Condensation Reactions and Beyond
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lewis Acid Mediated Reactions of Olefins with Carbonyls
Lewis Acid Mediated Reactions of Olefins with Carbonyls Submitted by Stephen Flower For the Degree of PhD Of the University of Bath 2002 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author. This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation. …………………………..(signed) …………………………..(date) Abstract This thesis is divided into 5 chapters. The first chapter reviews the literature of Carbonyl-ene and Prins reactions. Recent advances in these areas and their application to natural product synthesis and other targeted syntheses are discussed. The second chapter discusses the concept of desymmetrisation using selected examples, including desymmetrising Carbonyl-ene reactions. Chapter Three introduces and discusses the work undertaken in studying the desymmetrising intramolecular carbonyl-ene of a meso-dialdehyde. Chapter Four details the concept of pyruvate-Prins cyclisation giving examples of its potential use. The chapter also gives examples of the use of rigid stereodefined scaffolds and their application. The chapter describes the reactivity of substituted pyruvate esters with cyclic enol ethers, and the elaboration of the cyclised products. The fifth chapter provides experimental details of the procedures reported. i Acknowledgements Many thanks to Dr Mike Willis for all his help and guidance and boundless enthusiasm over the years; and for a detailed investigation of the local pubs. -
BI(III) Initiated Cyclization Reactions and Iodonium Fragmentation Kinetics
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2005 BI(III) Initiated Cyclization Reactions and Iodonium Fragmentation Kinetics Yajing Lian College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Inorganic Chemistry Commons Recommended Citation Lian, Yajing, "BI(III) Initiated Cyclization Reactions and Iodonium Fragmentation Kinetics" (2005). Dissertations, Theses, and Masters Projects. Paper 1539626842. https://dx.doi.org/doi:10.21220/s2-zj7g-fp23 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BI(III) INITIATED CYCLIZATION REACTIONS AND IODONIUM FRAGMENTATION KINETICS A Thesis Presented to The Faculty of the Department of Chemistry The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Science by Yajing Lian 2005 APPROVAL SHEET This thesis is submitted in partial fulfillment of The requirements for the degree of Master of Science A Yajing Lian Approved by the Committee, December 20, 2005 Robert J. Hinkle, Chair Christopher Jl A] Robert D. Pike TABLE OF CONTENTS Page Acknowledgements VI List of Tables Vll List of Schemes V lll List of Figures IX Abstract XI Introduction Chapter I Secondary -
3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters
www.nature.com/scientificreports OPEN Monitoring of heat‑induced carcinogenic compounds (3‑monochloropropane‑1,2‑diol esters and glycidyl esters) in fries Yu Hua Wong1, Kok Ming Goh1,2, Kar Lin Nyam2, Ling Zhi Cheong3, Yong Wang4, Imededdine Arbi Nehdi5,6, Lamjed Mansour7 & Chin Ping Tan1* 3‑Monochloropropane‑1,2‑diol (3‑MCPD) esters and glycidyl esters (GE) are heat‑induced contaminants which form during oil refning process, particularly at the high temperature deodorization stage. It is worth to investigate the content of 3‑MCPD and GE in fries which also involved high temperature. The content of 3‑MCPD esters and GE were monitored in fries. The factors that been chosen were temperature and duration of frying, and diferent concentration of salt (NaCl). The results in our study showed that the efect was in the order of concentration of sodium chloride < frying duration < frying temperature. The content of 3‑MCPD esters was signifcantly increased whereas GE was signifcantly decreased, when prolong the frying duration. A high temperature results in a high 3‑MCPD ester level but a low GE level in fries. The present of salt had contributed signifcant infuence to the generation of 3‑MCPD. The soaking of potato chips in salt showed no signifcant efect on the level of GE during the frying. The oil oxidation tests showed that all the fries were below the safety limit. Hence, the frying cycle, temperature and the added salt to carbohydrate‑based food during frying should be monitored. Deep-fat frying is commonly being used to process food. During the process, heat transfer between the fried food and oil is occurs. -
Accessing Light-Sensitive Polycyclic Aromatics Through an Alkynyl-Prins Cyclization
