Nys Dec Lake Erie 2020 Annual Report

Total Page:16

File Type:pdf, Size:1020Kb

Nys Dec Lake Erie 2020 Annual Report NYS DEC LAKE ERIE 2020 ANNUAL REPORT to the Lake Erie Committee and the Great Lakes Fishery Commission March 2021 New York State Department of Environmental Conservation 625 Broadway, Albany, New York 12233-4753 Andrew M. Cuomo, Governor MOST OF THE WORK REPORTED IN THIS DOCUMENT IS SUPPORTED BY THE FEDERAL AID IN SPORT FISH RESTORATION PROGRAM Full Report Citation: NYSDEC 2021. Lake Erie 2020 Annual Report. New York State Department of Environmental Conservation, Albany, New York, USA. Example Report Section Citation: Markham, J.L. 2021. Coldwater gill net assessment. Section F in NYSDEC 2021, Lake Erie 2020 Annual Report. New York State Department of Environmental Conservation, Albany, New York, USA. NYS DEC LAKE ERIE 2020 ANNUAL REPORT to the Great Lakes Fishery Commission’s Lake Erie Committee NYSDEC Lake Erie Fisheries Research Unit e-mail: [email protected] Jason Robinson, Lake Erie Fisheries Research Unit Leader James Markham, Aquatic Biologist Pascal Wilkins, Aquatic Biologist Michael Cochrane, Research Vessel Captain Richard Zimar, Fisheries Technician MariEllen (Ginger) Szwejbka, Secretary Steven LaPan, Great Lakes Fisheries Section Head (Retired) Steven Hurst, Chief, Bureau of Fisheries Acknowledgements The Lake Erie Fisheries Research Unit recognizes the contributions of seasonal staff essential to completing an ambitious field schedule. During the 2020 field year these individuals included Fish and Wildlife Technicians Kevin Smith, Trista Daley, and Benjamin Szczygiel. We also acknowledge contributions of DEC’s Region 9 Fisheries Office, Buffalo State College’s Great Lakes Center, SUNY Fredonia, Cornell University, the USGS Great Lakes Science Center, and the USFWS Northeast Fisheries Center in support of various Lake Erie field activities. The Unit would also like to recognize the contributions of our Great Lakes Fisheries Section Head Steve LaPan, retired in 2020, to the Unit and to management of the fishery resources in both Lake Erie and Lake Ontario. March 2021 New York State Department of Environmental Conservation 625 Broadway, Albany, New York 12233-4753 Preface The Lake Erie Annual Report is prepared by New York State Department of Environmental Conservation as a compilation of ongoing Lake Erie investigations mostly supported by Federal Aid in Sportfish Restoration. This annual report is intended as a resource document for other member agencies of the Great Lakes Fishery Commission’s Lake Erie Committee, as well as information for Lake Erie’s angling community and other interested stakeholders. Many initiatives reported under this cover are long term monitoring efforts which are updated each year. Other efforts may not always be updated annually if there were no new activities since the previous report. In 2020, the Lower Trophic Level Monitoring Program was not completed due to Covid-19 issues and will not be included in this report. However, protocols were able to be developed and all other long-term monitoring programs were able to be completed in a safe manner following New York State and NYS DEC policies. The summaries contained in this report are provisional although every effort has been made to ensure their accuracy. We strongly encourage researchers to contact NYS DEC Lake Erie Fisheries Research Unit before using or citing any specific data summary contained in this report. TABLE OF CONTENTS Lake Erie 2020 Annual Report New York State Department of Environmental Conservation Presented at the Lake Erie Committee Meeting March 26, 2021 SECTION TITLE A PROGRAM HIGHLIGHTS B RESEARCH PARTNERSHIPS AND WRITTEN CONTRIBUTIONS (J.M. Robinson) C FORAGE AND JUVENILE YELLOW PERCH SURVEY (J.L. Markham and P.D. Wilkins) D WARMWATER GILL NET ASSESSMENT (P.D. Wilkins) E COMMERCIAL FISHERY ASSESSMENT (P.D. Wilkins) F COLDWATER GILL NET ASSESSMENT (J.L. Markham) G SEA LAMPREY ASSESSMENT (J.L. Markham) H SALMONINE STOCKING SUMMARY (J.L. Markham and M.T. Todd) I OPEN LAKE SPORT FISHING SURVEY (P.D. Wilkins) APPENDIX I COMMON AND SCIENTIFIC NAMES OF FISH NYSDEC Lake Erie Fisheries Research Unit 2020 Program Highlights The New York State Smallmouth Bass Department of Environmental Lake Erie supports New York’s, and perhaps the country’s, finest Conservation’s Lake Erie smallmouth bass fishery. Bass fishing quality in 2020 was below Fisheries Research Unit average for the 33-year survey. Generally stable spawning success (LEFRU) is responsible for coupled with very high growth rates produce relatively high angler research, assessment and catch rates and frequent encounters with trophy-sized fish. Over the fisheries management past 33 years increasing preference for catch-and-release angling activities for one of New has drastically reduced harvest of smallmouth to only 2% of the York’s largest and most overall catch. Since 2000 overall abundance has declined. Recent diverse freshwater fishery data indicate relatively stable adult abundance (age 3+) over the last resources. Our annual monitoring programs are designed to improve decade with an increase in older bass over the last five years. our understanding of the Lake Erie fish community, guide fisheries Juvenile abundance measures from 2020 suggest 2018 was a below management, and safeguard this valuable resource for current and average bass year class. future generations. This document shares just a few of the highlights from the 2020 program year. Our complete annual report is available Gill Net Catches of Smallmouth Bass on DEC’s website at http://www.dec.ny.gov/outdoor/32286.html, or by 50 contacting DEC’s LEFRU office (contact information below). Age 8 + 40 Age 3 to 7 Tributary Angler Survey Age 1 & 2 New York’s Lake Erie tributaries consistently produce some of the highest quality fishing for steelhead in the nation. The tributary angler 30 survey is conducted on a three-year cycle to monitor fishery performance and determine progress towards goals stated in the 20 Steelhead Management Plan. The average steelhead catch rate from Catch per Net the most recent 2017-18 survey indicated excellent fishing quality (0.56 fish/hr.) and represented a significant improvement compared 10 to the 2011-12 and 2014-15 surveys. 0 Walleye 1981 1985 1989 1993 1997 2001 2005 2009 2013 2017 Lake Erie’s eastern basin walleye resource is comprised of adult walleye from local spawning stocks and substantial contributions of adult migrants from west basin spawning stocks. Walleye fishing Yellow Perch quality in New York waters has been at record levels for the past four Lake Erie yellow perch populations have experienced wide years with 2018 representing the highest catch rate in the 33-year oscillations in abundance over the last 30 years, from extreme lows survey. Recent increases in fishing quality are largely attributable to in the mid-1990’s to an extended recovery that has now lasted almost east basin spawning success over the past decade, and the recent two decades. Poor recruitment in 2011-2013 resulted in a declining western basin walleye spawning success. Juvenile walleye surveys adult population and angler catch rates with a 12-year low occurring indicate exceptional local spawning success in 2016 and 2017 and a in 2016. Perch fishing quality began to increase in 2017 and 2018 due potentially unprecedented level of west basin spawning success in to the strong 2015 cohort but returned to the long-term average in 2018 and 2019. Overall good recruitment through recent years 2020. Weak to moderate recruitment in 2017 and 2018, coupled with suggests adult walleye abundance and fishing quality in the east an aging 2015 year class, should support average to slightly below basin will remain high for the several years. average fishing quality in 2021. Juvenile abundance measures from 2020 suggest 2019 was an above average yellow perch year class. Age-1 Walleye Index 25 Gill Net Catches of Yellow Perch 350 20 300 250 15 200 10 150 Catch per Net 5 Catch per Net 100 0 50 1980 1985 1990 1995 2000 2005 2010 2015 0 Year Class 1993 1997 2001 2005 2009 2013 2017 Lake Erie Fisheries Research