What Is RLS Dr.Ondo 5.17.2017 Slides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sustained Release Tablet Comprising Pramipexole
(19) & (11) EP 2 172 199 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 07.04.2010 Bulletin 2010/14 A61K 31/428 (2006.01) A61K 9/20 (2006.01) A61K 9/28 (2006.01) (21) Application number: 09178277.1 (22) Date of filing: 25.07.2003 (84) Designated Contracting States: • Lee, Ernest, J. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Kalamazoo, MI 49009 (US) HU IE IT LI LU MC NL PT RO SE SI SK TR • Martino, Alice, C. Kalamazoo, MI 49009 (US) (30) Priority: 25.07.2002 US 398427 P • Noack, Robert, M. 25.07.2002 US 398447 P Grand Rapids, MI 49506 (US) 28.08.2002 US 406609 P • Reo, Joseph, P. 18.06.2003 US 479387 P Kalamazoo, MI 49009 (US) • Skoug, Connie, J. (62) Document number(s) of the earlier application(s) in Portage, MI 49024 (US) accordance with Art. 76 EPC: 03771898.8 / 1 536 791 (74) Representative: Summers, Victoria Clare Pfizer Limited (71) Applicant: Pharmacia Corporation European Patent Department Peapack, NJ 07977 (US) Ramsgate Road Sandwich, Kent CT13 9NJ (GB) (72) Inventors: • Amidon, Gregory, E. Remarks: Portage, MI 49024 (US) This application was filed on 08-12-2009 as a • Ganorkar, Loksidh, D. divisional application to the application mentioned Kalamazoo, MI 49009 (US) under INID code 62. • Heimlich, John, M. Portage, MI 49002 (US) (54) Sustained release tablet comprising pramipexole (57) A sustained - release pharmaceutical composi- hydrophilic polymer and astarch having a tensile strength tion in a form of an orally deliverable tablet comprising of at least about 0.15kNcm -2 at a solid fraction represent- an active pharmaceutical agent having solubility not less ative of the tablet. -
Kinetic Modeling in Positron Emission Tomography
Ch23.qxd 28/8/04 2:05 PM Page 499 CHAPTER 23 Kinetic Modeling in Positron Emission Tomography EVAN D. MORRIS,* CHRISTOPHER J. ENDRES,† KATHLEEN C. SCHMIDT,‡ BRADLEY T. CHRISTIAN,§ RAYMOND F. MUZIC JR.,¶ RONALD E. FISHER|| *Departments of Radiology and Biomedical Engineering, Indiana University School of Medicine, Indianapolis, Indiana †Department of Radiology, Johns Hopkins University, Baltimore, Maryland ‡Laboratory of Cerebral Metabolism, NIMH, Bethesda, Maryland §Wright State University, Kettering Medical Center, Dayton, Ohio ¶Departments of Radiology, Oncology and Biomedical Engineering, Case Western Reserve University, Nuclear Medicine, University Hospitals Cleveland, Cleveland, Ohio ||The Methodist Hospital and Department of Radiology and Neuroscience, Baylor College of Medicine, Houston, Texas I. Introduction used in the two most ubiquitous applications of PET: imag- II. The One-Compartment Model: Blood Flow ing of blood flow and glucose metabolism. We also examine III. Positron Emission Tomography Measurements of the use of PET to image specific receptor molecules, which Regional Cerebral Glucose Use capitalizes on the unique specificity of PET. IV. Receptor–Ligand Models Supplied with single (static) PET images and no kinetic V. Model Simplifications model to aid in their interpretation, one is confined to asking VI. Limitations to Absolute Quantification questions that can be answered only on the basis of spatial VII. Functional Imaging of Neurochemistry—Future Uses information such as: Where is glucose being used? Where VIII. A Generalized Implementation of the Model are particular receptor molecules located within the brain or Equations the heart? With the acquisition of dynamic (time-sequence) imaging data and the application of kinetic models, one can pose many additional quantitative questions based on temporal I. -
Natural History, MRI Morphology, and Dopamine Receptor Imaging with 123IBZM-SPECT
J7ournal ofNeurology, Neurosurgery, and Psychiatry 1994;57:1047-1056 1047 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.57.9.1047 on 1 September 1994. Downloaded from Multiple system atrophy: natural history, MRI morphology, and dopamine receptor imaging with 123IBZM-SPECT J B Schulz, T Klockgether, D Petersen, M Jauch, W Muiller-Schauenburg, S Spieker, K Voigt, J Dichgans Abstract of the intermediolateral cell columns of the Sixteen patients with a clinical diagnosis spinal cord. All of these changes are not neces- of probable multiple system atrophy sarily found in each patient with MSA. In (MSA) were examined clinically by MRI some patients, degeneration affects mainly