W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 4-2018 Accessing Light-Sensitive Polycyclic Aromatics through an Alkynyl-Prins Cyclization Daniel John Speer Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Chemistry Commons Recommended Citation Speer, Daniel John, "Accessing Light-Sensitive Polycyclic Aromatics through an Alkynyl-Prins Cyclization" (2018). Undergraduate Honors Theses. Paper 1244. https://scholarworks.wm.edu/honorstheses/1244 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Accessing Light-Sensitive Polycyclic Aromatics through an Alkynyl-Prins Cyclization A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science with Honors in the Department of Chemistry from the College of William and Mary Accepted for Dr. Jonathan Scheerer Dr. Christopher Abelt Dr. Anne Rasmussen Directed by Dr. Robert J. Hinkle By Daniel John Speer April 26, 2018 Table of Contents Acknowledgements 3 Abstract 4 List of Figures 5 Introduction 6 Prins Chemistry and the alkynyl-Prins Cyclization 6 Photochromic Compounds 9 Cannabinoids 12 Results and Discussion 16 Development of Synthetic Procedure 16 Synthesis of Starting Material 17 Proposed Mechanism for the Cyclization 21 Synthesis and NMR Properties of Chromene Products 24 X-ray Crystallographic Analysis 27 UV/Visible Spectrophotometric Analysis 30 Conclusion 33 Experimental Methods 34 Materials and Methods 34 Synthetic Procedures 35 References 43 Supporting Information 46 Mass Spectrum of 11 46 X-ray Crystal Data and Structure Refinement for 11 47 2 Acknowledgements I would like to thank everyone involved in this process. -
Synthetic Strategies for the Lepadiformines and Cylindricine C Via Tandem Schmidt Reactions
Synthetic Strategies for the Lepadiformines and Cylindricine C via Tandem Schmidt Reactions By Angelica M. Meyer Submitted to the graduate degree program in the Medicinal Chemistry and the Graduate Faculty of The University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________ Chairperson: Jeffrey Aubé ________________________________ Dr. Thomas E. Prisinzano ________________________________ Dr. Ryan A. Altman ________________________________ Dean Kenneth L. Audus ________________________________ Dr. Paul R. Hanson Date Defended: December 5, 2011 The Dissertation Committee for Angelica M. Meyer certifies that this is the approved version of the following thesis: Synthetic Strategies for the Lepadiformines and Cylindricine C via Tandem Schmidt Reactions ________________________________ Chairperson Jeffrey Aubé Date approved: December 5, 2011 ii Abstract Marine flora and fauna have provided numerous alluring natural products, some of which contribute to treating diseases. The genus Clavelina is the source of a variety of tricyclic alkaloids, including the lepadiformine and cylindricine families. Novel approaches to synthesizing these molecules are sought after to increase their accessibility and for analogue development. In this dissertation, reaction sequences involving an intramolecular Schmidt transformation, which can quickly build up the molecular architecture associated with these targets is described. In one approach, the Lewis acid promoted intramolecular Schmidt reaction is combined in series with a Prins reaction to afford an interesting tricyclic lactam. This methodology culminates in a formal synthesis of lepadiformine A and a total synthesis of lepadiformine C. In another project, a tandem Diels–Alder/Schmidt reaction is utilized to prepare a similar tricyclic lactam. This process is applied toward an asymmetric total synthesis of (–)-cylindricine C. -
Than Was the Monoleucyl Ester of Cis-Cyclopentane-1,2-Diol
SOME OBSERVATIONS ON THE MECHANISM OF THE ACYLATION PROCESS IN PROTEIN SYNTHESIS* BY BEVERLY E. GRIFFIN AND C. B. REESE UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE, ENGLAND Communicated by Lord Todd, January 2, 1964 During recent years much attention has been given to the mechanism of synthesis of proteins in biological systems.' Although the process is by no means fully understood, some of the steps involved appear to be well established.2-4 Before amino acids can be incorporated into polypeptide chains they must first be "activated." The "activation" process involves ribonucleic acids of comparatively low molecular weight, known as "transfer" or "soluble" ribonucleic acids (sRNA), adenosine-5' triphosphate (ATP) as an energy source, and a specific enzyme for each amino acid. In the first step of the "activation" process, the amino acid reacts with ATP to form a mixed anhydride with adenosine-5' phosphate (AMP) releasing inorganic pyrophosphate; this mixed anhydride then acylates a specific sRNA on its terminal nucleoside (adenosine) residue to yield a 2' (or 3')-aminoacyl ester-the "activated" amino-acid. These processes are reversible. ATP + amino acid aminoacyl-AMP + pyrophosphate (1) sRNA + aminoacyl-AMP aminoacyl-sRNA + AMP (2) Beyond this point our knowledge of the process of polypeptide synthesis is less certain. The "activated" amino acids are believed to be transferred to the ribo- somes-the site of assembly of polypeptide chains-and then the amino acids become linked together in a genetically controlled order to synthesize a specific protein.5 Although there is as yet no definite evidence regarding this final step, it is frequently assumed that it involves a simple acylation as indicated in step (3). -
