Lichens: Bioindicators, Chemical Factories, Hidden Marvels in Plain Sight by Horticulturist Laura Wyeth

Total Page:16

File Type:pdf, Size:1020Kb

Lichens: Bioindicators, Chemical Factories, Hidden Marvels in Plain Sight by Horticulturist Laura Wyeth Urban Forest Ecology Lichens: Bioindicators, Chemical Factories, Hidden Marvels in Plain Sight By Horticulturist Laura Wyeth Lichens have been studied as bioindicators of air quality for more than 100 years. A terrific 2015 presentation called Urban Lichens: Environmental Indicators from NC State researchers dives deep into studies of lichens as bioindicators of pollutants in urban settings. More recently, researchers are finding that when toxic emissions are under control in urban areas, other factors affecting lichen abundance and diversity come into play, like temperature and humidity level. In light of that, what is the urban heat island- lichen interplay? The theory: lichen abundance and diversity on urban trees In this fascinating can be an indicator of the level of urban heat island effect article, horticultur- but also can indicate the success of urban heat island ist and science writer mitigation efforts, like tree planting. More research Laura Wyeth explores the is underway. truly enthralling biology of lichens, simultaneously vulner- able and cannily adaptive organ- isms. The next time a city resident asks you whether lichens are harmful to trees, share this piece with them! Also recommended is this blog post from Washington State Urban Forestry in which a concerned resident sends in a branch with what turns out to be more than six kinds of harmless lichen. The post also answers the question, “What are eutrophic lichens, and why are they found in cities?” —Michelle Sutton, Ed. 26 CityTREES Multiple types of lichen on one small branch. Photo by Flickr user Jim McCulloch | CC BY 2.0 27 he natural world is packed with surprises, Tand when we can stop to notice the small and seemingly mundane components of it, we are usually rewarded. Consider the lichen: sometimes mistaken for mosses or other plants, lichens are a synthesis of two distinct life forms, a mutually beneficial union between fungi and algae. In 1877, the German botanist Albert Bernhard Frank used the term symbiosis (from the Ancient Greek meaning “to live together”) to describe the lifestyle of lichen. At the time, the idea of two unrelated species engaged in a closely-twined, communal existence was new, and quite surprising. Lichen were one of the first such unions to make themselves known to science, and with the new paradigm and a word to describe it, symbiotic relation- ships began to be recognized in all sorts of places. Since then, a good deal of attention has been paid to these small, multifarious creatures, and we now know that symbiotic relationships are quite common on our planet. Though lichen’s contributions to their environment, or to human life, may not be obvious, they play important roles and their study has given us both a better understanding of the complexities of living things and of the effects that our human activities have on the life around us. Lichen are found pretty much everywhere. The Earth hosts over 14,000 named “species” of lichens, in a great variety of fungal/algal combinations, on mostly every corner and kind of surface available. Lichen may live Wolf lichen (Letharia vulpina) happily on rocks, on trees, on other lichen, even on the by Jason Hollinger backs of insects. Laura Wyeth is a Horticulturist with The union consists of a fungi, mostly from the group 15 years’ experience in the field and known as the “cup fungi” (the Ascomycetes), the ones a special interest in the evolutionary whose fruiting bodies are generally shaped like saucers or shallow cups. The algal component is often referred adaptations of weeds. to as the photobiont, due to the role that it plays in the synthesis. Photobionts are photosynthesizers; they transform sun- light, water, and carbon dioxide into sugars and other carbohydrates to fuel both themselves and their fun- gal partners. Photobionts come from many different groups; they can be green algae (Chlorophyta), golden algae (Chrysophyta), or brown algae (Phaeophyta)—three groups of eukaryotes that house their chlorophyll inside chloroplasts. Photobionts can also come from the cyano- bacteria, a group of prokaryotes with a more ancient lin- eage and simpler structure; they lack chloroplasts and so their chlorophyll is free-floating in the cell. (Cyanobacteria were known as the blue-green algae before their lineage was understood.) Though there are many possible combinations of fungi 28 and algae, each lichen species tends to be a specific union of one kind of each. (However, “triads,” composed of one kind of algae and two kinds of fungi, have been discovered.) Known as a symbiotic “mutualism,” lichen are considered to have a gener- ally equitable relationship. The fungi, with its reinforced cell walls, multicel- lular tissues, and resistance to desicca- tion, can