Pretreatment with Haloperidol Reduces 123I-FP-CIT Binding To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kinetic Modeling in Positron Emission Tomography
Ch23.qxd 28/8/04 2:05 PM Page 499 CHAPTER 23 Kinetic Modeling in Positron Emission Tomography EVAN D. MORRIS,* CHRISTOPHER J. ENDRES,† KATHLEEN C. SCHMIDT,‡ BRADLEY T. CHRISTIAN,§ RAYMOND F. MUZIC JR.,¶ RONALD E. FISHER|| *Departments of Radiology and Biomedical Engineering, Indiana University School of Medicine, Indianapolis, Indiana †Department of Radiology, Johns Hopkins University, Baltimore, Maryland ‡Laboratory of Cerebral Metabolism, NIMH, Bethesda, Maryland §Wright State University, Kettering Medical Center, Dayton, Ohio ¶Departments of Radiology, Oncology and Biomedical Engineering, Case Western Reserve University, Nuclear Medicine, University Hospitals Cleveland, Cleveland, Ohio ||The Methodist Hospital and Department of Radiology and Neuroscience, Baylor College of Medicine, Houston, Texas I. Introduction used in the two most ubiquitous applications of PET: imag- II. The One-Compartment Model: Blood Flow ing of blood flow and glucose metabolism. We also examine III. Positron Emission Tomography Measurements of the use of PET to image specific receptor molecules, which Regional Cerebral Glucose Use capitalizes on the unique specificity of PET. IV. Receptor–Ligand Models Supplied with single (static) PET images and no kinetic V. Model Simplifications model to aid in their interpretation, one is confined to asking VI. Limitations to Absolute Quantification questions that can be answered only on the basis of spatial VII. Functional Imaging of Neurochemistry—Future Uses information such as: Where is glucose being used? Where VIII. A Generalized Implementation of the Model are particular receptor molecules located within the brain or Equations the heart? With the acquisition of dynamic (time-sequence) imaging data and the application of kinetic models, one can pose many additional quantitative questions based on temporal I. -
Natural History, MRI Morphology, and Dopamine Receptor Imaging with 123IBZM-SPECT
J7ournal ofNeurology, Neurosurgery, and Psychiatry 1994;57:1047-1056 1047 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.57.9.1047 on 1 September 1994. Downloaded from Multiple system atrophy: natural history, MRI morphology, and dopamine receptor imaging with 123IBZM-SPECT J B Schulz, T Klockgether, D Petersen, M Jauch, W Muiller-Schauenburg, S Spieker, K Voigt, J Dichgans Abstract of the intermediolateral cell columns of the Sixteen patients with a clinical diagnosis spinal cord. All of these changes are not neces- of probable multiple system atrophy sarily found in each patient with MSA. In (MSA) were examined clinically by MRI some patients, degeneration affects mainly the and by 523I-iodobenzamide single photon basal ganglia, whereas in others the ponto- emission computed tomography (IBZM- cerebellar system or the spinal cord are more SPECT). The clinical records of another affected. Therefore, evidence of cell degenera- 16 patients were also analysed retrospec- tion and gliosis in at least three of the following tively. On the basis of their clinical pre- anatomical structures is thought to be suffi- sentation, patients were subdivided into cient for the neuropathological diagnosis of those with prominent parkinsonism MSA: striatum, substantia nigra, Purkinje (MSA-P, n = 11) and those with promi- cell layer of the cerebellar cortex, pontine nent cerebellar ataxia (MSA-C, n = 21). nuclei, inferior olives, and intermediolateral Autonomic symptoms were present in all cell columns of the spinal cord.'4 Striatum or patients and preceded the onset of motor substantia nigra must be one of these areas.5 symptoms in 63% of patients. -
Brain Imaging
Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters. -
Radiotracers for SPECT Imaging: Current Scenario and Future Prospects
