The Weierstrass Approximation Theorem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Karl Weierstraß – Zum 200. Geburtstag „Alles Im Leben Kommt Doch Leider Zu Spät“ Reinhard Bölling Universität Potsdam, Institut Für Mathematik Prolog Nunmehr Im 74
1 Karl Weierstraß – zum 200. Geburtstag „Alles im Leben kommt doch leider zu spät“ Reinhard Bölling Universität Potsdam, Institut für Mathematik Prolog Nunmehr im 74. Lebensjahr stehend, scheint es sehr wahrscheinlich, dass dies mein einziger und letzter Beitrag über Karl Weierstraß für die Mediathek meiner ehemaligen Potsdamer Arbeitsstätte sein dürfte. Deshalb erlaube ich mir, einige persönliche Bemerkungen voranzustellen. Am 9. November 1989 ging die Nachricht von der Öffnung der Berliner Mauer um die Welt. Am Tag darauf schrieb mir mein Freund in Stockholm: „Herzlich willkommen!“ Ich besorgte das damals noch erforderliche Visum in der Botschaft Schwedens und fuhr im Januar 1990 nach Stockholm. Endlich konnte ich das Mittag- Leffler-Institut in Djursholm, im nördlichen Randgebiet Stockholms gelegen, besuchen. Dort befinden sich umfangreiche Teile des Nachlasses von Weierstraß und Kowalewskaja, die von Mittag-Leffler zusammengetragen worden waren. Ich hatte meine Arbeit am Briefwechsel zwischen Weierstraß und Kowalewskaja, die meine erste mathematikhistorische Publikation werden sollte, vom Inhalt her abgeschlossen. Das Manuskript lag in nahezu satzfertiger Form vor und sollte dem Verlag übergeben werden. Geradezu selbstverständlich wäre es für diese Arbeit gewesen, die Archivalien im Mittag-Leffler-Institut zu studieren. Aber auch als Mitarbeiter des Karl-Weierstraß- Institutes für Mathematik in Ostberlin gehörte ich nicht zu denen, die man ins westliche Ausland reisen ließ. – Nun konnte ich mir also endlich einen ersten Überblick über die Archivalien im Mittag-Leffler-Institut verschaffen. Ich studierte in jenen Tagen ohne Unterbrechung von morgens bis abends Schriftstücke, Dokumente usw. aus dem dortigen Archiv, denn mir stand nur eine Woche zur Verfügung. Am zweiten Tag in Djursholm entdeckte ich unter Papieren ganz anderen Inhalts einige lose Blätter, die Kowalewskaja beschrieben hatte. -
Halloweierstrass
Happy Hallo WEIERSTRASS Did you know that Weierestrass was born on Halloween? Neither did we… Dmitriy Bilyk will be speaking on Lacunary Fourier series: from Weierstrass to our days Monday, Oct 31 at 12:15pm in Vin 313 followed by Mesa Pizza in the first floor lounge Brought to you by the UMN AMS Student Chapter and born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstrass 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 sent to University of Bonn to prepare for a government position { dropped out. -
On Fractal Properties of Weierstrass-Type Functions
Proceedings of the International Geometry Center Vol. 12, no. 2 (2019) pp. 43–61 On fractal properties of Weierstrass-type functions Claire David Abstract. In the sequel, starting from the classical Weierstrass function + 8 n n defined, for any real number x, by (x) = λ cos (2 π Nb x), where λ W n=0 ÿ and Nb are two real numbers such that 0 λ 1, Nb N and λ Nb 1, we highlight intrinsic properties of curious mapsă ă which happenP to constituteą a new class of iterated function system. Those properties are all the more interesting, in so far as they can be directly linked to the computation of the box dimension of the curve, and to the proof of the non-differentiabilty of Weierstrass type functions. Анотація. Метою даної роботи є узагальнення попередніх результатів автора про класичну функцію Вейерштрасса та її графік. Його можна отримати як границю послідовності префракталів, тобто графів, отри- маних за допомогою ітераційної системи функцій, які, як правило, не є стискаючими відображеннями. Натомість вони мають в деякому сенсі еквівалентну властивість до стискаючих відображень, оскільки на ко- жному етапі ітераційного процесу, який дає змогу отримати префра- ктали, вони зменшують двовимірні міри Лебега заданої послідовності прямокутників, що покривають криву. Такі системи функцій відіграють певну роль на першому кроці процесу побудови підкови Смейла. Вони можуть бути використані для доведення недиференційованості функції Вейєрштрасса та обчислення box-розмірності її графіка, а також для по- будови більш широких класів неперервних, але ніде не диференційовних функцій. Останнє питання ми вивчатимемо в подальших роботах. 2010 Mathematics Subject Classification: 37F20, 28A80, 05C63 Keywords: Weierstrass function; non-differentiability; iterative function systems DOI: http://dx.doi.org/10.15673/tmgc.v12i2.1485 43 44 Cl. -