the and by 523I-iodobenzamide single photon basal ganglia, whereas in others the ponto- emission computed tomography (IBZM- cerebellar system or the spinal cord are more SPECT). The clinical records of another affected. Therefore, evidence of cell degenera- 16 patients were also analysed retrospec- tion and gliosis in at least three of the following tively. On the basis of their clinical pre- anatomical structures is thought to be suffi- sentation, patients were subdivided into cient for the neuropathological diagnosis of those with prominent parkinsonism MSA: striatum, substantia nigra, Purkinje (MSA-P, n = 11) and those with promi- cell layer of the cerebellar cortex, pontine nent cerebellar ataxia (MSA-C, n = 21). nuclei, inferior olives, and intermediolateral Autonomic symptoms were present in all cell columns of the spinal cord.'4 Striatum or patients and preceded the onset of motor substantia nigra must be one of these areas.5 symptoms in 63% of patients. -
Brain Imaging
Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters. -
Radiotracers for SPECT Imaging: Current Scenario and Future Prospects
Radiochim. Acta 100, 95–107 (2012) / DOI 10.1524/ract.2011.1891 © by Oldenbourg Wissenschaftsverlag, München Radiotracers for SPECT imaging: current scenario and future prospects By S. Adak1,∗, R. Bhalla2, K. K. Vijaya Raj1, S. Mandal1, R. Pickett2 andS.K.Luthra2 1 GE Healthcare Medical Diagnostics, John F Welch Technology Center, Bangalore, India 560066 2 GE Healthcare Medical Diagnostics, The Grove Centre, White Lion Road, Amersham, HP7 9LL, UK (Received October 4, 2010; accepted in final form July 18, 2011) Nuclear medicine / 99m-Technetium / 123-Iodine / ton emission computed tomography (SPECT or less com- Oncological imaging / Neurological imaging / monly known as SPET) and positron emission tomogra- Cardiovascular imaging phy (PET). Both techniques use radiolabeled molecules to probe molecular processes that can be visualized, quanti- fied and tracked over time, thus allowing the discrimination Summary. Single photon emission computed tomography of healthy from diseased tissue with a high degree of con- (SPECT) has been the cornerstone of nuclear medicine and today fidence. The imaging agents use target-specific biological it is widely used to detect molecular changes in cardiovascular, processes associated with the disease being assessed both at neurological and oncological diseases. While SPECT has been the cellular and subcellular levels within living organisms. available since the 1980s, advances in instrumentation hardware, The impact of molecular imaging has been on greater under- software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. standing of integrative biology, earlier detection and charac- The biggest change in the last decade has been the fusion terization of disease, and evaluation of treatment in human of CT with SPECT, which has improved attenuation correction subjects [1–3]. -
(12) United States Patent (10) Patent No.: US 8,486,621 B2 Luo Et Al
USOO8486.621B2 (12) United States Patent (10) Patent No.: US 8,486,621 B2 Luo et al. (45) Date of Patent: Jul. 16, 2013 (54) NUCLEICACID-BASED MATRIXES 2005. O130180 A1 6/2005 Luo et al. 2006/0084607 A1 4/2006 Spirio et al. (75) Inventors: ity, N. (US); Soong Ho 2007/01482462007/0048759 A1 3/20076/2007 Luo et al. m, Ithaca, NY (US) 2008.0167454 A1 7, 2008 Luo et al. 2010, O136614 A1 6, 2010 Luo et al. (73) Assignee: Cornell Research Foundation, Inc., 2012/0022244 A1 1, 2012 Yin Ithaca, NY (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this WO WO 2004/057023 A1 T 2004 patent is extended or adjusted under 35 U.S.C. 154(b) by 808 days. OTHER PUBLICATIONS Lin et al. (J Biomech Eng. Feb. 2004;126(1):104-10).* (21) Appl. No.: 11/464,184 Li et al. (Nat Mater. Jan. 2004:3(1):38-42. Epub Dec. 21, 2003).* Ma et al. (Nucleic Acids Res. Dec. 22, 1986;14(24):9745-53).* (22) Filed: Aug. 11, 2006 Matsuura, et al. Nucleo-nanocages: designed ternary oligodeoxyribonucleotides spontaneously form nanosized DNA (65) Prior Publication Data cages. Chem Commun (Camb). 2003; (3):376-7. Li, et al. Multiplexed detection of pathogen DNA with DNA-based US 2007/01 17177 A1 May 24, 2007 fluorescence nanobarcodes. Nat Biotechnol. 2005; 23(7): 885-9. Lund, et al. Self-assembling a molecular pegboard. JAm ChemSoc. Related U.S. Application Data 2005; 127(50): 17606-7. (60) Provisional application No. 60/722,032, filed on Sep. -