Radiochim. Acta 100, 95–107 (2012) / DOI 10.1524/ract.2011.1891 © by Oldenbourg Wissenschaftsverlag, München Radiotracers for SPECT imaging: current scenario and future prospects By S. Adak1,∗, R. Bhalla2, K. K. Vijaya Raj1, S. Mandal1, R. Pickett2 andS.K.Luthra2 1 GE Healthcare Medical Diagnostics, John F Welch Technology Center, Bangalore, India 560066 2 GE Healthcare Medical Diagnostics, The Grove Centre, White Lion Road, Amersham, HP7 9LL, UK (Received October 4, 2010; accepted in final form July 18, 2011) Nuclear medicine / 99m-Technetium / 123-Iodine / ton emission computed tomography (SPECT or less com- Oncological imaging / Neurological imaging / monly known as SPET) and positron emission tomogra- Cardiovascular imaging phy (PET). Both techniques use radiolabeled molecules to probe molecular processes that can be visualized, quanti- fied and tracked over time, thus allowing the discrimination Summary. Single photon emission computed tomography of healthy from diseased tissue with a high degree of con- (SPECT) has been the cornerstone of nuclear medicine and today fidence. The imaging agents use target-specific biological it is widely used to detect molecular changes in cardiovascular, processes associated with the disease being assessed both at neurological and oncological diseases. While SPECT has been the cellular and subcellular levels within living organisms. available since the 1980s, advances in instrumentation hardware, The impact of molecular imaging has been on greater under- software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. standing of integrative biology, earlier detection and charac- The biggest change in the last decade has been the fusion terization of disease, and evaluation of treatment in human of CT with SPECT, which has improved attenuation correction subjects [1–3]. -
Testosterone for Women...And Men
Testosterone for Women...and Men Date: 05/08/2006 Posted By: Jon Barron Every now and then I get a break in putting together a newsletter. I get to steal the entire newsletter from myself. In this case, I was able to take most of the material for this newsletter from the formulation information I put together for my new upgraded Women's Formula that Baseline Nutritionals released this month. And while this newsletter definitely serves as an introduction to that new formula, it more importantly provides an excuse for exploring a crucial topic for both men and women -- the value of maintaining an optimum testosterone balance. However, before we get into the specifics of both the men's and women's formulas, let's explore what testosterone does in the body -- and why it's so important for both men and women. The 30,000 Mile Tune-Up: Hormonal Changes As men and women enter their 30's, profound changes begin to take place in their bodies. If not addressed (that's the 30,000 mile tune-up thing), these changes can lead to, among other things: • Decreased energy and zest for life • Loss of muscle tone and increased fat • Circulatory problems and decreased libido But it doesn't have to be this way. Let me explain. Hormonal Imbalance Hormones are the body's chemical messenger system. They tell the various cells of the body what to do - - and when to do it -- by attaching to specific receptor sites on individual cells. Problems occur when the various hormones get out of balance. -
Failure of Vitamin B6 to Reverse the L-Dopa Effect in Patients on a Dopa Decarboxylase Inhibitor
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.34.6.682 on 1 December 1971. Downloaded from J. Neurol. Neurosurg. Psychiat., 34, 682-686 Failure of vitamin B6 to reverse the L-dopa effect in patients on a dopa decarboxylase inhibitor HAROLD L. KLAWANS, STEVEN P. RINGEL. AND DAVID M. SHENKER From the Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA SUMMARY Seven patients with Parkinsonism previously on L-dopa were placed on a regimen of L-dopa and alpha methyl dopa hydrazine (a dopa decarboxylase inhibitor). Two of these patients had previously shown marked clinical deterioration of the L-dopa improvement when given pyrid- oxine. None of the seven patients receiving alpha methyl dopa hydrazine demonstrated any change in their condition when given pyridoxine. The failure of vitamin B6 to reverse the clinical effect of L-dopa in patients receiving both L-dopa and a peripheral dopa decarboxylase inhibitor suggests that reversal of the L-dopa effect induced by vitamin B6 is due to increasing the activity of the enzyme dopa decarboxylase outside the central nervous system. guest. Protected by copyright. In patients with Parkinsonism receiving L-dopa hydrazine). These observations help to explain the (L-3, 4-dihydroxyphenylalanine), vitamin B6 has paradoxical effects of large amounts of pyridoxine recently been shown to cause a loss or reversal of in patients receiving L-dopa. the L-dopa effect (Duvoisin, Yahr, and Cote, 1969; Yahr, Duvoisin, Schear, Barrett, and Hoehn, METHODS AND RESULTS 1970). This was discovered when Duvoisin et al. (1969) gave vitamin B6 to patients receiving L-dopa Seven patients with Parkinsonism who had been on in an attempt to increase formation of dopamine L-dopa for at least one year were included in this from L-dopa within the central nervous system (CNS) study. -