Carboligation Using the Aldol Reaction
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1730 Carboligation using the aldol reaction A comparison of stereoselectivity and methods DERAR AL-SMADI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0472-4 UPPSALA urn:nbn:se:uu:diva-362866 2018 Dissertation presented at Uppsala University to be publicly examined in BMC C2:301, Husargatan 3, Uppsala, Friday, 30 November 2018 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Ulf Nilsson (Lund University). Abstract Al-Smadi, D. 2018. Carboligation using the aldol reaction. A comparison of stereoselectivity and methods. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1730. 50 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0472-4. The research summarized in this thesis focuses on synthesizing aldehyde and aldol compounds as substrates and products for the enzyme D-fructose-6-aldolase (FSA). Aldolases are important enzymes for the formation of carbon-carbon bonds in nature. In biological systems, aldol reactions, both cleavage and formation play central roles in sugar metabolism. Aldolases exhibit high degrees of stereoselectivity and can steer the product configurations to a given enantiomeric and diastereomeric form. To become truly useful synthetic tools, the substrate scope of these enzymes needs to become broadened. In the first project, phenylacetaldehyde derivatives were synthesized for the use as test substrates for E. coli FSA. Different methods were discussed to prepare phenylacetaldehyde derivatives, the addition of a one carbon unit to benzaldehyde derivatives using a homologation reaction was successful and was proven efficient and non-sensitive to the moisture. -
Aldehydes Can React with Alcohols to Form Hemiacetals
340 14 . Nucleophilic substitution at C=O with loss of carbonyl oxygen You have, in fact, already met some reactions in which the carbonyl oxygen atom can be lost, but you probably didn’t notice at the time. The equilibrium between an aldehyde or ketone and its hydrate (p. 000) is one such reaction. O HO OH H2O + R1 R2 R1 R2 When the hydrate reverts to starting materials, either of its two oxygen atoms must leave: one OPh came from the water and one from the carbonyl group, so 50% of the time the oxygen atom that belonged to the carbonyl group will be lost. Usually, this is of no consequence, but it can be useful. O For example, in 1968 some chemists studying the reactions that take place inside mass spectrometers needed to label the carbonyl oxygen atom of this ketone with the isotope 18 O. 16 18 By stirring the ‘normal’ O compound with a large excess of isotopically labelled water, H 2 O, for a few hours in the presence of a drop of acid they were able to make the required labelled com- í In Chapter 13 we saw this way of pound. Without the acid catalyst, the exchange is very slow. Acid catalysis speeds the reaction up by making a reaction go faster by raising making the carbonyl group more electrophilic so that equilibrium is reached more quickly. The the energy of the starting material. We 18 also saw that the position of an equilibrium is controlled by mass action— O is in large excess. -
3 Alkenes from 1,2-Diols
REVISTA BOLIVIANA DE QUÍMICA (Rev.Bol.Quim.) Vol. 32, No.5, pp. 121-125, Nov./Dic. 2015 Bolivian Journal of Chemistry 32(5) 121-125, Nov./Dec. 2015 Received 12 14 2015 Accepted 12 23 2015 Published 12 30 2015 Bravo et Vila . STEREOSPECIFIC SYNTHESIS OF ALKENES FROM 1,2-DIOLS; MECHANISTIC VIEWS; THE ORGANIC CHEMISTRY NOTEBOOK SERIES, A DIDACTICAL APPROACH, Nº 8 José A. Bravo 1,*, José L. Vila 2 1Department of Chemistry, Laboratorio de Fitoquímica, Instituto de Investigaciones en Productos Naturales IIPN, Universidad Mayor de San Andrés UMSA, P.O. Box 303, Calle Andrés Bello s/n, Ciudad Universitaria Cota Cota, Phone 59122792238, La Paz, Bolivia, [email protected] 2Department of Chemistry, Laboratorio de Síntesis y Hemisíntesis, Instituto de Investigaciones en Productos Naturales IIPN, Universidad Mayor de San Andrés UMSA, P.O. Box 303, Calle Andrés Bello s/n, Ciudad Universitaria Cota Cota, Phone 59122795878, La Paz, Bolivia, [email protected] Keywords: Organic Chemistry, Alkenes, 1,2-diols, Stereospecific synthesis, Mechanisms of Reactions, W. Carruthers. ABSTRACT This is the eighth chapter in the series: “The Organic Chemistry Notebook Series, a Didactical Approach”. The aim of this series of studies is to help students to have a graphical view of organic synthesis reactions of diverse nature. Here we discuss, from a mechanistic stand point, some methods for the stereospecific synthesis of alkenes from 1,2-diols. One of the best ones utilizes as precursors, the cyclic thionocarbonates obtained from the diol with thiophosgene. We describe by mechanisms, the use of 1,3-dimethyl-2-phenyl-1,3,2-diazophospholidine as an alternative for the decomposition of thionocarbonates into alkenes. -
