An Abstract of the Dissertation Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wild Bees of Grand Staircase-Escalante National Monument: Richness, Abundance, and Spatio-Temporal Beta-Diversity
Wild bees of Grand Staircase-Escalante National Monument: richness, abundance, and spatio-temporal beta-diversity Olivia Messinger Carril1, Terry Griswold2, James Haefner3 and Joseph S. Wilson4 1 Santa Fe, NM, United States of America 2 USDA-ARS Pollinating Insects Research Unit, Logan, UT, United States of America 3 Biology Department, Emeritus Professor, Utah State University, Logan, UT, United States of America 4 Department of Biology, Utah State University - Tooele, Tooele, UT, United States of America ABSTRACT Interest in bees has grown dramatically in recent years in light of several studies that have reported widespread declines in bees and other pollinators. Investigating declines in wild bees can be difficult, however, due to the lack of faunal surveys that provide baseline data of bee richness and diversity. Protected lands such as national monuments and national parks can provide unique opportunities to learn about and monitor bee populations dynamics in a natural setting because the opportunity for large-scale changes to the landscape are reduced compared to unprotected lands. Here we report on a 4-year study of bees in Grand Staircase-Escalante National Monument (GSENM), found in southern Utah, USA. Using opportunistic collecting and a series of standardized plots, we collected bees throughout the six-month flowering season for four consecutive years. In total, 660 bee species are now known from the area, across 55 genera, and including 49 new species. Two genera not previously known to occur in the state of Utah were discovered, as well as 16 new species records for the state. Bees include ground-nesters, cavity- and twig-nesters, cleptoparasites, narrow specialists, generalists, solitary, and social species. -
Bees in Urban Landscapes: an Investigation of Habitat Utilization By
Bees in urban landscapes: An investigation of habitat utilization By Victoria Agatha Wojcik A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, & Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Joe R. McBride, Chair Professor Gregory S. Biging Professor Louise A. Mozingo Fall 2009 Bees in urban landscapes: An investigation of habitat utilization © 2009 by Victoria Agatha Wojcik ABSTRACT Bees in urban landscapes: An investigation of habitat utilization by Victoria Agatha Wojcik Doctor of Philosophy in Environmental Science, Policy, & Management University of California, Berkeley Professor Joe R. McBride, Chair Bees are one of the key groups of anthophilies that make use of the floral resources present within urban landscapes. The ecological patterns of bees in cities are under further investigation in this dissertation work in an effort to build knowledge capacity that can be applied to management and conservation. Seasonal occurrence patterns are common among bees and their floral resources in wildland habitats. To investigate the nature of these phenological interactions in cities, bee visitation to a constructed floral resource base in Berkeley, California was monitored in the first year of garden development. The constructed habitat was used by nearly one-third of the locally known bee species. Bees visiting this urban resource displayed distinct patterns of seasonality paralleling those of wildland bees, with some species exhibiting extended seasons. Differential bee visitation patterns are common between individual floral resources. The effective monitoring of bee populations requires an understanding of this variability. To investigate the patterns and trends in urban resource usage, the foraging of the community of bees visiting Tecoma stans resources in three tropical dry forest cities in Costa Rica was studied. -
Wild Bee Species Increase Tomato Production and Respond Differently to Surrounding Land Use in Northern California
BIOLOGICAL CONSERVATION 133 (2006) 81– 87 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/biocon Wild bee species increase tomato production and respond differently to surrounding land use in Northern California Sarah S. Greenleaf*, Claire Kremen1 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States ARTICLE INFO ABSTRACT Article history: Pollination provided by bees enhances the production of many crops. However, the contri- Received 11 December 2005 bution of wild bees remains unmeasured for many crops, and the effects of anthropogenic Received in revised form change on many bee species are unstudied. We experimentally investigated how pollina- 5 May 2006 tion by wild bees affects tomato production in northern California. We found that wild bees Accepted 16 May 2006 substantially increase the production of field-grown tomato, a crop generally considered Available online 24 July 2006 self-pollinating. Surveys of the bee community on 14 organic fields that varied in proximity to natural habitat showed that the primary bee visitors, Anthophora urbana Cresson and Keywords: Bombus vosnesenskii Radoszkowski, were affected differently by land management prac- Agro-ecosystem tices. B. vosnesenskii was found primarily on farms proximate to natural habitats, but nei- Crop pollination ther proximity to natural habitat nor tomato floral abundance, temperature, or year Ecosystem services explained variation in the visitation rates of A. urbana. Natural habitat appears to increase Bombus vosnesenskii B. vosnesenskii populations and should be preserved near farms. Additional research is Anthophora urbana needed to determine how to maintain A. urbana. Species-specific differences in depen- Habitat conservation dency on natural habitats underscore the importance of considering the natural histories of individual bee species when projecting population trends of pollinators and designing management plans for pollination services. -