Unit 178 Point Drive North Dunkirk, NY 14048-1031 (716) 366-0228 Lake Trout Restoration Salmonid Management Re-establishing a self-sustaining lake trout population in Lake Erie New York annually stocks approximately 127,500 steelhead and continues to be a major goal of Lake Erie’s coldwater program. Lake 50,000 domestic rainbow trout into Lake Erie and its tributaries to trout have been stocked since 1978 and annual assessments monitor provide recreational angling opportunities. Wild reproduction of progress towards lake trout rehabilitation plan restoration objectives. steelhead also occurs in some tributaries but remains a minor The overall index of abundance of lake trout in the New York waters contributor to the fishery. Steelhead stocking was slightly above target of Lake Erie has remained relatively stable for the past five years but in 2020 while domestic rainbow stocking was slightly below target. It below the plan objective of 8.0 fish/lift. Adult lake trout (age 5+) should be noted that stocking targets for steelhead declined 50% in abundance increased in 2020 and remains high relative to the entire 2020 to accommodate an experimental approach at New York’s time series; older fish (age 10+) are increasing in abundance. Natural Salmon River Hatchery to improve overall size of stocked steelhead. reproduction has not yet been detected in Lake Erie. Significant Initial results indicated significant increases in both size and weight, stocking and sea lamprey control efforts must be continued to build and resulted in a more consistent stocking product. Further and maintain the adult population necessary to support natural experimentation and evaluation are expected over the next two years. reproduction. An acoustic telemetry study that began in 2016 is A year-round angler survey was completed in the Upper Cattaraugus providing valuable information on movements and spawning locations Creek system in 2020, providing baseline estimates of effort, catch, used by stocked lake trout during the fall and will guide future and harvest for this area following fish passage at the Springville restoration efforts.
Recommended publications
  • Rockfish (Sebastes) That Are Evolutionarily Isolated Are Also
    Biological Conservation 142 (2009) 1787–1796 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Rockfish (Sebastes) that are evolutionarily isolated are also large, morphologically distinctive and vulnerable to overfishing Karen Magnuson-Ford a,b, Travis Ingram c, David W. Redding a,b, Arne Ø. Mooers a,b,* a Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 b IRMACS, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 c Department of Zoology and Biodiversity Research Centre, University of British Columbia, #2370-6270 University Blvd., Vancouver, Canada V6T 1Z4 article info abstract Article history: In an age of triage, we must prioritize species for conservation effort. Species more isolated on the tree of Received 23 September 2008 life are candidates for increased attention. The rockfish genus Sebastes is speciose (>100 spp.), morpho- Received in revised form 10 March 2009 logically and ecologically diverse and many species are heavily fished. We used a complete Sebastes phy- Accepted 18 March 2009 logeny to calculate a measure of evolutionary isolation for each species and compared this to their Available online 22 April 2009 morphology and imperilment. We found that evolutionarily isolated species in the northeast Pacific are both larger-bodied and, independent of body size, morphologically more distinctive. We examined Keywords: extinction risk within rockfish using a compound measure of each species’ intrinsic vulnerability to Phylogenetic diversity overfishing and categorizing species as commercially fished or not. Evolutionarily isolated species in Extinction risk Conservation priorities the northeast Pacific are more likely to be fished, and, due to their larger sizes and to life history traits Body size such as long lifespan and slow maturation rate, they are also intrinsically more vulnerable to overfishing.