Chapter 19 the Chemistry of Aldehydes and Ketones. Addition Reactions
Instructor Supplemental Solutions to Problems © 2010 Roberts and Company Publishers Chapter 19 The Chemistry of Aldehydes and Ketones. Addition Reactions Solutions to In-Text Problems 19.1 (b) (d) (e) (g) 19.2 (a) 2-Propanone (d) (E)-3-Ethoxy-2-propenal (f) 4,4-Dimethyl-2,5-cyclohexadienone 19.3 (b) 2-Cyclohexenone has a lower carbonyl stretching frequency because its two double bonds are conjugated. 19.4 (b) The compound is 2-butanone: (c) The high frequency of the carbonyl absorption suggests a strained ring. (See Eq. 19.4, text p. 897.) In fact, cyclobutanone matches the IR stretching frequency perfectly and the NMR fits as well: 19.6 The structure and CMR assignments of 2-ethylbutanal are shown below. The two methyl groups are chemically equivalent, and the two methylene groups are chemically equivalent; all carbons with different CMR chemical shifts are chemically nonequivalent. INSTRUCTOR SUPPLEMENTAL SOLUTIONS TO PROBLEMS • CHAPTER 19 2 19.7 (a) The double bonds in 2-cyclohexenone are conjugated, but the double bonds in 3-cyclohexenone are not. Consequently, 2-cyclohexenone has the UV spectrum with the greater lmax. 19.9 Compound A, vanillin, should have a p T p* absorption at a greater lmax when dissolved in NaOH solution because the resulting phenolate can delocalize into the carboxaldehyde group; the resulting phenolate from compound B, isovanillin, on the other hand, can only delocalize in the aromatic ring. 19.11 The mass spectrum of 2-heptanone should have major peaks at m/z = 43 (from a-cleavage), 71 (from inductive cleavage), and 58 (from McLafferty rearrangement). -
(2016). Homogeneous Ethanol to Butanol Catalysis - Guerbet Renewed
Aitchison, H., Wingad, R. L., & Wass, D. F. (2016). Homogeneous Ethanol to Butanol Catalysis - Guerbet Renewed. ACS Catalysis, 6(10), 7125-7132. https://doi.org/10.1021/acscatal.6b01883 Peer reviewed version Link to published version (if available): 10.1021/acscatal.6b01883 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via ACS Catalysis at http://pubs.acs.org/doi/abs/10.1021/acscatal.6b01883 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Homogeneous Ethanol to Butanol Catalysis – Guerbet Renewed Hope Aitchison, Richard L. Wingad and Duncan F. Wass*. School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK. Email: [email protected]; www.wassresearchgroup.com ABSTRACT: The catalytic conversion of (bio)ethanol into butanol is an attractive route to upgrade the modest fuel char- acteristics of this widely available bio-derived substrate into a molecule that has properties much closer to conventional gasoline. The Guerbet reaction, known for more than 100 years, provides an ideal mechanism for this transformation. But, despite the apparently simple nature of this reaction for ethanol, it provides formidable challenges, especially in terms of achieving high selectivity. There have been advances in both heterogeneous and homogeneous catalysis in this regard, and this Perspective focuses on the very recent reports of homogeneous catalysts that describe encouraging results in terms of achieving high selectivity, mechanistic understanding and widening scope. -
1,2-Hexanediol
Supporting Information for Low-Priority Substance 1,2- Hexanediol (CASRN 6920-22-5) Final Designation February 20, 2020 Office of Pollution Prevention and Toxics U.S. Environmental Protection Agency 1200 Pennsylvania Avenue Washington, DC 20460 Contents 1. Introduction ................................................................................................................................................................ 1 2. Background on 1,2-Hexanediol ................................................................................................................................. 3 3. Physical-Chemical Properties ................................................................................................................................... 4 3.1 References ....................................................................................................................................................... 6 4. Relevant Assessment History ................................................................................................................................... 7 5. Conditions of Use ....................................................................................................................................................... 8 6. Hazard Characterization .......................................................................................................................................... 10 6.1 Human Health Hazard ...................................................................................................................................