Parkinson's Disease Current Awareness Bulletin
Parkinson’s Disease Current Awareness Bulletin February 2018 A number of other bulletins are also available – please contact the Academy Library for further details If you would like to receive these bulletins on a regular basis please contact the library. For any references where there is a link to the full text please use your NHS Athens username & password to access If you would like any of the full references from those that do not have links we will source them for you. Contact us: Academy Library 824897/98 Email: [email protected] Title: Motor imagery training with augmented cues of motor learning on cognitive functions in patients with Parkinsonism Citation: International Journal of Therapy and Rehabilitation; 2018; vol. 25 (no. 1); p. 13 Author(s): Lama Saad El Din Mahmoud; Nawal Abd EL Raouf Abu Shady; Ehab Shaker Hafez Objective: Patients with Parkinsonism demonstrate impairments in cognitive functions, such as deficit in attention, planning, and working memory. The objective was to investigate the effect of motor imagery training with augmented cues of motor learning on cognitive functions in patients with Parkinsonism. Methods: A total of 30 patients from both sexes participated in this study. All of the patients had been diagnosed as idiopathic Parkinson patients experiencing cognitive dysfunction. The patients were randomly divided into two equal groups: the study group (n=15) received motor imagery training with augmented cues of motor learning and the specifically designed intervention. The control group (n=15) received conventional treatment (cognitive remediation therapy). The treatment took place three times a week for 6 weeks (18 sessions). -
123I-Iodobenzamide SPECT Is Not an Independent Predictor of Dopaminergic Responsiveness in Patients with Suspected Atypical Parkinsonian Syndromes
123I-Iodobenzamide SPECT Is Not an Independent Predictor of Dopaminergic Responsiveness in Patients with Suspected Atypical Parkinsonian Syndromes Sabine Hellwig1,2, Annabelle Kreft3, Florian Amtage1, Oliver Tüscher1,4, Oliver H. Winz5, Bernhard Hellwig1, Cornelius Weiller1, Wolfgang A. Weber3, Werner Vach6, and Philipp T. Meyer3 1Department of Neurology, University Hospital Freiburg, Freiburg, Germany; 2Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany; 3Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany; 4Department of Psychiatry and Psychotherapy, University Hospital Mainz, Mainz, Germany; 5Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany; and 6Clinical Epidemiology, Institute of Medical Biometry and Medical Informatics, University of Freiburg, Freiburg, Germany The prediction of dopaminergic responsiveness in patients with par- According to current consensus criteria, poor responsiveness kinsonism is desirable for effective treatment strategies. We in- to levodopa is suggestive of atypical parkinsonian syndrome (APS) vestigated whether striatal dopamine D2/D3 receptor (D2R) binding (1). However, up to 30% of patients diagnosed with multiple-system 123 assessed by I-iodobenzamide SPECT is an independent predic- atrophy or progressive supranuclear palsy benefit from dopami- tor of dopaminergic responsiveness in patients with parkinsonism. nergic medication, particularly at early stages of the disease (2,3). Methods: Seventy-eight patients -
Abstract Introduction Objectives Methods
ABSTRACT Table 3. Summary of Drug Interaction Evaluation Lack of Significant Drug Interactions for Sumanirole in Phase II Studies Using PURPOSE: Sumanirole is a highly D -selective dopamine 2 Number of Number of receptor agonist that is in development for the treatment of Population Pharmacokinetic Methods Subjects Observations Parkinson's disease (PD). Metabolism of sumanirole and in Change on With vitro data indicate that clinically significant pharmacokinetic in Mean % of the Univariate Concomit- Concomit- (PK) drug-drug interactions are unlikely. This was further Joel S. Owen, PhD1, Kathryn Liolios, MA1, Gwyn A. D'Souza, PhD2, Barbara J. Carel, MS3 Drug CL/F SEM P Value ant Drug ant Drug investigated using population pharmacokinetic (PPK) 1 2 Amantadine 0.434 440.1 0.629 71 407 methodology. Cognigen Corporation, Buffalo, NY, USA; Pharmacia Corporation, High Wycombe, UK; 3Pharmacia Corporation, Kalamazoo, MI, USA Aspirin 0.601 196.3 0.349 77 496 METHODS: Data were obtained from 2 double-blind, placebo- β-Blockers* 2.22 154.1 0.066 22 144 controlled trials of sumanirole alone in early PD and sumani- role with levodopa in advanced PD. Patients received twice- Hypotensive † daily extended-release oral sumanirole doses ranging from 2 agents 0.0943 1124.1 0.882 128 815 to 48 mg/d. A one-compartment PPK model, with creatinine Levodopa‡ 0.907 100.0 0.281 111 200 clearance (CrCL) and gender as covariates of clearance Organic anion (CL/F), was used in NONMEM® to characterize the influence METHODS Figure 1. Sumanirole concentrations versus time transport of concomitantly administered drugs on sumanirole PK. -
