Efficient Epstein-Barr Virus Progeny Production Mediated by Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Epstein-Barr Virus Progeny Production Mediated by Cancer microorganisms Article Efficient Epstein-Barr Virus Progeny Production Mediated by Cancer-Derived LMP1 and Virally-Encoded microRNAs Misako Yajima 1 , Mamiko Miyata 2, Kazufumi Ikuta 1, Yasuhisa Hasegawa 3,4 , Chitose Oneyama 2 and Teru Kanda 1,2,* 1 Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan; [email protected] (M.Y.); [email protected] (K.I.) 2 Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; [email protected] (M.M.); [email protected] (C.O.) 3 Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan; [email protected] 4 Department of Head and Neck Surgery, Asahi University Hospital, Gifu 500-8523, Japan * Correspondence: [email protected]; Tel.: +81-22-290-8723 Received: 26 March 2019; Accepted: 28 April 2019; Published: 30 April 2019 Abstract: Epstein-Barr virus (EBV) genomes, particularly their latent genes, are heterogeneous among strains. The heterogeneity of EBV-encoded latent membrane protein 1 (LMP1) raises the question of whether there are functional differences between LMP1 expressed by cancer-associated EBV and that by non-cancerous strains. Here, we used bacterial artificial chromosome (BAC)-cloned EBV genomes retaining all virally encoded microRNA (miRNA) genes to investigate the functions of cancer-derived LMP1 in the context of the EBV genome. HEK293 cells were stably transfected with EBV-BAC clone DNAs encoding either nasopharyngeal carcinoma (NPC)-derived CAO-LMP1 (LMP1CAO) or LMP1 from a prototype B95-8 strain of EBV (LMP1B95-8). When an EBV-BAC clone DNA encoding LMP1CAO was stably transfected into HEK293 cells, it generated many more stable transformants than the control clone encoding LMP1B95-8. Furthermore, stably transfected HEK293 cells exhibited highly efficient production of progeny virus. Importantly, deletion of the clustered viral miRNA genes compromised the ability to produce progeny viruses. These results indicate that cancer-derived LMP1 and viral miRNAs together are necessary for efficient production of progeny virus, and that the resulting increase in efficiency contributes to EBV-mediated epithelial carcinogenesis. Keywords: Epstein-Barr virus; Nasopharyngeal carcinoma; LMP1; BART; microRNA 1. Introduction Epstein-Barr virus (EBV) is an oncogenic herpesvirus that causes various lymphoproliferative diseases, including B cell lymphomas and T/NK lymphomas [1]. EBV also plays a role in the development of epithelial cancers, such as nasopharyngeal carcinoma (NPC) and gastric cancer [2]. The mechanisms underlying EBV-mediated B cell lymphomagenesis have been studied extensively using in vitro EBV-mediated B cell immortalization as an experimental system [3]. By contrast, T/NK lymphomagenesis and epithelial carcinogenesis following EBV infection have never been reproduced in vitro. Thus, the molecular mechanisms underlying these processes remain largely unknown. EBV-encoded latent membrane protein 1 (LMP1) is essential for EBV-mediated B cell transformation [4]. LMP1, which belongs to the tumor necrosis factor receptor family, is a constitutively active mimic of cellular CD40 [5]. LMP1 activates downstream signaling pathways, such as NF-κB, c-jun N-terminal kinase, and p38/MAPK, through C-terminal activation regions 1, 2, 3 (CTAR1, CTAR2, Microorganisms 2019, 7, 119; doi:10.3390/microorganisms7050119 www.mdpi.com/journal/microorganisms Microorganisms 2019, 7, x FOR PEER REVIEW 2 of 12 Microorganisms 2019, 7, 119 2 of 12 constitutively active mimic of cellular CD40 [5]. LMP1 activates downstream signaling pathways, such as NF-κB, c-jun N-terminal kinase, and p38/MAPK, through