withstand some dry or harsh conditions, and so provide an insulated home to the more sensitive photobi- ont. Inside this shelter, the algae enjoys higher and more regulated moisture levels than outside, a temperature buffer, and screening from potentially damaging UV rays. For its part, the photobiont whips up breakfast, lunch, and dinner out of literal thin air. A photobiont algae has membranes that are more perme- able than its free-living (non-symbi- otic) cousins, and its sugars flow into the tissues of the surrounding fungi. Many of the cyanobacteria are also capable of nitrogen fixation and pro- vide this essential nutrient for their fungal hosts. The body of a lichen is called a thallus, and these are found in several distinct forms. Crustose lichen, as suggested, form a thin “crusty” layer on rocks and other substrates. Foliose lichen have thicker, wavier thalli that are “leafier” than the crustose. Fruticose lichen are miniature thickets of hol- low, branching fungal tubes that can grow upright or be “pendant”—i.e. hang down from trees. Given the tough conditions they find themselves in and their limited photo- synthesis production capacity in rela- tion to body size, lichen grow very slowly. The annual radial growth of crustose and foliose species is some- where in the neighborhood of 0.5-5 mm; growth in the fruticose species averages 1-2 cm per year. The typical lichen body is something of an algae sandwich; two slices of thick, dense, protective fungal cortex, top and bot- tom, with a nice spread of green algal butter, and a spongy layer of fungal Lichens collage from Perlmutter and Rivas Plata, NC State presentation 30 31 medulla in-between. Lichen reproduction is a complicat- ed affair involving the unique sexu- al reproductive forms of the fungal component as well as an asexual dis- persal unit called a soredia, formed of an algal cell entwined by fungal hyphae. Lichen species are typically named after their fungal partner, but given the complexities of their possible relationships, naming and identifi- cation can be difficult. In addition, there are many different relation- ships between fungi and algae that do not result in what are considered lichen. In an inverse scenario, there are fungi that live within the tis- sues of certain seaweeds. There are also, in our weird world, green algae that find a home on the surface of mushrooms and fungi that parasitize lichen. Like many things in nature, lichen are tougher than they look. They are found in a variety of habitats all over the globe, but they thrive in extreme environments. Lichen play the long game: go slow, stay small, and occupy an unusual niche. They are most com- mon where moisture is abundant, but many lichen are highly adapted to dry environments. They are the dom- inant vegetation in the Arctic tundra because they can survive in deep cold and short day lengths as most tradi- tional plants cannot. Though lichen are often considered to be pioneers of bare habitats, they are not necessarily catalysts for suc- cession in short timescales. Because they tend to colonize spaces that vascular plants cannot easily inhabit, there are few plants that can replace them. Their unique coalition of two distinct organisms gives lichen a flexi- bility of properties that most vascular plants lack. Lichen cannot compete with vascular plants on the plant’s favored turf, but they can live and succeed in places where the plants Trumpet lichen (Cladonia fimbriata) Photo by USFS 32 33 are at a strong disadvantage—on cold coastal jetties, on in our modern world. It is released by the burning of bare Arctic rock, in the marginal extremes. fossil-fuels, such as from coal-burning power plants, auto- mobile emissions, and some industrial processes. Sulfur Being small, slow, and physically fragile, how can they dioxide combines with atmospheric moisture to produce defend themselves? Like many creatures, lichen employ sulfurous acid (H2SO3) or sulfuric acid (H2SO4), a compo- chemical warfare. Lichen fungi produce a unique phar- nent of acid rain. macopoeia of compounds, ones that they cannot produce without their photobionts, and these chemicals provide When absorbed into lichen thalli by air or raindrops, these extra protection for the union. Some lichen manufacture compounds are quite harmful. Sulfur dioxide’s primary their own antibiotics; some produce allelopathic com- injury to lichen is its ability to degrade or destroy chloro- pounds that can inhibit the growth of soil fungi and the phyll, weakening the union and often leading to death for seeds of vascular plants. Some, such as xanthones and the species that cannot avoid or tolerate exposure. The pulvinic acid, are concentrated in the cortex of the thallus damage caused by sulfur dioxide is most severe where to offend the tastes of invertebrate browsers, and some moisture levels are high and pH is low. Low pH caused by compounds seem to act as sunscreens for the photobiont. acidifying acid rain is an exacerbating feedback mecha- nism.