Native Bees Are a Rich Natural Resource in Urban California Gardens
RESEARCh ARtiCLE t Native bees are a rich natural resource in urban California gardens by Gordon W. Frankie, Robbin W. Thorp, Jennifer Hernandez, Mark Rizzardi, Barbara Ertter, Jaime C. Pawelek, Sara L. Witt, Mary Schindler, Rollin Coville and Victoria A. Wojcik Evidence is mounting that pollina- tors of crop and wildland plants are declining worldwide. Our research group at UC Berkeley and UC Davis conducted a 3-year survey of bee pol- linators in seven cities from Northern California to Southern California. Results indicate that many types of urban residential gardens provide floral and nesting resources for the reproduction and survival of bees, especially a diversity of native bees. Habitat gardening for bees, using targeted ornamental plants, can pre- dictably increase bee diversity and abundance, and provide clear pollina- About 1,600 native bee species have been recorded in California. the bees provide critical ecological and pollination services in wildlands and croplands, as well as urban areas. Above, a tion benefits. female solitary bee (Svasta obliqua expurgata) on purple coneflower (Echinacea pupurea). utdoor urban areas worldwide known in the entire United States, portant benefits to people that include are known to support a rich di- about 1,600 have been recorded in aesthetic pleasure, awareness of urban versityO of insect life (Frankie and Ehler California. native fauna conservation, pollination 1978). Some insects are undesirable and Our recent work on urban California of garden plants that provide food for characterized as pests, such as aphids, bees in the San Francisco Bay Area people and animals, and environmental snails, earwigs and borers; urban resi- (Frankie et al. -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program Permalink https://escholarship.org/uc/item/8z91q49s Author Ward, Laura True Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program By Laura T Ward A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Nicholas J. Mills, Chair Professor Erica Bree Rosenblum Professor Eileen A. Lacey Fall 2020 Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program © 2020 by Laura T Ward Abstract Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program By Laura T Ward Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Nicholas J. Mills, Chair This dissertation combines two disparate subjects: bees and belonging. The first two chapters explore pesticide exposure for wild bees and honey bees visiting crop and non-crop plants in northern California agriculture. The final chapter utilizes surveys from a mentorship program as a case study to analyze sense of belonging among undergraduates. The first chapter of this dissertation explores pesticide exposure for wild bees and honey bees visiting sunflower crops. -
Irrigation Method Does Not Affect Wild Bee Pollinators of Hybrid Sunflower by Hillary Sardiñas, Collette Yee and Claire Kremen
Research Article Irrigation method does not affect wild bee pollinators of hybrid sunflower by Hillary Sardiñas, Collette Yee and Claire Kremen Irrigation method has the potential to directly or indirectly influence populations of factors that determine crop success, such wild bee crop pollinators nesting and foraging in irrigated crop fields. The majority of as pollination. Wild bees are the most effective and wild bee species nest in the ground, and their nests may be susceptible to flooding. In abundant crop pollinators (Garibaldi addition, their pollination of crops can be influenced by nectar quality and quantity, et al. 2013). The majority of wild bees which are related to water availability. To determine whether different irrigation excavate nests beneath the soil (known methods affect crop pollinators, we compared the number of ground-nesting bees as ground nesters). Irrigation has the po- tential to saturate nests, possibly drown- nesting and foraging in drip- and furrow-irrigated hybrid sunflower fields in the ing bee larvae and adults. It could also Sacramento Valley. We found that irrigation method did not impact wild bee nesting indirectly impact crop pollinators by rates or foraging bee abundance or bee species richness. These findings suggest that affecting their foraging choices. Bee for- changing from furrow irrigation to drip irrigation to conserve water likely will not alter aging decisions are often related to floral reward, namely nectar quantity and hybrid sunflower crop pollination. quality (Roubik and Buchmann 1984; Stone 1994). Nectar production is related to water availability; increased water rrigation practices and water use ef- 1969, delivers water directly to the plant leads to higher nectar volume expressed ficiency are increasingly scrutinized root zone, thus improving water effi- (e.g., Petanidou et al. -