C-terminal activation regions 1, 2, CTAR3)3 (CTAR1, [6–8], CTAR2, thereby CTAR3) triggering [6–8], cell thereby proliferation. triggering cell LMP1 proliferation. fulfills theLMP1 criteria fulfills for the acriteria classical for a viral oncoproteinclassical becauseviral oncoprotein its expression because transforms its expression rodent transforms fibroblasts rodent [9]. Numerous fibroblasts studies [9]. Numerous suggest that LMP1studies plays asuggest role in that the LMP1 pathogenesis plays a role of EBV-associated in the pathogenesis epithelial of EBV-associated cancers [2,10 epithelial]; however, cancers due to a lack of[2,10]; experimental however, systems,due to a thelack contribution of experimental of LMP1 systems, to epithelialthe contribution carcinogenesis of LMP1 is to unclear. epithelial EBV-encodedcarcinogenesis is latent unclear. gene products, such as EBV nuclear antigens (EBNAs) and LMPs, are heterogeneousEBV-encoded among latent EBVgene strainsproducts, [11 such,12], as and EBV LMP1 nuclear is theantigens most (EBNAs) heterogeneous. and LMPs, LMP1 are is an integralheterogeneous membrane among protein EBV strains comprising [11,12], a and short LMP1 N-terminal is the most cytoplasmic heterogeneous. domain, LMP1 sixis an hydrophobic integral membrane protein comprising a short N-terminal cytoplasmic domain, six hydrophobic transmembrane domains, and a C-terminal cytoplasmic tail [3]. Heterogeneities reside within the six transmembrane domains, and a C-terminal cytoplasmic tail [3]. Heterogeneities reside within the six transmembrane domains as well as within the N- and C-terminal cytoplasmic domains. Heterogeneity transmembrane domains as well as within the N- and C-terminal cytoplasmic domains. withinHeterogeneity the C-terminal within cytoplasmic the C-terminal domain cytoplasmic includes domain variations includes in variations the copy in number the copy of number repetitive of 11 aminorepetitive acid (a.a.) 11 amino repeat acid motifs (a.a.) and repeat a 10 motifs a.a. deletion and a 10 commonly a.a. deletion found commonly in EBV found in Asian in EBV countries in Asian [13]. Acountries Chinese [13]. NPC cell CAO, propagated in nude mice, encodes LMP1 [14–16], designated hereafter as LMP1CAOA Chinese, which isNPC distinct cell CAO, from LMP1propagated expressed in nu byde prototypemice, encodes B95-8 LMP1 strain [14–16], EBV (LMP1 designatedB95-8)[ 17]. LMP1hereafterCAO contains as LMP1 multipleCAO, which a.a. is substitutions distinct from withinLMP1 expr its transmembraneessed by prototype and B95-8 N- andstrain C-terminal EBV cytoplasmic(LMP1B95-8 domains) [17]. LMP1 (FigureCAO contains1). It also multiple harbors a.a. a substitutions 10 a.a. deletion within in theits transmembrane C-terminal domain, and N- which and is C-terminal cytoplasmic domains (Figure 1). It also harbors a 10 a.a. deletion in the C-terminal common to a specific subtype of LMP1 known as China 1 type [13]. LMP1CAO is functionally different domain, which is common to a specific subtype of LMP1 known as China 1 type [13]. LMP1CAO is from LMP1B95-8 in that the former is less cytostatic than the latter. This functional difference is due functionally different from LMP1B95-8 in that the former is less cytostatic than the latter. This to the a.a. heterogeneity of the transmembrane domains rather than to the 10 a.a. deletion at the C functional difference is due to the a.a. heterogeneity of the transmembrane domains rather than to terminus [15,16,18,19]. In addition to LMP1 , numerous NPC-associated LMP1 variants have been the 10 a.a. deletion at the C terminusCAO [15,16,18,19]. In addition to LMP1CAO, numerous identifiedNPC-associated using recently LMP1 developed variants have deep been sequencing