Deposition of Zn3n2 Thin Films and Application in TFT Structures

Total Page:16

File Type:pdf, Size:1020Kb

Deposition of Zn3n2 Thin Films and Application in TFT Structures Deposition of Zn3N2 thin films and application in TFT structures Maria Luísa Lobo Moutinho Soares de Melo Physics Department of IST, Lisbon, Portugal Under supervision of Dr. Reinhard Schwarz Abstract Transistors are the key component of everyday electronics, so the search for new materials and production methods becomes indispensable. The present work has two main goals: the study of the optimal deposition conditions for the production of Zinc Nitride films by Pulsed Laser Deposition (PLD) and its later use to produce a Thin Film Transistor (TFT). We have focused our study on two main deposition parameters: laser wavelength and substrate temperature. The film properties, particularly its morphology, showed a strong dependence on laser wavelength. The green line of a Nd:YAG laser (532 nm) proved to be the best compromise. The substrate temperature also influences the film properties leading to the conclusion that Zinc Nitride might only be PLD produced at temperatures beyond 350ºC. The films showed crystalline structure, the estimated band gap was on average 3.22 eV and resistivity had a range of 10-2-100 Ω.cm. A high percentage of Oxygen was found on the film surface, as predicted by the literature. Three MIS structures were analysed using I-V and C-V measurements. We have decided to use two substrates for the TFT test structures: AlN on p-Si and ATO on ITO. Transfer characteristics and output characteristics measurements were undertaken. Although some optimization is necessary, we demonstrated that Zinc Nitride is a good candidate to be used as channel layer in TFT production. The AlN-based TFTs showed the best performance with threshold voltage of 1.1 V, sub-threshold voltage swing of 1.1 V/decade, an on/off ratio of 104 and 0.6 cm2/Vs saturation mobility. 1. Introduction perform the I-V measurements needed in this work. The TFT is a field effect transistor (FET). Its Several other characterization methods were used: structure and operation principles are similar to transmission, SEM, C-V, XRD and XPS. those of the metal oxide field effect transistor This experimental work was done at the Physics (MOSFET). However, there are some important Department of Instituto Superior Técnico, Lisbon, differences to consider: TFT frequently uses an Portugal. The work was supervised by Professor insulation substrate, the production temperatures Reinhard Schwarz and Dr. Rachid Ayouchi. PLD are usually lower and the absence of p-n junctions in depositions, I-V, C-V and transmission the Drain and Source contacts, which leads to a measurements were obtained using the research slightly different mode of operation. group infrastructure available at the Physics In the last decade, a new impulse has been given Department. XRD and SEM were done with a to this research field especially in areas such as the diffractometer of the ICEMS group. XPS analysis transparent and organic TFTs. was carried out at the Physics Department of Some of the possible TFT applications include Universidade Nova de Lisboa by the “Ciência de integrated displays, photovoltaics, sensing devices, Superfícies e Tecnologia de Vácuo” group. smart labels, lightning, and integrated logic devices. Part of the experimental results of this work will Zinc Nitride (Zn3N2) is a group II-V compound be presented at a poster presentation at the EMRS semiconductor. This is still a poorly understood 2013 conference, in Strasbourg, France with the material with reported shifting properties, depending title: Reactive Pulsed Laser Deposition of Zinc on the production method. It has recently drawn the Nitride thin films. attention of a number of research groups, including ours. Several production methods have been used. 2. Literature Review It is a hot topic in materials science, with several 2.1 Pulsed Laser Deposition (PLD) articles published in the last couple of years. Pulsed Laser Deposition (PLD) is a physical Properties like the optical band gap are yet to be vapour deposition technique. There are three main established by the scientific community with new types of PLDs: conventional, inert gas and reactive. results cropping up recently. In this thesis the Reactive PLD was used. Zinc Nitride is a promising semiconductor to use An optical system focuses a high power laser and in electronic and optoelectronic applications enters the deposition chamber through a viewport. It (photovoltaic, sensors, TFTs and so on) owing to then travels through the chamber and hits the target, low cost and ecological friendliness. The high evaporating part of it. The evaporated material availability of its composing materials is also subsequently interacts with the environmental gas appealing. and deposits on the substrate. The deposition This work focuses on the Pulsed Laser process may be split into four main phases: laser- Deposition of Zinc Nitride thin films and its possible target interaction, gas phase transportation, use as the semiconductor layer of a Thin Film deposition and nucleation and film growth. Transistor (TFT). An auxiliary programme was The presence of particles on the film and the specifically built on the Labview 8.6 platform to unintentional sputtering of the film and the substrate 1 are two critical problems of this production method. method. The mostly reported peaks are the 2θ [1-4] angles: 34.4º that corresponds to the (321) Miller plane and 36.8º that corresponds to (400) plane. 