    [Show full text]
  • DRAFT Status of Quillback Rockfish Sebastes( Maliger) in U.S
    Agenda Item G.5 Supplemental REVISED Attachment 12 June 2021 DRAFT Status of quillback rockfish Sebastes( maliger) in U.S. waters off the coast of Washington in 2021 using catch and length data by Brian J. Langseth1 Chantel R. Wetzel1 Jason M. Cope1 Tien-Shui Tsou2 Lisa K. Hillier2 1Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112 2Washington Department of Fish and Wildlife, 600 Capital Way North, Olympia, Washington 98501 June 2021 © Pacific Fisheries Management Council, 2021 Correct citation for this publication: Langseth, B.J., C.R. Wetzel, J.M. Cope, T.S. Tsou, L.K. Hillier. 2021. DRAFT Status of quillback rockfish (Sebastes maliger) in U.S. waters off the coast of Washington in 2021 using catch and length data. Pacific Fisheries Management Council, Portland, Oregon. 111 p. Contents Disclaimer i 1 Introduction 1 1.1 Basic Information . 1 1.2 Life History . 1 1.3 Historical and Current Fishery Information . 2 1.4 Summary of Management History and Performance . 2 2 Data 3 2.1 Fishery-Dependent Data . 3 2.1.1 Commercial Fishery . 3 2.1.2 Recreational / Sport Fishery . 5 2.2 Fishery-Independent Data . 6 2.3 Biological Data . 6 2.3.1 Natural Mortality . 6 2.3.2 Maturation and Fecundity . 7 2.3.3 Length-Weight Relationship . 7 2.3.4 Growth (Length-at-Age) . 8 3 Assessment Model 8 3.1 Summary of Previous Assessments . 8 3.1.1 Bridging Analysis . 8 3.2 Model Structure and Assumptions .
    [Show full text]
  • Quillback Carpiodes Cyprinus
    Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Quillback Carpiodes cyprinus Contributors (2005): Scott D. Lamprecht and Jason Bettinger [SCDNR] Editors (2013): Scott D. Lamprecht and Mark C. Scott (SCDNR) DESCRIPTION Taxonomy and Basic Description The Quillback is a member of the family Catostomidae, which is represented by 8 genera and 25 species in the mid-Atlantic region (Rohde et al. 1994). This family is characterized by soft-rayed fins, a mouth located on the underside of the head, thick fleshy distensible lips, and paired fins attached low on the body (Rohde et al. 1994). Current taxonomic and genetic work indicates that Atlantic Slope Quillback-type fish that are found in South Carolina may represent an undescribed species. Quillback are high bodied, laterally compressed fish that range in length up to 500 mm (19.5 in.) (W. Starnes, pers. comm.). They have a long, falcate dorsal fin with 23 to 30 rays, a small conical head, a silver to golden body, large conspicuous scales about twice as high as wide, and a lateral line that runs the length of the body. Quillback lack mouth barbels as well as dorsal and anal fin spines. The Quillback’s first long dorsal ray does not usually reach the full length of the dorsal fin base, while the first dorsal ray of the similar Highfin Carpsucker typically is as long as the fin (Rohde et al. 1994; Jenkins and Burkhead 1994). Quillback feed on insect larvae and other benthic organisms. They are spring spawners that can attain an age of at least 11 years (Jenkins and Burkhead 1994).
    [Show full text]
  • Ecological Relationships Between Six Rare Minnesota Mussels and Their Host Fishes
    Conservation Biology Research Grants Program Final Report - Hove and Kapuscinski Division of Ecological Services Minnesota Department of Natural Resources Ecological relationships between six rare Minnesota mussels and their host fishes Abstract Of 297 freshwater mussel species living in North America, 213 are either endangered, threatened, or of special concern. The identification of fish hosts is listed as an urgent research objective in the National Strategy for Freshwater Mussel Conservation. Suitable hosts were determined by artificially infesting various fishes and amphibians with glochidia from one of six mussel species. A fish was considered a suitable host when larval metamorphosis to the juvenile stage was observed. Although twenty-five fish species and mudpuppy were exposed to spectaclecase glochidia, none of the species tested facilitated glochidial metamorphosis. Three-fold shell growth was observed on pistolgrip juveniles collected from yellow and brown bullheads. Transformation of ellipse glochidia was observed in mottled sculpin, four darters, and brook stickleback. Metamorphosis of butterfly glochidia was not observed. Blackside darter and logperch were found to be suitable hosts for snuffbox. Purple wartyback glochidia transformed on four catfishes. We used microscopy and initiated molecular techniques to identify a subsample of approximately 5000 juvenile mussels collected from freshwater drum naturally infested with glochidia. Light microscopes and a scanning electron microscope were used to study the juvenile mussels and glochidia from mussels whose length is less than 100 µm. Species identification was limited to subfamily using light microscopes. Analysis of shell surface sculpture, shell outline, and shell height from scanning electron micrographs suggest the subsample of juveniles are either Truncilla truncata or T.