Continuous Nowhere Differentiable Functions
2003:320 CIV MASTER’S THESIS Continuous Nowhere Differentiable Functions JOHAN THIM MASTER OF SCIENCE PROGRAMME Department of Mathematics 2003:320 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 03/320 - - SE Continuous Nowhere Differentiable Functions Johan Thim December 2003 Master Thesis Supervisor: Lech Maligranda Department of Mathematics Abstract In the early nineteenth century, most mathematicians believed that a contin- uous function has derivative at a significant set of points. A. M. Amp`ereeven tried to give a theoretical justification for this (within the limitations of the definitions of his time) in his paper from 1806. In a presentation before the Berlin Academy on July 18, 1872 Karl Weierstrass shocked the mathematical community by proving this conjecture to be false. He presented a function which was continuous everywhere but differentiable nowhere. The function in question was defined by ∞ X W (x) = ak cos(bkπx), k=0 where a is a real number with 0 < a < 1, b is an odd integer and ab > 1+3π/2. This example was first published by du Bois-Reymond in 1875. Weierstrass also mentioned Riemann, who apparently had used a similar construction (which was unpublished) in his own lectures as early as 1861. However, neither Weierstrass’ nor Riemann’s function was the first such construction. The earliest known example is due to Czech mathematician Bernard Bolzano, who in the years around 1830 (published in 1922 after being discovered a few years earlier) exhibited a continuous function which was nowhere differen- tiable. Around 1860, the Swiss mathematician Charles Cell´erieralso discov- ered (independently) an example which unfortunately wasn’t published until 1890 (posthumously). -
Right Ideals of a Ring and Sublanguages of Science
RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance. -
A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members. -
Academic Genealogy of the Oakland University Department Of
Basilios Bessarion Mystras 1436 Guarino da Verona Johannes Argyropoulos 1408 Università di Padova 1444 Academic Genealogy of the Oakland University Vittorino da Feltre Marsilio Ficino Cristoforo Landino Università di Padova 1416 Università di Firenze 1462 Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo Angelo Poliziano Florens Florentius Radwyn Radewyns Geert Gerardus Magnus Groote Università di Mantova 1433 Università di Mantova Università di Firenze 1477 Constantinople 1433 DepartmentThe Mathematics Genealogy Project of is a serviceMathematics of North Dakota State University and and the American Statistics Mathematical Society. Demetrios Chalcocondyles http://www.mathgenealogy.org/ Heinrich von Langenstein Gaetano da Thiene Sigismondo Polcastro Leo Outers Moses Perez Scipione Fortiguerra Rudolf Agricola Thomas von Kempen à Kempis Jacob ben Jehiel Loans Accademia Romana 1452 Université de Paris 1363, 1375 Université Catholique de Louvain 1485 Università di Firenze 1493 Università degli Studi di Ferrara 1478 Mystras 1452 Jan Standonck Johann (Johannes Kapnion) Reuchlin Johannes von Gmunden Nicoletto Vernia Pietro Roccabonella Pelope Maarten (Martinus Dorpius) van Dorp Jean Tagault François Dubois Janus Lascaris Girolamo (Hieronymus Aleander) Aleandro Matthaeus Adrianus Alexander Hegius Johannes Stöffler Collège Sainte-Barbe 1474 Universität Basel 1477 Universität Wien 1406 Università di Padova Università di Padova Université Catholique de Louvain 1504, 1515 Université de Paris 1516 Università di Padova 1472 Università -
Mathematical Genealogy of the Wellesley College Department Of