Recommended publications
  • Genetic Variation Within and Among Populations of the Threatened Lichen Lobaria Pulmonaria in Switzerland and Implications for I
    MEC820.fm Page 2049 Saturday, December 18, 1999 1:20 PM Molecular Ecology (1999) 8, 2049–2059 GeneticBlackwell Science, Ltd variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation S. ZOLLER,* F. LUTZONI† and C. SCHEIDEGGER* *Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Birmensdorf, Switzerland, †Department of Botany, The Field Museum of Natural History, Chicago IL 60605, USA Abstract The foliose epiphytic lichen Lobaria pulmonaria has suffered a significant decline in European lowlands during the last decades and therefore is considered as endangered throughout Europe. An assessment of the genetic variability is necessary to formulate biologically sound conservation recommendations for this species. We investigated the genetic diversity of the fungal symbiont of L. pulmonaria using 143 specimens sampled from six populations (two small, one medium, three large) in the lowland, the Jura Moun- tains, the pre-Alps and the Alps of Switzerland. Among all nuclear and mitochondrial regions sequenced for this study, variability was found only in the internal transcribed spacer (ITS I), with three polymorphic sites, and in the nuclear ribosomal large subunit (nrLSU), with four polymorphic sites. The variable sites in the nrLSU are all located within a putative spliceosomal intron. We sequenced these two regions for 81 specimens and detected six genotypes. Two genotypes were common, two were found only in the more diverse populations and two were found only in one population each. There was no correlation between population size and genetic diversity. The highest genetic diversity was found in populations where the fungal symbiont is reproducing sexually.
    [Show full text]
  • The Puzzle of Lichen Symbiosis
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1503 The puzzle of lichen symbiosis Pieces from Thamnolia IOANA ONUT, -BRÄNNSTRÖM ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9887-0 UPPSALA urn:nbn:se:uu:diva-319639 2017 Dissertation presented at Uppsala University to be publicly examined in Lindhalsalen, EBC, Norbyvägen 14, Uppsala, Thursday, 1 June 2017 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Associate Professor Anne Pringle (University of Wisconsin-Madison, Department of Botany). Abstract Onuț-Brännström, I. 2017. The puzzle of lichen symbiosis. Pieces from Thamnolia. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1503. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9887-0. Symbiosis brought important evolutionary novelties to life on Earth. Lichens, the symbiotic entities formed by fungi, photosynthetic organisms and bacteria, represent an example of a successful adaptation in surviving hostile environments. Yet many aspects of the lichen symbiosis remain unexplored. This thesis aims at bringing insights into lichen biology and the importance of symbiosis in adaptation. I am using as model system a successful colonizer of tundra and alpine environments, the worm lichens Thamnolia, which seem to only reproduce vegetatively through symbiotic propagules. When the genetic architecture of the mating locus of the symbiotic fungal partner was analyzed with genomic and transcriptomic data, a sexual self-incompatible life style was revealed. However, a screen of the mating types ratios across natural populations detected only one of the mating types, suggesting that Thamnolia has no potential for sexual reproduction because of lack of mating partners.
