany; [email protected] (S.V.S.); [email protected] (T.N.) 3 Center for Structural Materials (MPA-IfW), Technical University of Darmstadt, Grafenstraße 2, 64283 Darmstadt, Germany; [email protected] (T.E.); [email protected] (B.H.); [email protected] (M.O.) * Correspondence: [email protected]; Tel.: +49-561-804-7443 Received: 12 December 2019; Accepted: 31 December 2019; Published: 3 January 2020 Abstract: Additive manufacturing (AM) is an advanced manufacturing process that provides the opportunity to build geometrically complex and highly individualized lightweight structures. Despite its many advantages, additively manufactured components suffer from poor surface quality. To locally improve the surface quality and homogenize the microstructure, friction stir processing (FSP) technique was applied on Al-Si12 components produced by selective laser melting (SLM) using two different working media. The effect of FSP on the microstructural evolution, mechanical properties, and corrosion resistance of SLM samples was investigated. Microstructural investigation showed a considerable grain refinement in the friction stirred area, which is due to the severe plastic deformation and dynamic recrystallization of the material in the stir zone.
    [Show full text]
  • Friction Stir Processing of Magnesium Alloys- Review J.P
    Journal of Chemical and Pharmaceutical Sciences ISSN: 0974-2115 Friction Stir Processing of Magnesium Alloys- Review J.P. Lalith Gnanavel, S. Vijayan Department of Mechanical Engineering, SSN College of Engineering, Kalavakkam-603 110 Corresponding author: E-Mail: [email protected] ABSTRACT Recently, Friction stir processing (FSP) is one of the solid state surface processing techniques used to produce surface composites. The FSP which doesn’t affects the bulk properties of the material but improves the surface properties of the material concern such as hardness, strength, ductility, corrosion resistance and formability etc. Magnesium alloy is one among the major raw materials used due to their low density and high strength-to-weight ratio. Alloys of magnesium are processed successful by FSP which are difficult by other processes. The review offers better understanding of Friction Stir Processed alloys of Magnesium. This article reviews the various mechanical and metallurgical properties along with analysis of microstructure on different magnesium alloys and FSP magnesium alloys for better understandings. KE YWORDS: Magnesium Alloys, Friction Stir Processing (FSP), Scanning Electron Microscope (SEM), Mechanical properties, Microstructure, Hardness, Wear properties. 1. INTRODUCTION Magnesium alloys: Magnesium with mixture of other metals is called as magnesium alloys. The major alloying elements are aluminium, zinc, manganese, silicon, copper, rare earths and zirconium. Magnesium alloys have a hexagonal lattice structure and is the lightest structural metal Cast alloys of magnesium are used in components of automobiles, bodies of camera and lenses. Heat treatment is used to harden alloys of magnesium containing 0.5% to 3% zinc. Sand castings mostly use alloys AZ92 and AZ63, die castings use AZ91 magnesium alloy and permanent mold castings generally use AZ92 alloy.
    [Show full text]
  • 1. Introduction Friction Stir Processing (FSP) Is a Promising Grain
    Arch. Metall. Mater., Vol. 61 (2016), No 3, p. 1555–1560 DOI: 10.1515/amm-2016-0254 J. IwasZKO*,#, K. Kudła*, K. Fila*, M. StrzelecKa* THE EFFECT OF FRICTION STIR PROCESSING (FSP) ON THE MICROSTRUCTURE AND PROPERTIES OF AM60 MAGNESIUM ALLOY The samples of the as-cast AM60 magnesium alloy were subjected to Friction Stir Processing (FSP). The effect of FSP on the microstructure of AM60 magnesium alloy was analyzed using optical microscopy and X-ray analysis. Besides, the investigation of selected properties, i.e. hardness and resistance to abrasion wear, were carried out. The carried out investigations showed that FSP leads to more homogeneous microstructure and significant grain refinement. The average grain size in the stirred zone (Sz) was about 6-9 μm. in the thermomechanically affected zone (tMaz), the elongated and deformed grains distributed along flow line were observed. The structural changes caused by FSP lead to an increase in microhardness and wear resistance of AM60 alloy in comparison to their non-treated equivalents. Preliminary results show that friction stir processing is a promising and an effective grain refinement technique. Keywords: Friction stir processing; Magnesium alloy 1. Introduction front surface of the retaining collar [7]. At this point, it is worth mentioning that during the treatment of the surface with the Friction stir processing (FSP) is a promising grain FSP method or the joining of materials in the FSW method the refinement technique. This method comes from the FSW melting temperature of the materials being modified or joined (Friction Stir Welding) technology developed in 1991 by is not exceeded (the temperatures occurring in the FSP and/ Wayne Thomas from the Welding Institute (TWI Ltd.) in or FSW process constitute 70-90% of the melting temperature Cambridge.
    [Show full text]
  • Use of Friction Stir Processing and Friction Stir Welding for Nitinol
    111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 us 20060283918Al (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0283918 Al London et al. (43) Pub. Date: Dec. 21, 2006 (54) USE OF FRICTION STIR PROCESSING AND Related U.S. Application Data FRICTION STIR WELDING FOR NITINOL MEDICAL DEVICES (60) Provisional application No. 60/652,104, filed on Feb. 11, 2005. (76) Inventors: Blair D. London, San Luis Obispo, CA (US); Murray Mahoney, Camarillo, Publication Classification CA (US); Alan Pelton, Fremont, CA (US) (51) Int. Cl. B23K 20/12 (2006.01) Correspondence Address: (52) U.S. Cl. 2281112.1 PHILIP S. JOHNSON JOHNSON & JOHNSON (57) ABSTRACT ONE JOHNSON & JOHNSON PLAZA NEW BRUNSWICK, NJ 08933-7003 (US) Metallic materials may be joined utilizing a friction stir processing teclmique. The friction stir processing technique (21) Appl. No.: 111341,828 utilizes a shaped, rotating tool to move material from one side of the joint to be welded to the other without liquefying (22) Filed: Jan. 27, 2006 the base material. Sufficient downward force to consolidate the weld Retreating side of weld Leading edge of the 1 Advancing rotating tool shoulder side of weld Trailing edge of the rotating tool shou Ider Patent Application Publication Dec. 21, 2006 Sheet 1 of 2 US 2006/0283918 Al FIG. 1 Sufficient downward force to consolidate the weld Retreati ng side of weld Leading edge of the 1 Advancing rotating tool shoulder side of weld Trailing edge of the rotating tool shoulder Patent Application Publication Dec. 21, 2006 Sheet 2 of 2 US 2006/0283918 Al FIG. 2 Processing direction It­ US 2006/0283918 Al Dec.
    [Show full text]