Disturbance and Recovery in a Changing World; 2006 June 6–8; Cedar City, UT
Reproductive Biology of Larrea tridentata: A Preliminary Comparison Between Core Shrubland and Isolated Grassland Plants at the Sevilleta National Wildlife Refuge, New Mexico Rosemary L. Pendleton, Burton K. Pendleton, Karen R. Wetherill, and Terry Griswold Abstract—Expansion of diploid creosote shrubs (Larrea tridentata Introduction_______________________ (Sessé & Moc. ex DC.) Coville)) into grassland sites occurs exclusively through seed production. We compared the reproductive biology Chihuahuan Desert shrubland is expanding into semiarid of Larrea shrubs located in a Chihuahuan desert shrubland with grasslands of the Southwest. Creosote (Larrea tridentata) isolated shrubs well-dispersed into the semiarid grasslands at the seedling establishment in grasslands is a key factor in this Sevilleta National Wildlife Refuge. Specifically, we examined (1) re- conversion. Diploid Larrea plants of the Chihuahuan Des- productive success on open-pollinated branches, (2) the potential ert are not clonal as has been reported for some hexaploid of individual shrubs to self-pollinate, and (3) bee pollinator guild Mojave populations (Vasek 1980). Consequently, Larrea composition at shrubland and grassland sites. Sampling of the bee guild suggests that there are adequate numbers of pollinators at establishment in semiarid grasslands of New Mexico must both locations; however, the community composition differs between occur exclusively through seed. At McKenzie Flats in the shrub and grassland sites. More Larrea specialist bee species were Sevilleta National Wildlife Refuge, there exists a gradient found at the shrubland site as compared with the isolated shrubs. in Larrea density stretching from dense Larrea shrubland Large numbers of generalist bees were found on isolated grassland (4,000 to 6,000 plants per hectare) to semiarid desert grass- bushes, but their efficiency in pollinating Larrea is currently un- land with only a few scattered shrubs. -
Wild Bee Declines and Changes in Plant-Pollinator Networks Over 125 Years Revealed Through Museum Collections
University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2018 WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS Minna Mathiasson University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Mathiasson, Minna, "WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS" (2018). Master's Theses and Capstones. 1192. https://scholars.unh.edu/thesis/1192 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS BY MINNA ELIZABETH MATHIASSON BS Botany, University of Maine, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences: Integrative and Organismal Biology by: Dr. Sandra M. Rehan, Assistant Professor of Biology Dr. Carrie Hall, Assistant Professor of Biology Dr. Janet Sullivan, Adjunct Associate Professor of Biology On April 18, 2018 Original approval signatures are on file with the University of New Hampshire Graduate School. -
Hymenoptera: Colletidae): Emerging Patterns from the Southern End of the World Eduardo A
Journal of Biogeography (J. Biogeogr.) (2011) ORIGINAL Biogeography and diversification of ARTICLE colletid bees (Hymenoptera: Colletidae): emerging patterns from the southern end of the world Eduardo A. B. Almeida1,2*, Marcio R. Pie3, Sea´n G. Brady4 and Bryan N. Danforth2 1Departamento de Biologia, Faculdade de ABSTRACT Filosofia, Cieˆncias e Letras, Universidade de Aim The evolutionary history of bees is presumed to extend back in time to the Sa˜o Paulo, Ribeira˜o Preto, SP 14040-901, Brazil, 2Department of Entomology, Comstock Early Cretaceous. Among all major clades of bees, Colletidae has been a prime Hall, Cornell University, Ithaca, NY 14853, example of an ancient group whose Gondwanan origin probably precedes the USA, 3Departamento de Zoologia, complete break-up of Africa, Antarctica, Australia and South America, because Universidade Federal do Parana´, Curitiba, PR modern lineages of this family occur primarily in southern continents. In this paper, 81531-990, Brazil, 4Department of we aim to study the temporal and spatial diversification of colletid bees to better Entomology, National Museum of Natural understand the processes that have resulted in the present southern disjunctions. History, Smithsonian Institution, Washington, Location Southern continents. DC 20560, USA Methods We assembled a dataset comprising four nuclear genes of a broad sample of Colletidae. We used Bayesian inference analyses to estimate the phylogenetic tree topology and divergence times. Biogeographical relationships were investigated using event-based analytical methods: a Bayesian approach to dispersal–vicariance analysis, a likelihood-based dispersal–extinction– cladogenesis model and a Bayesian model. We also used lineage through time analyses to explore the tempo of radiations of Colletidae and their context in the biogeographical history of these bees. -
Creating a Pollinator Garden for Native Specialist Bees of New York and the Northeast