2.2 Zinc Nitride: Properties and Production Both of these peaks exist in the antibixyte crystal Methods structure [26]. However, the (400) peak is also Zinc Nitride (Zn3N2) is a group II-V compound observed in the metallic Zinc diffraction pattern [27]. semiconductor with cubic antibixyte structure, the The electrical properties of this material have lattice constant of which is a = 9.78(1) Å. The crystal also been extensively studied. Resistivity values are structure is shown in Figure 1. reported in the range of 10-3 - 10-1 Ω.cm with a strong dependence on the substrate temperature [13,15]. The carrier mobility of zinc nitride films was reported to have a range of 10-1-100 cm2 V−1 s−1 [13,14,16.18,19,22]. Hall measurements reported n- type films [13,14,18,19,32]. Metallic contacts with Al, Au and Cu showed good ohmic behaviour. [8] Oxygen contamination has been reported as a Figure 1 - Zn3N2 crystal structure [11] common Zinc Nitride production issue. Zinc is a hydrophilic material [18], which means it has the Zinc Nitride has in the recent years drawn the tendency to absorb the water vapour present in the attention of several research groups. The results, atmosphere. Also, Oxygen is more reactive than however, have been very scarce so far. In particular, Nitrogen because of their different electronic reports differ strongly concerning the compound properties. These two facts make very probable the band gap, which has shown dependence on the contamination of Oxygen in Zinc Nitrides films. The production method. This fact makes the Zinc Nitride Oxygen may thus combine with Zinc atoms forming a still poorly understood material that requires Zinc Oxide (ZnO), Zinc Oxynitride(ZnON) or Zn(OH)2 further research. structures and altering several film properties [9,13,18,23]. 2.2.1 Zn3N2 Production by PLD The deposition of Zinc Nitride by PLD has not yet 2.3 Thin Film Transistor (TFT) been extensively studied, to our knowledge, it has Thin Film Transistors (TFTs) are FETs and have only been produced by S. Simi et al. [5] and our a very similar mode of operation to the MOSFETs. group either RF-assisted [6,7] or not [8]. However, MOSFETs work in inversion mode and The optical band gap was reported to be direct TFTs in accumulation mode. The staggered bottom and its value varied from 3.2 to 3.5 eV [5-8]. The X- gate configuration will be used in this work. The Ray peaks seen were observed at 34.2° and 36.8° following analysis is done for an n-type TFT. Two [6-8]. The morphology reported sub-micrometer assumptions are made: carrier mobility and crystallites distributed discontinuously over the film capacitance are constant along the channel length. surface. 2.3.1 Mode of Operation 2.2.1 Zn3N2 Production by other methods Off-state: When a negative voltage is applied to the Several other methods were used to produce this gate (VG<0V), it induces a depletion of the electrons material such as Molten Salt Electrochemical from the semiconductor-dielectric interface, which Process [9], Molecular Beam Epitaxy (MBE) [10], prevents the current flow from drain to source. Filtered Cathodic Vacuum Arc Deposition [11], Plasma-assisted Metal Organic Chemical Vapour Linear Region: When a positive voltage (VG>0V), Deposition [12] and, predominately, RF Assisted higher than the threshold voltage, is applied to the Magnetron Sputtering [13-24]. gate electrode, it produces a downward band Concerning the film morphology, there is no bending and an accumulation of electrons in the agreement in the literature whether the growth semiconductor-insulator interface. This creates a conditions influence the film morphology and grain conducting channel between the drain and the size. Either no dependence was detected [13] or it source contacts. When a positive voltage is applied was reported that the grain size increased with to the drain contact, with < − , the induced increasing temperatures [14]. electrons flow from the source to the drain through Regarding the optical properties, there is a strong the channel and the current has the opposite discrepancy between the results reported. The direction. The higher the voltage applied to the drain, material is generally said to be a direct the higher the current flow. The device is in the semiconductor. The optical band gap has a high linear region and its drain current is given by: inconsistency between the obtained values with two W 1 groups of values: 1.01-1.47 eV [9,13,14,16-18] and = µ C [( − ) − ] 3.2 eV [21].