    [Show full text]
  • Minnesota Fishes: Just How Many Species Are There Anyway?
    B Spring 2015 American Currents 10 MINNESOTA FISHES: JUST HOW MANY SPECIES ARE THERE ANYWAY? Jay Hatch Dept. of Postsecondary Teaching and Learning and James Ford Bell Museum of Natural History, University of Minnesota INTRODUCTION FIGURING OUT THE COUNT In terms of fish diversity, for a state at the northern edge and Were they ever really here? halfway between the east–west extremes of the contiguous On the surface, this one appears pretty simple, but it can USA, Minnesota doesn’t do badly. Of the five states and two cause way more gray hairs than you might think. For ex- Canadian provinces bordering it, only Wisconsin boasts as ample, what do you do if Minnesota’s ichthyological fore- many or more species. We (my fish biology colleagues and )I fathers—like Albert Woolman and Ulysses Cox—reported believe this is true, but counting species is not quite as easy species such as the Chestnut Lamprey (Icthyomyzon casta- as it seems. You’re asking: What could be easier? Just find out neus) from the Minnesota River basin or the Longnose Gar if a fish species swims in your lakes or streams, then count it, (Lepisosteus osseus) from the Red River of the North basin right? Well, as they used to say in the Hertz rental car com- (see Figure 1 for Minnesota’s 10 major basins), but no one mercial, “not exactly.” else has ever collected these species in those basins over the What kinds of issues lead to “not exactly?” Quite a few, last 120 years? Look at the specimens, right? Good luck; including the uncertainty of old or historical records, the they no longer exist.
    [Show full text]
  • The Status of Fishes in the Missouri River, Nebraska: Selected Ancient Fishes
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Transactions of the Nebraska Academy of Sciences Nebraska Academy of Sciences and Affiliated Societies Fall 12-21-2015 The tS atus of Fishes in the Missouri River, Nebraska: Selected Ancient Fishes Kirk D. Steffensen Nebraska Game and Parks Commission, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/tnas Part of the Aquaculture and Fisheries Commons, and the Population Biology Commons Steffensen, Kirk D., "The tS atus of Fishes in the Missouri River, Nebraska: Selected Ancient Fishes" (2015). Transactions of the Nebraska Academy of Sciences and Affiliated Societies. 478. http://digitalcommons.unl.edu/tnas/478 This Article is brought to you for free and open access by the Nebraska Academy of Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Transactions of the Nebraska Academy of Sciences and Affiliated Societies by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Status of Fishes in the Missouri River, Nebraska: Selected Ancient Fishes Kirk D. Steffensen Nebraska Game and Parks Commission, 2200 North 33rd Street, Lincoln, NE 68503 Corresponding author: K. D. Steffensen, email [email protected] ; phone: (402) 471-1514, fax: (402) 471-4992 Abstract Several ancient fish species have inhabited the Missouri River and its tributaries for thousands of years prior to ma- jor mainstem modifications and fragmentation. However post-anthropogenic modifications, populations of these an- cient fish species have been highly diminished. Therefore, the objective of this study was to use historic and current ichthyological records to determine the past and present status for Chestnut Lamprey Ichthyomyzon castaneus, Silver Lamprey Ichthyomyzon unicuspis, Bowfin Amia calva, American Eel Anguilla rostrata, and Burbot Lota lota.