123I-Iodobenzamide SPECT Is Not an Independent Predictor of Dopaminergic Responsiveness in Patients with Suspected Atypical Parkinsonian Syndromes
123I-Iodobenzamide SPECT Is Not an Independent Predictor of Dopaminergic Responsiveness in Patients with Suspected Atypical Parkinsonian Syndromes Sabine Hellwig1,2, Annabelle Kreft3, Florian Amtage1, Oliver Tüscher1,4, Oliver H. Winz5, Bernhard Hellwig1, Cornelius Weiller1, Wolfgang A. Weber3, Werner Vach6, and Philipp T. Meyer3 1Department of Neurology, University Hospital Freiburg, Freiburg, Germany; 2Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany; 3Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany; 4Department of Psychiatry and Psychotherapy, University Hospital Mainz, Mainz, Germany; 5Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany; and 6Clinical Epidemiology, Institute of Medical Biometry and Medical Informatics, University of Freiburg, Freiburg, Germany The prediction of dopaminergic responsiveness in patients with par- According to current consensus criteria, poor responsiveness kinsonism is desirable for effective treatment strategies. We in- to levodopa is suggestive of atypical parkinsonian syndrome (APS) vestigated whether striatal dopamine D2/D3 receptor (D2R) binding (1). However, up to 30% of patients diagnosed with multiple-system 123 assessed by I-iodobenzamide SPECT is an independent predic- atrophy or progressive supranuclear palsy benefit from dopami- tor of dopaminergic responsiveness in patients with parkinsonism. nergic medication, particularly at early stages of the disease (2,3). Methods: Seventy-eight patients -
Pathology, Prevention and Therapeutics of Neurodegenerative Disease
Pathology, Prevention and Therapeutics of Neurodegenerative Disease Sarika Singh Neeraj Joshi Editors 123 Pathology, Prevention and Therapeutics of Neurodegenerative Disease Sarika Singh • Neeraj Joshi Editors Pathology, Prevention and Therapeutics of Neurodegenerative Disease Editors Sarika Singh Neeraj Joshi Toxicology and Experimental Department of Surgery Medicine Division Samuel Oschin Comprehensive Cancer CSIR-Central Drug Research Institute Institute, Cedar Sinai Medical Center Lucknow Los Angeles, CA India USA ISBN 978-981-13-0943-4 ISBN 978-981-13-0944-1 (eBook) https://doi.org/10.1007/978-981-13-0944-1 Library of Congress Control Number: 2018952338 © Springer Nature Singapore Pte Ltd. 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
Dopamine D2 Receptor Imaging with Iodine-123-Iodobenzamide SPECT in Idiopathic Rotational Torticollis
Dopamine D2 Receptor Imaging with Iodine-123-Iodobenzamide SPECT in Idiopathic Rotational Torticollis Johannes Hierholzer, Michael Cordes, Ludwig Schelosky, Wolf Richter, Uwe Keske, Stephan Venz, Wolfhard Senunler, Werner Poewe and Roland Felix Strahlenkiinik unci Neumlogirche KlinilçUnive,@ritatskJiniIasmRudolf Virchow, Freie Universi:ät,Berlin and Institut für Diagnostikforschung; Berlin@Germany may show rotational torticollis, laterocollis, retrocollis or The cause of idiopathic rotational torticoibs (tAT) is not corn combinations thereof (Table 1). According to the ad hoc pI@ understoodto date. However,basalgangbaare believed committee of the Dystonia Medical Research Fondation, to be involved in the pathophysiologyof IRT. To elucidatethis dystonia is classified by the age of onset, cause and body disorderfurther, the value ofiodobenzamide (IBZM) SPECT was distribution of the abnormal movement (Table 1). The cx studied for the evaluation of striatal dopamine D2 receptors in clusion of symptomatic dystoniajustifles the nominationof these patients.M@hods: StriataldopamineD2 receptordensity idiopathic focal dystonia (IFD) and, in case of head rota was assessed in 10 patientswith IRT using 1@I-IBZMSPECT. Theimageswereinterpretedbya nudearmedicinephysician tion, idiopathicrotationaltorticollis (IRT). initiallyto determineIBZMbindingwithinthe sthatumandthe The precise pathophysiology underlying idiopathic cerebellumand,secondly,intersthatalIBZMbinding.Theresuits adult-onset dystonia remains unclear. CF and MRI are werecorrelatedwiththedir@calparametersof -
The Pharmacological Properties and Therapeutic Use of Apomorphine