    [Show full text]
  • Lichen Life in Antarctica a Review on Growth and Environmental Adaptations of Lichens in Antarctica
    Lichen Life in Antarctica A review on growth and environmental adaptations of lichens in Antarctica Individual Project for ANTA 504 for GCAS 08/09 Lorna Little Contents Antarctic Vegetation ...............................................................................................................................3 The Basics of Lichen Life .........................................................................................................................4 Environmental Influences .......................................................................................................................7 Nutrients .............................................................................................................................................7 Water Relations and Temperature .....................................................................................................7 UV‐B Radiation and Climate Change Effects.......................................................................................8 Variations in Lichen Growth and Colonisation......................................................................................10 Growth rate.......................................................................................................................................10 Case Studies of Antarctic Lichens .....................................................................................................13 Colonisation ......................................................................................................................................15
    [Show full text]
  • Lichen Declines in the Arctic Why Are Lichens
    What’sWhat’s NotNot toto Lichen?Lichen? The importance of lichen in the Arctic tundra. Crustose Fruticose Foliose Squamulose Fungus + Cyanobacteria = Lichen What are Lichens? Fungus + Algae + Cyanobacteria = Lichen Fungus + Algae = Lichen . A composite organism is made up of two or more independent organisms. Lichens are comprised of a fungus containing algae and/or cyanobacteria living with the fungal filaments. The algae and cyanobacteria provide nutrients to fungi in the form of carbohydrates. In return, they receive protection and nutrients from the fungi, making this a mutually beneficial relationship. An association with cyanobacteria also benefits fungi in another way: the cyanobacteria take nitrogen from the atmosphere and convert it into a form that fungi need for essential life functions. . They do not contain roots, stems, leaves or vascular tissues. These components are typically required for obtaining water and nutrients from the surrounding environment. Instead, lichens absorb water and nutrients from the atmosphere. . Many species of lichens are very good at living in extreme environments like the Arctic tundra. . Lichens will absorb everything that is present within the atmosphere and cannot differentiate between nutrients and non-nutrient particles. This makes them extremely sensitive to harmful toxins and pollutants. They can signal a decline in an ecosystem’s condition. Why are Lichens Important? . They are essential components of ecosystems, with ecosystems depending on them for their continued survival. There are about 1600 lichen species in the Arctic out of a total of about 13,000 worldwide. . Many herbivores are dependent upon lichen. This includes wildlife such as lemmings, musk oxen, arctic hares, caribou, and moose.
    [Show full text]
  • Piedmont Lichen Inventory
    PIEDMONT LICHEN INVENTORY: BUILDING A LICHEN BIODIVERSITY BASELINE FOR THE PIEDMONT ECOREGION OF NORTH CAROLINA, USA By Gary B. Perlmutter B.S. Zoology, Humboldt State University, Arcata, CA 1991 A Thesis Submitted to the Staff of The North Carolina Botanical Garden University of North Carolina at Chapel Hill Advisor: Dr. Johnny Randall As Partial Fulfilment of the Requirements For the Certificate in Native Plant Studies 15 May 2009 Perlmutter – Piedmont Lichen Inventory Page 2 This Final Project, whose results are reported herein with sections also published in the scientific literature, is dedicated to Daniel G. Perlmutter, who urged that I return to academia. And to Theresa, Nichole and Dakota, for putting up with my passion in lichenology, which brought them from southern California to the Traingle of North Carolina. TABLE OF CONTENTS Introduction……………………………………………………………………………………….4 Chapter I: The North Carolina Lichen Checklist…………………………………………………7 Chapter II: Herbarium Surveys and Initiation of a New Lichen Collection in the University of North Carolina Herbarium (NCU)………………………………………………………..9 Chapter III: Preparatory Field Surveys I: Battle Park and Rock Cliff Farm……………………13 Chapter IV: Preparatory Field Surveys II: State Park Forays…………………………………..17 Chapter V: Lichen Biota of Mason Farm Biological Reserve………………………………….19 Chapter VI: Additional Piedmont Lichen Surveys: Uwharrie Mountains…………………...…22 Chapter VII: A Revised Lichen Inventory of North Carolina Piedmont …..…………………...23 Acknowledgements……………………………………………………………………………..72 Appendices………………………………………………………………………………….…..73 Perlmutter – Piedmont Lichen Inventory Page 4 INTRODUCTION Lichens are composite organisms, consisting of a fungus (the mycobiont) and a photosynthesising alga and/or cyanobacterium (the photobiont), which together make a life form that is distinct from either partner in isolation (Brodo et al.