    [Show full text]
  • Pennsylvania Fishes IDENTIFICATION GUIDE
    Pennsylvania Fishes IDENTIFICATION GUIDE Editor’s Note: During 2018, Pennsylvania Angler & the status of fishes in or introduced into Pennsylvania’s Boater magazine will feature select common fishes of major watersheds. Pennsylvania in each issue, providing scientific names and The table below denotes any known occurrence. WATERSHEDS SPECIES STATUS E O G P S D Freshwater Eels (Family Anguillidae) American Eel (Anguilla rostrata) N N N N Species Status Herrings (Family Clupeidae) EN = Endangered Blueback Herring (Alosa aestivalis) N TH = Threatened Skipjack Herring (Alosa chrysochloris) DL N Hickory Shad (Alosa mediocris) EN N C = Candidate Alewife (Alosa pseudoharengus) I N N American Shad (Alosa sapidissima) N N EX = Believed extirpated Atlantic Menhaden (Brevoortia tyrannus) N DL = Delisted (removed from the Gizzard Shad (Dorosoma cepedianum) N N N N endangered, threatened or candidate species list due to significant Suckers (Family Catostomidae) expansion of range and abundance) River Carpsucker (Carpiodes carpio) N Quillback (Carpiodes cyprinus) N N N N Highfin Carpsucker (Carpiodes velifer) EX N Watersheds Longnose Sucker (Catostomus catostomus) EN N N White Sucker (Catostomus commersonii) N N N N N N E = Lake Erie Blue Sucker (Cycleptus elongatus) EX N O = Ohio River Eastern Creek Chubsucker (Erimyzon oblongus) N N N Lake Chubsucker (Erimyzon sucetta) EX N G = Genesee River Northern Hogsucker (Hypentelium nigricans) N N N N N X Smallmouth Buffalo (Ictiobus bubalus) DL N N P = Potomac River Bigmouth Buffalo (Ictiobus cyprinellus)
    [Show full text]
  • Long-Term Changes in Population Statistics of Freshwater Drum (Aplodinotus Grunniens) in Lake Winnebago, Wisconsin, Using Otolit
    LONG-TERM CHANGES IN POPULATION STATISTICS OF FRESHWATER DRUM ( APLODINOTUS GRUNNIENS ) IN LAKE WINNEBAGO, WISCONSIN, USING OTOLITH GROWTH CHRONOLOGIES AND BOMB RADIOCARBON AGE VALIDATION by Shannon L. Davis-Foust A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Sciences At The University of Wisconsin-Milwaukee August 2012 LONG-TERM CHANGES IN POPULATION STATISTICS OF FRESHWATER DRUM ( APLODINOTUS GRUNNIENS ) IN LAKE WINNEBAGO, WISCONSIN, USING OTOLITH GROWTH CHRONOLOGIES AND BOMB RADIOCARBON AGE VALIDATION by Shannon L. Davis-Foust A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Sciences at The University of Wisconsin-Milwaukee August 2012 Major Professor Dr. Rebecca Klaper Date Graduate School Approval Date ii ABSTRACT LONG-TERM CHANGES IN POPULATION STATISTICS OF FRESHWATER DRUM ( APLODINOTUS GRUNNIENS ) IN LAKE WINNEBAGO, WISCONSIN, USING OTOLITH GROWTH CHRONOLOGIES AND BOMB RADIOCARBON AGE VALIDATION by Shannon Davis-Foust The University of Wisconsin-Milwaukee, 2012 Under the Supervision of Dr. Rebecca Klaper Estimating fish population statistics such as mortality and survival requires the use of fish age data, so it is important that age determinations are accurate. Scales have traditionally, and erroneously, been used to determine age in freshwater drum (Aplodinotus grunniens ) in the majority of past studies. I used bomb radiocarbon dating to validate that sagittal otoliths of drum are the only accurate structure (versus spines or scales) for age determinations. Drum grow slower and live longer than previously recognized by scale reading. Drum otoliths can be used not only to determine age, but also to estimate body length.