identified technologies, using recently and developed an elucidation deep ofsequencing their roles in NPCtechnologies, pathogenesis and is underwayan elucidation [20 of]. their roles in NPC pathogenesis is underway [20]. FigureFigure 1. Comparison 1. Comparison of of the the amino amino acid acid sequences sequences ofof B95-8 LMP1 LMP1 (LMP1 (LMP1B95-8B95-8) and) and CAO-LMP1 CAO-LMP1 (LMP1CAO). Sequence alignment was performed by CLUSTALW (left); schematic illustrations of the (LMP1CAO). Sequence alignment was performed by CLUSTALW (left); schematic illustrations of the LMP1 domains (right). The amino acids in LMP1CAO that differ from those in LMP1B95-8 are shown. LMP1 domains (right). The amino acids in LMP1CAO that differ from those in LMP1B95-8 are shown. Note that LMP1CAO contains three additional copies of 11 amino acid repeats (indicated by brown Note that LMP1CAO contains three additional copies of 11 amino acid repeats (indicated by brown squares) and a 10 amino acid deletion in the C-terminal cytoplasmic domain. squares) and a 10 amino acid deletion in the C-terminal cytoplasmic domain. A previous study used a recombinant EBV (so-called ‘Maxi-EBV’ [21]) to investigate functional A previous study used a recombinant EBV (so-called ‘Maxi-EBV’ [21]) to investigate functional differences between NPC-derived LMP1 and LMP1B95-8 [22]. The results were somewhat unexpected: differences between NPC-derived LMP1 and LMP1B95-8 [22]. The results were somewhat unexpected: Replacing LMP1B95-8 with NPC-derived LMP1 decreased rather than increased the EBV copy number Replacingin latently LMP1 infectedB95-8 with cells NPC-derived [22]. Maxi-EBV, LMP1 an EBV-BAC decreased clone rather of thanB95-8 increased strain EBV, the harbors EBV copy a 12 numberkb in latentlydefect infected in the BamHI cells [ 22rightward]. Maxi-EBV, transcripts an EBV-BAC (BARTs) clonelocus of[23], B95-8 which strain encodes EBV, a harbors number aof 12 BART kb defect in themicroRNAs BamHI rightward (miRNAs). transcripts Since BART (BARTs) miRNAs locus [ 23likely], which contribute encodes to
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 3: Genes Only Influenced By
    Supplementary Table 3: Genes only influenced by X10 Illumina ID Gene ID Entrez Gene Name Fold change compared to vehicle 1810058M03RIK -1.104 2210008F06RIK 1.090 2310005E10RIK -1.175 2610016F04RIK 1.081 2610029K11RIK 1.130 381484 Gm5150 predicted gene 5150 -1.230 4833425P12RIK -1.127 4933412E12RIK -1.333 6030458P06RIK -1.131 6430550H21RIK 1.073 6530401D06RIK 1.229 9030607L17RIK -1.122 A330043C08RIK 1.113 A330043L12 1.054 A530092L01RIK -1.069 A630054D14 1.072 A630097D09RIK -1.102 AA409316 FAM83H family with sequence similarity 83, member H 1.142 AAAS AAAS achalasia, adrenocortical insufficiency, alacrimia 1.144 ACADL ACADL acyl-CoA dehydrogenase, long chain -1.135 ACOT1 ACOT1 acyl-CoA thioesterase 1 -1.191 ADAMTSL5 ADAMTSL5 ADAMTS-like 5 1.210 AFG3L2 AFG3L2 AFG3 ATPase family gene 3-like 2 (S. cerevisiae) 1.212 AI256775 RFESD Rieske (Fe-S) domain containing 1.134 Lipo1 (includes AI747699 others) lipase, member O2 -1.083 AKAP8L AKAP8L A kinase (PRKA) anchor protein 8-like -1.263 AKR7A5 -1.225 AMBP AMBP alpha-1-microglobulin/bikunin precursor 1.074 ANAPC2 ANAPC2 anaphase promoting complex subunit 2 -1.134 ANKRD1 ANKRD1 ankyrin repeat domain 1 (cardiac muscle) 1.314 APOA1 APOA1 apolipoprotein A-I -1.086 ARHGAP26 ARHGAP26 Rho GTPase activating protein 26 -1.083 ARL5A ARL5A ADP-ribosylation factor-like 5A -1.212 ARMC3 ARMC3 armadillo repeat containing 3 -1.077 ARPC5 ARPC5 actin related protein 2/3 complex, subunit 5, 16kDa -1.190 activating transcription factor 4 (tax-responsive enhancer element ATF4 ATF4 B67) 1.481 AU014645 NCBP1 nuclear cap
    [Show full text]