    [Show full text]
  • Lichens of Alaska
    A Genus Key To The LICHENS OF ALASKA By Linda Hasselbach and Peter Neitlich January 1998 National Park Service Gates of the Arctic National Park and Preserve 201 First Avenue Fairbanks, AK 99701 ACKNOWLEDGMENTS We would like to acknowledge the following Individuals for their kind assistance: Jim Riley generously provided lichen photographs, with the exception of three copyrighted photos, Alectoria sarmentosa, Peltigera neopolydactyla and P. membranaceae, which are courtesy of Steve and Sylvia Sharnoff, and Neph­ roma arctica by Shelli Swanson. The line drawing on the cover, as well as those for Psoroma hypnarum and the 'lung-like' illustration, are the work of Alexander Mikulin as found In Lichens of Southeastern Alaska by Gelser, Dillman, Derr, and Stensvold. 'Cyphellae' and 'pseudocyphellae' are also by Alexander Mikulin as appear In Macrolichens of the Pacific Northwest by McCune and Gelser. The Cladonia apothecia drawing is the work of Bruce McCune from Macrolichens of the Northern Rocky Mountains by McCune and Goward. Drawings of Brodoa oroarcttca, Physcia aipolia apothecia, and Peltigera veins are the work of Trevor Goward as found in The Lichens of British Columbia. Part I - Foliose and Squamulose Species by Goward, McCune and Meldlnger. And the drawings of Masonhalea and Cetraria ericitorum are the work of Bethia Brehmer as found In Thomson's American Arctic Macrolichens. All photographs and line drawings were used by permission. Chiska Derr, Walter Neitlich, Roger Rosentreter, Thetus Smith, and Shelli Swanson provided valuable editing and draft comments. Thanks to Patty Rost and the staff of Gates of the Arctic National Park and Preserve for making this project possible.
    [Show full text]
  • Lichen Care Guide Background SCIENTIFIC Lichen Are Often Mistaken for Plants
    Lichen Care Guide Background SCIENTIFIC Lichen are often mistaken for plants. Actually they are a complex mutualistic symbiotic BIO FAX! association between a fungal species and either an algae or cyanobacteria. Lichens are notable as pioneer species in the process of ecological succession and as residents of environments that few other organisms can tolerate. Although they seem to thrive under inhospitable conditions, lichens are highly susceptible to pollution and are often seen as natural indicators of air quality. The fungus provides the ideal growing conditions for photosynthetic algae or cyanobacteria. The photosynthetic organism supplies the fungus with the carbohydrates and nutrients it needs to survive. Together they form a self-sufficient system. As a consequence, lichens will colonize just about any surface given enough time and as long as the surface is undisturbed and the air is clean. Lichens will colonize rocks, trees, glass and even plastic. Lichens are found on every continent in every type of biome. Lichens are categorized into four types based upon their morphology. Crustose grow tightly attached to the rock, tree, sand or other substrate. Crustose lichen appear like a crust and are very difficult to remove from their substrate. Foliose lichen appear leaf-like with flat sheets of tissue extending above the substrate to which they are attached. The top surface is often a different color or texture from the bottom surface of the sheet. Fruticose lichen look like bushes growing out of the substrate or they can be long strands that hang off of the substrate. Reindeer moss is the most well-known fruticose lichen.