    [Show full text]
  • ES Teacher Packet.Indd
    PROCESS OF EXTINCTION When we envision the natural environment of the Currently, the world is facing another mass extinction. past, one thing that may come to mind are vast herds However, as opposed to the previous five events, and flocks of a great diversity of animals. In our this extinction is not caused by natural, catastrophic modern world, many of these herds and flocks have changes in environmental conditions. This current been greatly diminished. Hundreds of species of both loss of biodiversity across the globe is due to one plants and animals have become extinct. Why? species — humans. Wildlife, including plants, must now compete with the expanding human population Extinction is a natural process. A species that cannot for basic needs (air, water, food, shelter and space). adapt to changing environmental conditions and/or Human activity has had far-reaching effects on the competition will not survive to reproduce. Eventually world’s ecosystems and the species that depend on the entire species dies out. These extinctions may them, including our own species. happen to only a few species or on a very large scale. Large scale extinctions, in which at least 65 percent of existing species become extinct over a geologically • The population of the planet is now growing by short period of time, are called “mass extinctions” 2.3 people per second (U.S. Census Bureau). (Leakey, 1995). Mass extinctions have occurred five • In mid-2006, world population was estimated to times over the history of life on earth; the first one be 6,555,000,000, with a rate of natural increase occurred approximately 440 million years ago and the of 1.2%.
    [Show full text]
  • Food‐Web Structure and Ecosystem Function in the Laurentian Great
    Received: 13 March 2018 | Revised: 14 September 2018 | Accepted: 18 September 2018 DOI: 10.1111/fwb.13203 REVIEW Food- web structure and ecosystem function in the Laurentian Great Lakes—Toward a conceptual model Jessica T. Ives1 | Bailey C. McMeans2 | Kevin S. McCann3 | Aaron T. Fisk4 | Timothy B. Johnson5 | David B. Bunnell6 | Kenneth T. Frank7 | Andrew M. Muir1 1Great Lakes Fishery Commission, Ann Arbor, Michigan Abstract 2Department of Biology, University of 1. The relationship between food-web structure (i.e., trophic connections, including Toronto, Mississauga, Ontario, Canada diet, trophic position, and habitat use, and the strength of these connections) and 3Department of Integrative ecosystem functions (i.e., biological, geochemical, and physical processes in an Biology, University of Guelph, Guelph, Ontario, Canada ecosystem, including decomposition, production, nutrient cycling, and nutrient 4Great Lakes Institute for Environmental and energy flows among community members) determines how an ecosystem re- Research, University of Windsor, Windsor, Ontario, Canada sponds to perturbations, and thus is key to understanding the adaptive capacity of 5Glenora Fisheries Station, Ontario Ministry a system (i.e., ability to respond to perturbation without loss of essential func- of Natural Resources and Forestry, Picton, tions). Given nearly ubiquitous changing environmental conditions and anthropo- Ontario, Canada genic impacts on global lake ecosystems, understanding the adaptive capacity of 6US Geological Survey Great Lakes Science Center, Ann Arbor, Michigan food webs supporting important resources, such as commercial, recreational, and 7Department of Fisheries and subsistence fisheries, is vital to ecological and economic stability. Oceans, Bedford Institute of Oceanography, Ocean Sciences Division, 2. Herein, we describe a conceptual framework that can be used to explore food- Dartmouth, Nova Scotia, Canada web structure and associated ecosystem functions in large lakes.
    [Show full text]
  • THE NATIONAL WILD FISH HEALTH SURVEY: What Is the NWFHS?