  • Supplementary Table 2 Differentially Expressed Genes in PC3 Prostate Adenocarcinoma Cells 48 H After Transfection with Sirxfp1 Versus Sinc Control Sirna
    Supplementary Table 2 Differentially expressed genes in PC3 prostate adenocarcinoma cells 48 h after transfection with siRXFP1 versus siNC control siRNA. Genes with P<0.05 are shown Average fold change PROBE_ID TargetID Title (siRXFP1/siNC) ILMN_1757406 HIST1H1C histone cluster 1, H1c 2.358875 ILMN_1691846 G0S2 G0/G1switch 2 2.148632 ILMN_1706505 COL5A1 collagen, type V, alpha 1 2.030442 ILMN_1715684 LAMB3 laminin, beta 3 1.891462 ILMN_1809402 MAN2A1 mannosidase, alpha, class 2A, member 1 1.843399 ILMN_1666503 DENND2A DENN/MADD domain containing 2A 1.794946 ILMN_1746465 FJX1 four jointed box 1 (Drosophila) 1.777726 ILMN_1688670 CDCP1 CUB domain containing protein 1 1.743697 ILMN_1708341 PDZK1 PDZ domain containing 1 1.740739 ILMN_1658702 HIST1H2BJ histone cluster 1, H2bj 1.621722 ILMN_1756777 HBEGF heparin-binding EGF-like growth factor 1.594607 ILMN_1727315 DENND1A DENN/MADD domain containing 1A 1.581216 CKLF-like MARVEL transmembrane domain ILMN_1705442 CMTM3 containing 3 1.529026 estrogen receptor binding site associated, ILMN_1729144 EBAG9 antigen, 9 1.507585 ILMN_1666507 PLAUR plasminogen activator, urokinase receptor 1.480579 plakophilin 1 (ectodermal dysplasia/skin ILMN_1663454 PKP1 fragility syndrome) 1.475808 ILMN_1706643 COL6A3 collagen, type VI, alpha 3 1.47301 ILMN_1795055 LRRC3 leucine rich repeat containing 3 1.471709 ILMN_1722845 RAB3B RAB3B, member RAS oncogene family 1.432296 ILMN_1691508 PLAUR plasminogen activator, urokinase receptor 1.423904 ILMN_1703531 EDG3 sphingosine-1-phosphate receptor 3 1.421666 ILMN_1803728
    [Show full text]
  • Association of Cnvs with Methylation Variation
    www.nature.com/npjgenmed ARTICLE OPEN Association of CNVs with methylation variation Xinghua Shi1,8, Saranya Radhakrishnan2, Jia Wen1, Jin Yun Chen2, Junjie Chen1,8, Brianna Ashlyn Lam1, Ryan E. Mills 3, ✉ ✉ Barbara E. Stranger4, Charles Lee5,6,7 and Sunita R. Setlur 2 Germline copy number variants (CNVs) and single-nucleotide polymorphisms (SNPs) form the basis of inter-individual genetic variation. Although the phenotypic effects of SNPs have been extensively investigated, the effects of CNVs is relatively less understood. To better characterize mechanisms by which CNVs affect cellular phenotype, we tested their association with variable CpG methylation in a genome-wide manner. Using paired CNV and methylation data from the 1000 genomes and HapMap projects, we identified genome-wide associations by methylation quantitative trait locus (mQTL) analysis. We found individual CNVs being associated with methylation of multiple CpGs and vice versa. CNV-associated methylation changes were correlated with gene expression. CNV-mQTLs were enriched for regulatory regions, transcription factor-binding sites (TFBSs), and were involved in long- range physical interactions with associated CpGs. Some CNV-mQTLs were associated with methylation of imprinted genes. Several CNV-mQTLs and/or associated genes were among those previously reported by genome-wide association studies (GWASs). We demonstrate that germline CNVs in the genome are associated with CpG methylation. Our findings suggest that structural variation together with methylation may affect cellular phenotype. npj Genomic Medicine (2020) 5:41 ; https://doi.org/10.1038/s41525-020-00145-w 1234567890():,; INTRODUCTION influence transcript regulation is DNA methylation, which involves The extent of genetic variation that exists in the human addition of a methyl group to cytosine residues within a CpG population is continually being characterized in efforts to identify dinucleotide.