Molecules 2012, 17, 5289-5309; doi:10.3390/molecules17055289 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review The Pharmacological Properties and Therapeutic Use of Apomorphine Samo Ribarič 1,2 1 Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; E-Mail: [email protected]; Tel.: +386-1-543-70-20; Fax: +386-1-543-70-21 2 Laboratory for Movement Disorders, Department of Neurological Disorders, University Clinical Centre Ljubljana, Zaloška 2, SI-1000 Ljubljana, Slovenia Received: 1 March 2012; in revised form: 22 April 2012 / Accepted: 25 April 2012 / Published: 7 May 2012 Abstract: Apomorphine (APO) is an aporphine derivative used in human and veterinary medicine. APO activates D1, D2S, D2L, D3, D4, and D5 receptors (and is thus classified as a non-selective dopamine agonist), serotonin receptors (5HT1A, 5HT2A, 5HT2B, and 5HT2C), and α-adrenergic receptors (α1B, α1D, α2A, α2B, and α2C). In veterinary medicine, APO is used to induce vomiting in dogs, an important early treatment for some common orally ingested poisons (e.g., anti-freeze or insecticides). In human medicine, it has been used in a variety of treatments ranging from the treatment of addiction (i.e., to heroin, alcohol or cigarettes), for treatment of erectile dysfunction in males and hypoactive sexual desire disorder in females to the treatment of patients with Parkinson's disease (PD). Currently, APO is used in patients with advanced PD, for the treatment of persistent and disabling motor fluctuations which do not respond to levodopa or other dopamine agonists, either on its own or in combination with deep brain stimulation. -
Catalogue ABX Advancend Biochemical Compounds
ABX advanced biochemical compounds Chemicals for Molecular Imaging 2017 ABX advanced biochemical compounds Manufacturing and development of chemicals for molecular imaging • Worldwide leading supplier of PET precursors and FDG reagents kits • Production and development of PET and SPECT precursors and reference standards • Manufacturing of reagents kits and cassettes, particularly kits for FDG, F-DOPA, FLT, F-Choline, NaF, F- MISO, FES and FET production • US (FDA) and European Drug Master File (DMF) for Mannose Triflate (FDG precursor) • European Drug Master File (DMF) for FDG reagents kits using the GE TRACERlab MX, Neptis and Siemens Explora One synthesis modules • Further DMFs and technical documents for PET and SPECT precursors • Custom synthesis and manufacturing according to GMP for APIs • Design, custom synthesis and production of peptides (GMP quality on request) • Leading manufacturer of reagents kits and cassettes for 68Ga -Labelling • Performance of stability studies • Hot Lab for R&D of new pharmaceutical kits and cassettes and co-operation with pharmaceutical companies • Development of radiotracers as well as labelling and purification strategies • Distributor of 18O-Water FDG grade and GMP grade • ROVER - ABX PET evaluation software • 17 years experience • 190 professionals (among them 20 with PhD) • New manufacturing, filling and assembling sites • Clean room facilities for the production and filling under pharmaceutical conditions • Audited and accepted as GMP API manufacturer by: - German pharmaceutical authorities - -
Dopamine Agonists 1
VA/DoD Drug Class Review: Dopamine Agonists 1 VA/DoD Drug Class Review: Dopamine Agonists Department of Defense Pharmacoeconomic Center (DoD PEC) Department of Veterans Affairs Pharmacy Benefits Management Strategic Healthcare Group (VA PBM) and the VA Medical Advisory Panel (VA MAP) Introduction The purpose of this review is to evaluate whether the dopamine agonists (DA) are therapeutically interchangeable. The dopamine agonists are subcategorized as ergoline and non-ergoline. The ergoline compounds (bromocriptine and pergolide) are derived from the ergot alkaloids. The non-ergoline compounds include pramipexole and ropinirole. Though the exact mechanism of action in Parkinsonism is unknown, all of the dopamine agonists are thought to work by directly stimulating postsynaptic dopaminergic receptors in the nigrostriatal system. The two ergoline agents were introduced into the market in the 1980’s. Only bromocriptine, which was FDA- approved prior to January 1, 1982, is available in generic form. Table 1: Dopamine agonists available in the U.S for the treatment of Parkinson’s disease Strengths & FDA approval Generic Brand (Manufacturer) formulations date Bromocriptine Parlodel (Novartis); Generics Tablets 2.5, and 5 mg N/A* available Pergolide Permax (Amarin) Generics Tablets 0.05, 0.25, and 1 mg 12/30/88 availab le** Pramipexole Mirapex (Pharmacia) Tablets 0.125, 0.25, 0.5, 1, 7/1/97 and 1.5 mg Ropinirole Requip (SKB) Tablets 0.25, 0.5, 1, 2, 3, 4 9/19/97 and 5 mg *Parlodel was approved prior to Jan 1, 1982. ** pergolide was voluntarily withdrawn from the market on March 29, 2007 Parkinson’s Disease is a degenerative brain disorder that affects approximately 500,000 to 1 million people in the United States.