Creating a pollinator garden for native specialist bees of New York and the Northeast Maria van Dyke Kristine Boys Rosemarie Parker Robert Wesley Bryan Danforth From Cover Photo: Additional species not readily visible in photo - Baptisia australis, Cornus sp., Heuchera americana, Monarda didyma, Phlox carolina, Solidago nemoralis, Solidago sempervirens, Symphyotrichum pilosum var. pringlii. These shade-loving species are in a nearby bed. Acknowledgements This project was supported by the NYS Natural Heritage Program under the NYS Pollinator Protection Plan and Environmental Protection Fund. In addition, we offer our appreciation to Jarrod Fowler for his research into compiling lists of specialist bees and their host plants in the eastern United States. Creating a Pollinator Garden for Specialist Bees in New York Table of Contents Introduction _________________________________________________________________________ 1 Native bees and plants _________________________________________________________________ 3 Nesting Resources ____________________________________________________________________ 3 Planning your garden __________________________________________________________________ 4 Site assessment and planning: ____________________________________________________ 5 Site preparation: _______________________________________________________________ 5 Design: _______________________________________________________________________ 6 Soil: _________________________________________________________________________ 6 Sun Exposure: _________________________________________________________________ -
Floral Guilds of Bees in Sagebrush Steppe: Comparing Bee Usage Of
ABSTRACT: Healthy plant communities of the American sagebrush steppe consist of mostly wind-polli- • nated shrubs and grasses interspersed with a diverse mix of mostly spring-blooming, herbaceous perennial wildflowers. Native, nonsocial bees are their common floral visitors, but their floral associations and abundances are poorly known. Extrapolating from the few available pollination studies, bees are the primary pollinators needed for seed production. Bees, therefore, will underpin the success of ambitious seeding efforts to restore native forbs to impoverished sagebrush steppe communities following vast Floral Guilds of wildfires. This study quantitatively characterized the floral guilds of 17 prevalent wildflower species of the Great Basin that are, or could be, available for restoration seed mixes. More than 3800 bees repre- senting >170 species were sampled from >35,000 plants. Species of Osmia, Andrena, Bombus, Eucera, Bees in Sagebrush Halictus, and Lasioglossum bees prevailed. The most thoroughly collected floral guilds, at Balsamorhiza sagittata and Astragalus filipes, comprised 76 and 85 native bee species, respectively. Pollen-specialists Steppe: Comparing dominated guilds at Lomatium dissectum, Penstemon speciosus, and several congenerics. In contrast, the two native wildflowers used most often in sagebrush steppe seeding mixes—Achillea millefolium and Linum lewisii—attracted the fewest bees, most of them unimportant in the other floral guilds. Suc- Bee Usage of cessfully seeding more of the other wildflowers studied here would greatly improve degraded sagebrush Wildflowers steppe for its diverse native bee communities. Index terms: Apoidea, Asteraceae, Great Basin, oligolecty, restoration Available for Postfire INTRODUCTION twice a decade (Whisenant 1990). Massive Restoration wildfires are burning record acreages of the The American sagebrush steppe grows American West; two fires in 2007 together across the basins and foothills over much burned >500,000 ha of shrub-steppe and 1,3 James H. -
Land Uses That Support Wild Bee (Hymenoptera: Apoidea: Anthophila) Communities Within an Agricultural Matrix
Land uses that support wild bee (Hymenoptera: Apoidea: Anthophila) communities within an agricultural matrix A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Elaine Celeste Evans IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Dr. Marla Spivak December 2016 © Elaine Evans 2016 Acknowledgements Many people helped me successfully complete this project. Many years ago, my advisor, mentor, hero, and friend, Marla Spivak, saw potential in me and helped me to become an effective scientist and educator working to create a more bee-friendly world. I have benefitted immensely from her guidance and support. The Bee Lab team, both those that helped me directly in the field, and those that advised along the way through analysis and writing, have provided a dreamy workplace: Joel Gardner, Matt Smart, Renata Borba, Katie Lee, Gary Reuter, Becky Masterman, Judy Wu, Ian Lane, Morgan Carr- Markell. My committee helped guide me along the way and steer me in the right direction: Dan Cariveau (gold star for much advice on analysis), Diane Larson, Ralph Holzenthal, and Karen Oberauser. Cooperation with Chip Eullis and Jordan Neau at the USGS enabled detailed land use analysis. The bee taxonomists who helped me with bee identification were essential for the success of this project: Jason Gibbs, John Ascher, Sam Droege, Mike Arduser, and Karen Wright. My friends and family eased my burden with their enthusiasm for me to follow my passion and their understanding of my monomania. My husband Paul Metzger and my son August supported me in uncountable ways.