    [Show full text]
  • Download Special Issue
    BioMed Research International Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Guest Editors: Julia Tzu-Ya Weng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data BioMed Research International Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Guest Editors: Julia Tzu-Ya Weng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data,JuliaTzu-YaWeng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Volume2014,ArticleID814092,3pages Evolution of Network Biomarkers from Early to Late Stage Bladder Cancer Samples,Yung-HaoWong, Cheng-Wei Li, and Bor-Sen Chen Volume 2014, Article ID 159078, 23 pages MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure,Kuei-FangLee, Yi-Cheng Chen, Paul Wei-Che Hsu, Ingrid Y. Liu, and Lawrence Shih-Hsin Wu Volume2014,ArticleID456323,10pages EXIA2: Web Server of Accurate and Rapid Protein Catalytic Residue Prediction, Chih-Hao Lu, Chin-Sheng
    [Show full text]
  • Integrative Analysis of Disease Signatures Shows Inflammation Disrupts Juvenile Experience-Dependent Cortical Plasticity
    New Research Development Integrative Analysis of Disease Signatures Shows Inflammation Disrupts Juvenile Experience- Dependent Cortical Plasticity Milo R. Smith1,2,3,4,5,6,7,8, Poromendro Burman1,3,4,5,8, Masato Sadahiro1,3,4,5,6,8, Brian A. Kidd,2,7 Joel T. Dudley,2,7 and Hirofumi Morishita1,3,4,5,8 DOI:http://dx.doi.org/10.1523/ENEURO.0240-16.2016 1Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 2Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 3Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 4Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 5Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 6Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 7Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and 8Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029 Visual Abstract Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate Significance Statement During childhood and adolescence, heightened neuroplasticity allows the brain to reorganize and adapt to its environment.
    [Show full text]
  • NKIRAS2 (NM 017595) Human Tagged ORF Clone – RC209464
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC209464 NKIRAS2 (NM_017595) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: NKIRAS2 (NM_017595) Human Tagged ORF Clone Tag: Myc-DDK Symbol: NKIRAS2 Synonyms: kappaB-Ras2; KBRAS2 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC209464 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGGGAAGAGCTGCAAGGTGGTCGTGTGTGGCCAGGCGTCTGTGGGCAAAACTTCAATCCTGGAGCAGC TTCTGTATGGGAACCATGTAGTGGGTTCGGAGATGATCGAGACGCAGGAGGACATCTACGTGGGCTCCAT TGAGACAGACCGGGGGGTGCGAGAGCAGGTGCGTTTCTATGACACCCGGGGGCTCCGAGATGGGGCCGAA CTGCCCCGACACTGCTTCTCTTGCACTGATGGCTACGTCCTGGTCTATAGCACAGATAGCAGAGAGTCTT TTCAGCGTGTGGAGCTGCTCAAGAAGGAGATTGACAAATCCAAGGACAAGAAGGAGGTCACCATCGTGGT CCTTGGCAACAAGTGTGACTTACAGGAGCAGCGGCGTGTAGACCCAGATGTGGCTCAGCACTGGGCCAAG TCAGAGAAGGTGAAGCTGTGGGAGGTGTCAGTGGCGGACCGGCGCTCCCTCCTGGAGCCCTTTGTCTACT TGGCCAGCAAGATGACGCAACCCCAGAGCAAGTCTGCCTTCCCCCTCAGCCGGAAGAACAAGGGCAGCGG CTCCTTGGATGGC ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA Protein Sequence: >RC209464 protein sequence Red=Cloning site Green=Tags(s) MGKSCKVVVCGQASVGKTSILEQLLYGNHVVGSEMIETQEDIYVGSIETDRGVREQVRFYDTRGLRDGAE LPRHCFSCTDGYVLVYSTDSRESFQRVELLKKEIDKSKDKKEVTIVVLGNKCDLQEQRRVDPDVAQHWAK
    [Show full text]
  • Diagnóstico Molecular Do Transtorno Do Espectro Autista Através Do Sequenciamento Completo De Exoma Molecular Diagnosis Of
    Universidade de São Paulo Tatiana Ferreira de Almeida Diagnóstico molecular do transtorno do espectro autista através do sequenciamento completo de exoma Molecular diagnosis of autism spectrum disorder through whole exome sequencing São Paulo 2018 Universidade de São Paulo Tatiana Ferreira de Almeida Diagnóstico molecular do transtorno do espectro autista através do sequenciamento completo de exoma Molecular diagnosis of autism spectrum disorder through whole exome sequencing Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências, na Área de Biologia/Genética. Versão corrigida. Orientador(a): Maria Rita dos Santos Passos-Bueno São Paulo ii 2018 Dedico esta tese à ciência, e a todos os seus amantes. O, reason not the need! Our basest beggars Are in the poorest thing superfluous. Allow not nature more than nature needs, Man’s life is cheap as beast’s. Thou art a lady: If only to go warm were gorgeous, Why, nature needs not what thou gorgeous wear’st Which scarcely keeps thee warm. But, for true need- You heavens, give me that patience, patience I need! You see me here, you gods, a poor old man, As full of grief as age; wretched in both.” iii King Lear, William Shakespeare, 1608 Agradecimentos Agradeço em primeiro lugar ao meu grande amor Danilo, sem ele, há 11 anos, essa jornada não teria começado, a vida não teria me surpreendido e eu estaria de volta em casa, com todos os peixinhos do mar, e infeliz pelo resto da minha vida. Agradeço minha família, principalmente minha mãe Flávia e meu pai Airton por sacrificarem com mínimos protestos, as melhores horas que passaríamos juntos para que eu cumprisse meu trabalho.