    [Show full text]
  • Effect of Isolation Conditions on Diversity of Endolichenic Fungal Communities from a Foliose Lichen, Parmotrema Tinctorum
    Journal of Fungi Article Effect of Isolation Conditions on Diversity of Endolichenic Fungal Communities from a Foliose Lichen, Parmotrema tinctorum Ji Ho Yang 1, Seung-Yoon Oh 2 , Wonyong Kim 1 , Jung-Jae Woo 1, Hyeonjae Kim 1 and Jae-Seoun Hur 1,* 1 Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Korea; [email protected] (J.H.Y.); [email protected] (W.K.); [email protected] (J.-J.W.); [email protected] (H.K.) 2 Department of Biology and Chemistry, Changwon National University, 20 Changwondaehak-ro, Changwon 51140, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-61-750-3383 Abstract: Endolichenic fungi (ELF) are emerging novel bioresources because their diverse secondary metabolites have a wide range of biological activities. Metagenomic analysis of lichen thalli demon- strated that the conventional isolation method of ELF covers a very limited range of ELF, and the development of an advanced isolation method is needed. The influence of four variables were investigated in this study to determine the suitable conditions for the isolation of more diverse ELF from a radially growing foliose lichen, Parmotrema tinctorum. Four variables were tested: age of the thallus, severity of surface-sterilization of the thallus, size of a thallus fragment for the inoculation, and nutrient requirement. In total, 104 species (1885 strains) of ELF were isolated from the five individual thalli of P. tinctorum collected at five different places. Most of the ELF isolates belong to Sordariomycetes. Because each part of lichen thallus (of different age) has unique ELF species, the whole thallus of the foliose lichen is needed to isolate diverse ELF.
    [Show full text]
  • Common Lichens of the Natural Area Teaching Laboratory Barry Kaminsky Graduate Student, Department of Biology
    Common lichens of the Natural Area Teaching Laboratory Barry Kaminsky Graduate Student, Department of Biology Below is a non-technical key to the common lichens at the Natural Area Teaching Laboratory (NATL) located on the University of Florida campus. All habitats at NTL including the upland Pinus, xeric hardwood forest, and the seasonally flooded forest located near Archer Road were all surveyed. This key includes the most common species, however additional species (and potentially very similar looking species) may be present, especially in the genera Dirinaria, Parmotrema, and Physcia. A few specimens require a UV light or a “K” test, which is a 10% KOH solution. For the test, simply place a small, small drop (could use a toothpick) on the specified layer of the layer. Note different layers of the lichen could contain different chemicals so be sure to apply KOH on only the specified layer. As a courtesy, if you are collecting lichens or any biological specimens for class or research be sure to collect off the trail! 1a) Lichen is crustose (tightly adhered to the bark) and lacking distinct lobes ….. Key 1 1b) Lichen is fruticose (either pendant or erect, not leafy), or in one genus a central erect structure with numerous squamules…. Key 2 1c) Lichen is foliose (leafy or having lobes)…… Key 3 Key 1: Crustose Lichens 1a) Upper cortex is white and smooth with distinct bright red patches, isidia-like structures are bright red… Herpothallon rubrocinctum (syn: Cryptothecia rubrocincta) 1b) Upper cortex lacking reddish color… 2 2a) Lichen is yellowish green or yellow, consisting of granular sorediate masses… 3 2b) Lichen not as above… 4 3a) Lichen is bright yellow and consists of granular sorediate masses, usually on Pinus… Chrysothrix sp.
    [Show full text]
  • Lichen the Little Things - by Ashley Conley, Water Center Educator
    Share this: December 2020 Newsletter Connecting Virtually As we go through the holiday season and approach the new year, many things look different, especially events. For staff at the Water Center, we are looking forward to connecting with you virtually and hope to provide more opportunities for volunteer events and other learning workshops in the future. We are all finding new ways to stay connected and support one another. Please take care of yourself and your loved ones during these unprecedented times. In the meantime, stay connected with the Water Resources Education Center virtually with our new videos and our Online Community Learning Page. Discover facts about your local watersheds, fish, birds, native plants and lots more. Facebook and Instagram are also great ways to uncover fun and interesting environmental tidbits. Thank you for your continued patience. Please feel free to email questions or comments to [email protected]. #StaySafe #StayHealthy #StayStrongVancouverWA Thank you Volunteers! During the past two months, the Water Center hosted four volunteer garden cleanup events. With the goal of becoming a mature demonstration garden for the Backyard Habitat Certification Program, we asked the community for assistance. Vancouver volunteers responded with enthusiasm and dedication! Following COVID-19 distancing and masking protocol, our dedicated volunteers were able to prune trees, remove large patches of invasive Himalayan blackberry and stomp out “Stinky Bob,” aka Herb Robert. We raked and utilized leaf litter as mulch, essentially tucking in our lovely plants for the cold winter months ahead. THANK YOU to all of you who came out with your helping hands! Even masked, the smiles in the eyes of volunteers and staff could not be hidden as we experienced the joy and healing of being outside in nature together.