    THE NATIONAL WILD FISH HEALTH SURVEY: SELECTED FINDINGS AND LIMITATIONS All 9 USFWS Fish Health Centers Sonia L. Mumford And our partners! Olympia Fish Health Center What is the NWFHS? USFWS sponsored program that examines free-ranging fish to better understand the national distribution of specific fish pathogens. An associated database stores, compiles, and permits queries of information gathered during fish examinations. 1 Target Pathogens ! "Bacteria ! "Viruses –" Aeromonas salmonicida •" Infectious Pancreatic Necrosis Virus –" Yersinia ruckeri –" Infectious Hematopoetic Necrosis –" Renibacterium Virus salmoninarum –" Viral Hemorrhagic Septicemia Virus –" Edwarsiella ictaluri –" Channel Catfish Virus –" Oncorhynchus masou Virus ! "Parasites –" Largemouth Bass Virus –" Myxobolus cerebralis –" Infectious Salmon Anemia Virus –" Ceratomyxa shasta –" White Sturgeon Iridovirus –" Bothriocephalus –" White Sturgeon Herpes Virus acheilognathi –" Spring Viremia of Carp Virus How Are Fish Collected? ! "We obtain fish from Tribal, State, non- profit groups, public utilities, other federal agencies, and others ! "Fish can be collected via traps, electrofishing, hook and line, netting (fyke, gill, seine) with appropriate permits 2 How is it Accomplished? ! " Temporary field sampling stations ! " Fish sent to labs by partners ! "Samples sent to lab are tested according to standardized laboratory procedures. Where are we? •" Since 1995 with the help of 77 partnering agencies/groups we have sampled: –">2500 Waterbodies –" 262 Different Species –"Approx. 220,000 Fish As of September 2010 3 What have we found? •" Wild fish do harbor pathogens! –"Emerging Pathogens –"“Exotic” Pathogens •" Pathogens in areas we didn’t expect •" Pathogens in species we didn’t expect Emerging Diseases in Wild Fish- Viral Hemorrhagic Septivemia Virus (VHSV) •" Can cause significant mortalities www.coastwatch.msu.eduVHSV in a wide variety of fish species (28 susceptible species listed by APHIS) –" 49% decrease in adult musky in St.
    [Show full text]
  • Habitat Use by Fishes of Lake Superior. II. Consequences of Diel
    Habitat use by fishes of Lake Superior. II. Consequences of diel habitat use for habitat linkages and habitat coupling in nearshore and offshore waters Owen T. Gorman,1,∗ Daniel L. Yule,1 and Jason D. Stockwell2 1U.S. Geological Survey, Lake Superior Biological Station, 2800 Lake Shore Dr. East, Ashland, Wisconsin 54806, USA 2University of Vermont, Rubenstein Ecosystem Science Laboratory, 3 College Street, Montpellier, Vermont 05401, USA ∗Corresponding author: [email protected] Diel migration patterns of fishes in nearshore (15–80 m depth) and offshore (>80 m) waters of Lake Superior were examined to assess the potential for diel migration to link benthic and pelagic, and nearshore and offshore habitats. In our companion article, we described three types of diel migration: diel vertical migration (DVM), diel bank migration (DBM), and no diel migration. DVM was expressed by fishes migrating from benthopelagic to pelagic positions and DBM was expressed by fishes migrating horizontally from deep to shallow waters at night. Fishes not exhibiting diel migration typically showed increased activity by moving from benthic to benthopelagic positions within demersal habitat. The distribution and biomass of fishes in Lake Superior was characterized by examining 704 bottom trawl samples collected between 2001 and 2008 from four depth zones: ≤40, 41–80, 81–160, and >160 m. Diel migration behaviors of fishes described in our companion article were applied to estimates of areal biomass (kg ha−1) for each species by depth zone. The relative strength of diel migrations were assessed by applying lake area to areal biomass estimates for each species by depth zone to yield estimates of lake-wide biomass (metric tonnes).
    [Show full text]