Pathology, Prevention and Therapeutics of Neurodegenerative Disease
Pathology, Prevention and Therapeutics of Neurodegenerative Disease Sarika Singh Neeraj Joshi Editors 123 Pathology, Prevention and Therapeutics of Neurodegenerative Disease Sarika Singh • Neeraj Joshi Editors Pathology, Prevention and Therapeutics of Neurodegenerative Disease Editors Sarika Singh Neeraj Joshi Toxicology and Experimental Department of Surgery Medicine Division Samuel Oschin Comprehensive Cancer CSIR-Central Drug Research Institute Institute, Cedar Sinai Medical Center Lucknow Los Angeles, CA India USA ISBN 978-981-13-0943-4 ISBN 978-981-13-0944-1 (eBook) https://doi.org/10.1007/978-981-13-0944-1 Library of Congress Control Number: 2018952338 © Springer Nature Singapore Pte Ltd. 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
Dopamine D2 Receptor Imaging with Iodine-123-Iodobenzamide SPECT in Idiopathic Rotational Torticollis
Dopamine D2 Receptor Imaging with Iodine-123-Iodobenzamide SPECT in Idiopathic Rotational Torticollis Johannes Hierholzer, Michael Cordes, Ludwig Schelosky, Wolf Richter, Uwe Keske, Stephan Venz, Wolfhard Senunler, Werner Poewe and Roland Felix Strahlenkiinik unci Neumlogirche KlinilçUnive,@ritatskJiniIasmRudolf Virchow, Freie Universi:ät,Berlin and Institut für Diagnostikforschung; Berlin@Germany may show rotational torticollis, laterocollis, retrocollis or The cause of idiopathic rotational torticoibs (tAT) is not corn combinations thereof (Table 1). According to the ad hoc pI@ understoodto date. However,basalgangbaare believed committee of the Dystonia Medical Research Fondation, to be involved in the pathophysiologyof IRT. To elucidatethis dystonia is classified by the age of onset, cause and body disorderfurther, the value ofiodobenzamide (IBZM) SPECT was distribution of the abnormal movement (Table 1). The cx studied for the evaluation of striatal dopamine D2 receptors in clusion of symptomatic dystoniajustifles the nominationof these patients.M@hods: StriataldopamineD2 receptordensity idiopathic focal dystonia (IFD) and, in case of head rota was assessed in 10 patientswith IRT using 1@I-IBZMSPECT. Theimageswereinterpretedbya nudearmedicinephysician tion, idiopathicrotationaltorticollis (IRT). initiallyto determineIBZMbindingwithinthe sthatumandthe The precise pathophysiology underlying idiopathic cerebellumand,secondly,intersthatalIBZMbinding.Theresuits adult-onset dystonia remains unclear. CF and MRI are werecorrelatedwiththedir@calparametersof -
Dopamine Agonists for the Treatment of Restless Legs Syndrome (Review)
Dopamine agonists for the treatment of restless legs syndrome (Review) Scholz H, Trenkwalder C, Kohnen R, Kriston L, Riemann D, Hornyak M This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2011, Issue 5 http://www.thecochranelibrary.com Dopamine agonists for the treatment of restless legs syndrome (Review) Copyright © 2011 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 2 BACKGROUND .................................... 6 OBJECTIVES ..................................... 8 METHODS ...................................... 8 Figure1. ..................................... 10 Figure2. ..................................... 11 RESULTS....................................... 13 Figure3. ..................................... 16 Figure4. ..................................... 18 Figure5. ..................................... 20 Figure6. ..................................... 22 Figure7. ..................................... 24 Figure8. ..................................... 26 Figure9. ..................................... 28 Figure10. ..................................... 30 ADDITIONALSUMMARYOFFINDINGS . 31 DISCUSSION ..................................... 36 AUTHORS’CONCLUSIONS . 38 ACKNOWLEDGEMENTS . 38 REFERENCES ..................................... 39 CHARACTERISTICSOFSTUDIES