Recommended publications
  • Room-Temperature Synthesis of Earth-Abundant Semiconductor
    www.nature.com/scientificreports OPEN Room‑temperature synthesis of earth‑abundant semiconductor ZnSiN2 on amorphous carbon Horácio Coelho‑Júnior*, Bruno G. Silva, Cilene Labre, Renan P. Loreto & Rubem L. Sommer This manuscript reports room‑temperature one‑step synthesis of earth‑abundant semiconductor ZnSiN2 on amorphous carbon substrates using radio frequency reactive magnetron co‑sputtering. Transmission Electron Microscopy and Rutherford Backscattering Spectrometry analysis demonstrated that the synthesis has occurred as ZnSiN2 nanocrystals in the orthorhombic phase, uniformly distributed on amorphous carbon. The technique of large‑area deposition on an amorphous substrate can be interesting for fexible electronics technologies. Our results open possibilities for environmentally friendly semiconductor devices, leading to the development of greener technologies. Semiconductor materials can be considered one of the technology pillars of contemporaneous life. A great amount of work in semiconductor basic and applied science 1 has been done in the past years. In particular, nitrogen-based semiconductors revolutionized the technology of light-emitting devices2–4. In addition, the technological integration of those nitrides combined with semiconductor materials already used in industry is promising for manufacturing systems with multiple functionalities. Gallium nitride (GaN) synthesized by N implantation into gallium arsenide (GaAs), for example, is important for microelectronics applications5–7. Synthesis of eco-friendly materials is within one of the fundamental principles of green nanotechnology 8–12, which is a strong demand for a post-modern society13, and has high socioeconomic status worldwide14–16. Stud- ies on green technologies are quite recent17 and take into consideration the long-term demand of elements18 and its environmental impacts in the near future19,20.
    [Show full text]
  • A Dissertation Entitled Reactive Sputtering Deposition And
    A Dissertation entitled Reactive Sputtering Deposition and Characterization of Zinc Nitride and Oxy-Nitride Films for Electronic and Photovoltaic Applications by Nanke Jiang Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering _________________________________________ Dr. Daniel G. Georgiev, Committee Chair _________________________________________ Dr. Ahalapitiya H. Jayatissa, Committee Co-Chair _________________________________________ Dr. Sanjay V. Khare, Committee Member _________________________________________ Dr. Roger King, Committee Member _________________________________________ Dr. Anthony Johnson, Committee Member _________________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo May 2013 Copyright 2013, Nanke Jiang This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Reactive Sputtering Deposition and Characterization of Zinc Nitride and Oxy-Nitride Films for Electronic and Photovoltaic Applications by Nanke Jiang Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering The University of Toledo May 2013 This dissertation presents a study on the fabrication of zinc nitride and zinc oxy- nitride films, and related hetero-structures on glass, silicon and other substrates. The goals of this study include gaining fundamental understanding on the electrical and optical properties, the chemical-bonding states and the micro-structure of these materials and examining their potential for photovoltaic and other electronic and optoelectronic applications. Reactive radio-frequency (RF) magnetron sputtering was used as the deposition method, which potentially enables control of composition of the thin films, as well as fabrication of multilayer structures for the study of possible hetero-junctions between zinc nitride and zinc oxy-nitrides.
    [Show full text]
  • Ternary Nitride Materials: Fundamentals and Emerging Device Applications Arxiv:2010.08058V1 [Cond-Mat.Mtrl-Sci] 15 Oct 2020
    Ternary Nitride Materials: Fundamentals and Emerging Device Applications Ann L. Greenaway,1 Celeste L. Melamed,2;1 M. Brooks Tellekamp,1 Rachel Woods-Robinson,3;4;1 Eric S. Toberer,2 James R. Neilson5 and Adele C. Tamboli1* 1Materials and Chemistry Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, United States, 80401 email: [email protected] 2Department of Physics, Colorado School of Mines, Golden, Colorado, United States, 80401 3Applied Science and Technology Graduate Group, University of California at Berkeley, Berkeley, California, United States, 97402 4Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, United States, 94720 5Department of Chemistry, Colorado State University, Fort Collins, Colorado, United States, 80523 Keywords ternary nitride, structural chemistry, metastability, nitride synthesis, optoelectronics, battery Abstract Interest in inorganic ternary nitride materials has grown rapidly over the past few decades, as their diversity of chemistries and structures make them appealing for a variety of applications. Due to synthetic challenges posed by the stability of N2, the number of predicted ni- tride compounds dwarfs those that have been synthesized, offering a breadth of opportunity for exploration. This review summarizes the fundamental properties and structural chemistry of ternary nitrides, leveraging metastability and the impact of nitrogen chemical potential. A discussion of prevalent defects, both detrimental and beneficial, is followed by a survey of synthesis techniques and their interplay with arXiv:2010.08058v1 [cond-mat.mtrl-sci] 15 Oct 2020 metastability. Throughout the review, we highlight applications (such as solid-state lighting, electrochemical energy storage, and electronic devices) in which ternary nitrides show particular promise. 1 Contents 1.