    [Show full text]
  • Lichen Slide Gallery
    Lichen Slide Gallery Photos by Sarah Thorne [email protected] These photos may be used for educational purposes with credit to the photographer. Lichen neighbors in New Hampshire The following slide gallery shows common NH lichen, and a few tree growing mosses and liverworts for comparison. (photos taken in Holderness and Alton, NH) You can provide these color photos to students for use in their field inventory work. Fruticose Lichens Shrub-like Branching Hair or beard-like No distinguishable upper and lower surfaces Ramalina sp. Evernia sp. (fruticose lichen) Usnea sp. (fruticose lichen) Foliose Lichens “leafy” with distinct top and bottom sides can be relatively flat, or raised Thallus mostly free from substrate Punctelia rudecta (foliose lichen) Plasmatia tuckermanii (foliose lichen) Flavoparmelia sp. (foliose lichen) Phaeophysica rubropulchra Parmelia sulcata (foliose lichen) Hypogymnia sp. Hypogymnia sp. (foliose lichen) Crustose Lichens Flat Grow tightly against substrate No lower side or rhizines Crustose Lichens (many species) Cryptogams Don’t reproduce by seed Lichen often grow with other cryptogams such as mosses and liverworts. Lichen Imposters Lichen But, unlike lichen, mosses and liverworts are primitive plants Students can inventory these as well, if desired moss liverwort Moss Erect shoots Reproduce with spores Leaf and root-like structures Very green, Chlorophyll throughout Non-vascular Ulota crispa Pylaisiella sp. (flat moss) Liverworts Non-vascular Usually in moist conditions tough “leaves” Radula complanata Frullania sp. (liverwort, center) Lessons developed and field tested by: Sarah Thorne, Science Teacher, Prospect Mountain High School, Alton, NH Funded by: White Mountain Interpretive Association, Kiwanis International, Cooperating organizations: White Mountain National Forest, Hubbard Brook Experimental Forest Thanks to consulting lichenologist, Natalie Cleavitt and US Forest Service Air Quality Specialist, Ralph Perron..
    [Show full text]
  • Lichens: Mysterious and Diverse by RICHARD E
    Lichens: Mysterious and Diverse by RICHARD E. WEAVER, JR. The science of lichenology, or the study of lichens, has lagged behind other branches of botany, and many aspects of lichen biology are still shrouded with mystery. In fact, the most mys- terious aspect of these plants, and the one basic to understand- ing them, was not known until the relatively late date of 1867: that although outwardly lichens appear to be discrete organisms, they are in fact made up of two very different kinds of plants bound together in a totally unique union. The components of lichens are these: (1) numerous individuals of an alga, usually of a one-celled green type similar to those which commonly give a green cast to the northern or shady sides of tree trunks, but occasionally a filamentous blue-green type like the ones which form the familiar blackish, rank-smelling scum on shal- low water, damp soil, or clay flower pots; and (2) strands of a fungus, similar and somewhat related to the bread molds. The arrangement by which they live together as a lichen is referred to as symbiosis, the close association of two dissimilar organisms with, in this case, mutual benefit. The exact nature of the lichen symbiosis, and the role that each of the components plays, is not completely understood. The fungus obviously provides protection for the alga, accumulates mineral nutrients, and helps in retaining moisture. The alga, because it contains chlorophyll, is able to synthesize carbohy- drates. There appear to be mutual exchanges of other organic nutrients, but these have not been identified.
    [Show full text]