Nilos Kabasilas Mathematical Genealogy of the Wellesley College Department of Mathematics Elissaeus Judaeus Demetrios Kydones The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. http://www.genealogy.math.ndsu.nodak.edu/ Georgios Plethon Gemistos Manuel Chrysoloras 1380, 1393 Basilios Bessarion 1436 Mystras Johannes Argyropoulos Guarino da Verona 1444 Università di Padova 1408 Cristoforo Landino Marsilio Ficino Vittorino da Feltre 1462 Università di Firenze 1416 Università di Padova Angelo Poliziano Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo 1477 Università di Firenze 1433 Constantinople / Università di Mantova Università di Mantova Leo Outers Moses Perez Scipione Fortiguerra Demetrios Chalcocondyles Jacob ben Jehiel Loans Thomas à Kempis Rudolf Agricola Alessandro Sermoneta Gaetano da Thiene Heinrich von Langenstein 1485 Université Catholique de Louvain 1493 Università di Firenze 1452 Mystras / Accademia Romana 1478 Università degli Studi di Ferrara 1363, 1375 Université de Paris Maarten (Martinus Dorpius) van Dorp Girolamo (Hieronymus Aleander) Aleandro François Dubois Jean Tagault Janus Lascaris Matthaeus Adrianus Pelope Johann (Johannes Kapnion) Reuchlin Jan Standonck Alexander Hegius Pietro Roccabonella Nicoletto Vernia Johannes von Gmunden 1504, 1515 Université Catholique de Louvain 1499, 1508 Università di Padova 1516 Université de Paris 1472 Università di Padova 1477, 1481 Universität Basel / Université de Poitiers 1474, 1490 Collège Sainte-Barbe -
Pathological” Functions and Their Classes
Properties of “Pathological” Functions and their Classes Syed Sameed Ahmed (179044322) University of Leicester 27th April 2020 Abstract This paper is meant to serve as an exposition on the theorem proved by Richard Aron, V.I. Gurariy and J.B. Seoane in their 2004 paper [2], which states that ‘The Set of Dif- ferentiable but Nowhere Monotone Functions (DNM) is Lineable.’ I begin by showing how certain properties that our intuition generally associates with continuous or differen- tiable functions can be wrong. This is followed by examples of functions with surprisingly unintuitive properties that have appeared in mathematical literature in relatively recent times. After a brief discussion of some preliminary concepts and tools needed for the rest of the paper, a construction of a ‘Continuous but Nowhere Monotone (CNM)’ function is provided which serves as a first concrete introduction to the so called “pathological functions” in this paper. The existence of such functions leaves one wondering about the ‘Differentiable but Nowhere Monotone (DNM)’ functions. Therefore, the next section of- fers a description of how the 2004 paper by the three authors shows that such functions are very abundant and not mere fancy counter-examples that can be called “pathological.” 1Introduction A wide variety of assumptions about the nature of mathematical objects inform our intuition when we perform calculations. These assumptions have their utility because they help us perform calculations swiftly without being over skeptical or neurotic. The problem, however, is that it is not entirely obvious as to which assumptions are legitimate and can be rigorously justified and which ones are not. -
RM Calendar 2017
Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
Inauguration
INAUGURATION OF THE PERMANENT SECRETARIAT OF THE INTERNATIONAL MATHEMATICAL UNION February 1, 2011, Berlin, Germany Ribbon Cutting Ceremony: Professor Dr. Martin Grötschel, Dr. Georg Schütte, Professor Dr. Ingrid Daubechies, Dr. Knut Nevermann, Professor Dr. Jürgen Sprekels (from left to right), and Gauss on the wall. Contents The IMU and Berlin ..................................................................................................................... 3 Where to find the IMU Secretariat ............................................................................................... 4 Adresses delivered at the Opening Ceremony ............................................................................. 5 Dr. Georg Schütte, State Secretary at the German Federal Ministry of Education and Research .............................. 5 Professor Dr. Jürgen Zöllner, Senator for Education, Science and Research of the State of Berlin, speech read by Dr. Knut Nevermann, State Secretary for Science and Research at the Berlin Senate .................................................... 8 Professor Dr. Ingrid Daubechies, President of the International Mathematical Union ............. 10 Professor Dr. Christian Bär, President of the German Mathematical Society (DMV) ............. 12 Professor Dr. Jürgen Sprekels, Director of the Weierstrass Institute, Berlin ............................ 13 The Team of the Permanent Secretariat ..................................................................................... 16 Impressions from the Opening