    [Show full text]
  • The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
    Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors.
    [Show full text]
  • Genome-Wide Association Analyses of Esophageal Squamous Cell Carcinoma in Chinese Identify Multiple Susceptibility Loci and Gene-Environment Interactions
    ARTICLES Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions Chen Wu1,2,13, Peter Kraft2,13, Kan Zhai1,13, Jiang Chang1,13, Zhaoming Wang3,4, Yun Li5, Zhibin Hu6, Zhonghu He7, Weihua Jia8, Christian C Abnet3, Liming Liang2, Nan Hu3, Xiaoping Miao9, Yifeng Zhou10, Zhihua Liu1, Qimin Zhan1, Yu Liu1, Yan Qiao1, Yuling Zhou1, Guangfu Jin6, Chuanhai Guo7, Changdong Lu11, Haijun Yang11, Jianhua Fu8, Dianke Yu1, Neal D Freedman3, Ti Ding12, Wen Tan1, Alisa M Goldstein3, Tangchun Wu9, Hongbing Shen6, Yang Ke7, Yixin Zeng8, Stephen J Chanock3,4, Philip R Taylor3 & Dongxin Lin1 We conducted a genome-wide association study (GWAS) and a genome-wide gene-environment interaction analysis of esophageal squamous-cell carcinoma (ESCC) in 2,031 affected individuals (cases) and 2,044 controls with independent validation in 8,092 cases and 8,620 controls. We identified nine new ESCC susceptibility loci, of which seven, at chromosomes 4q23, 16q12.1, 17q21, 22q12, 3q27, 17p13 and 18p11, had a significant marginal effect (P = 1.78 × 10−39 to P = 2.49 × 10−11) and two of which, at 2q22 and 13q33, had a significant association only in the gene–alcohol drinking interaction (gene-environment P P −11 P −8 ADH interaction ( G × E) = 4.39 × 10 and G × E = 4.80 × 10 , respectively). Variants at the 4q23 locus, which includes the P −7 cluster, each had a significant interaction with alcohol drinking in their association with ESCC risk ( G × E = 2.54 × 10 to P −2 ALDH2 G × E = 3.23 × 10 ).
    [Show full text]
  • W O 2019/079360 a L 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date W O 2019/079360 A l 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: (72) Inventors; and G01N 33/48 (2006.01) G01N 33/53 (2006.01) (71) Applicants: KEAN, Leslie [US/US]; c/o 818 Stewart St, Suite 603, Seattle, Washington 98101 (US). COLONNA, (21) International Application Number: Lucrezia [US/US]; c/o 818 Stewart St, Suite 603, Seattle, PCT/US2018/056166 Washington 98101 (US). CARROLL, Shaina [US/US]; (22) International Filing Date: c/o 77 Massachusetts Avenue, Cambridge, Massachusetts 16 October 2018 (16. 10.2018) 02139 (US). (25) Filing Language: English (72) Inventors: SHALEK, Alexander K.; c/o 77 Massachu¬ setts Avenue, Cambridge, Massachusetts 02139 (US). ZIE- (26) Publication Language: English GLER, Carly; c/o 77 Massachusetts Avenue, Cambridge, (30) Priority Data: Massachusetts 02139 (US). 62/573,015 16 October 2017 (16. 10.2017) US (74) Agent: SCHER, Michael B. et al.; Johnson, Marcou & (71) Applicants: MASSACHUSETTS INSTITUTE OF Isaacs, LLC, P.O. Bo 691, Hoschton, Georgia 30548 (US). TECHNOLOGY [US/US]; 77 Massachusetts Av¬ (81) Designated States (unless otherwise indicated, for every enue, Cambridge, Massachusetts 02139 (US). SEAT¬ kind of national protection available): AE, AG, AL, AM, TLE CHILDREN'S HOSPITAL DBA SEATTLE AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CHILDREN'S RESEARCH INSTITUTE [US/US]; 818 CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, Stewart St, Suite 603, Seattle, Washington 98101 (US).
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]