    [Show full text]
  • Tunable Light-Emission Through the Range 1.8–3.2 Ev and P-Type Conductivity at Room Temperature for Nitride Semiconductors, Ca(Mg1−Xznx)2N2 (X = 0 – 1)”
    Tunable light-emission through the range 1.8–3.2 eV and p-type conductivity at room temperature for nitride semiconductors, Ca(Mg1−xZnx)2N2 (x = 0 – 1) Masatake Tsuji,1 Hidenori Hiramatsu,1,2,a and Hideo Hosono1,2 1: Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Mailbox R3-3, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan 2: Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-1, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan a) Electronic mail: [email protected] 1 Abstract The ternary nitride CaZn2N2, composed only of earth-abundant elements, is a novel semiconductor with a band gap of ~1.8 eV. First-principles calculations predict that continuous Mg substitution at the Zn site will change the optical band gap in a wide range from ~3.3 eV to ~1.9 eV for Ca(Mg1−xZnx)2N2 (x = 0–1). In this study, we demonstrate that a solid-state reaction at ambient pressure and a high-pressure synthesis at 5 GPa produce x = 0 and 0.12, and 0.12 < x 1 polycrystalline samples, respectively. It is experimentally confirmed that the optical band gap can be continuously tuned from ~3.2 eV to ~1.8 eV, a range very close to that predicted by theory. Band-to-band photoluminescence is observed at room temperature in the ultraviolet–red region depending on x. A 2% Na doping at the Ca site of CaZn2N2 converts its highly resistive state to a p-type conducting state.
    [Show full text]
  • Deposition and Properties of Zn3n2 Thin Films by Atmospheric Pressure Chemical Vapor Deposition
    Transactions of the Materials Research Society ofJapan 33[ 4] 1005-1007 (2008) Deposition and Properties of Zn3N2 Thin Films by Atmospheric Pressure Chemical Vapor Deposition Hisao Suzuki, Yuki Matsuyama, Takato Nakamura, Naonori Sakamoto, Naoki Wakiya and Naoyuki Takahashi* Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, Japan 432-8561 Fax: 81-53-478-1157, e-mail: [email protected] * Environmental and Biotechnological Frontier Engineering, Fukui University of Technology 3-6-1, Gakuen, Fukui, Japan 910-8505 Fax: 81-776-29-2686, e-mail: [email protected] Nitrogen doped ZnO is promising for the p-type semiconductor, however, little research work has been done about zinc nitride (Zn3N2) materials. In this study, Zn3N2 films were prepared by Atmospheric Pressure Chemical Vapor Deposition (AP-CVD). XRD patterns showed that Zn3N2 films are polycrystalline if the deposition temperatures were in the range from 500 to 700°C. SEM images exhibited that the Zn3N2 films were consisted of granular grains, and their diameter increased with deposition temperature. We determined that optimal deposition temperature was 600°C since dense microstructure was obtained at this temperature. UV-Vis-NIR measurement showed that optical band gap energy was 1.23eV. Key words: Zn3N2 , thin film, AP-CVD , Structural properties 1. INTRODUCTION (AP-CVD). In this method, films are deposited under the Zinc nitride (Zn3N2) powders were firstly synthesized atmospheric pressure, preventing the adsorptions of the by Juda and Hahn in 1940 by direct reaction between nitrogen during the deposition to obtain good quality ammonia and zinc powders [1].
    [Show full text]
  • Hydrogen Release and Uptake in the Li–
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Birmingham Research Portal Hydrogen release and uptake in the Li–Zn–N system Nguyen, Trang; Reed, Daniel; Book, David; Anderson, Paul DOI: 10.1016/j.jallcom.2014.12.190 License: Other (please specify with Rights Statement) Document Version Peer reviewed version Citation for published version (Harvard): Nguyen, TTT, Reed, D, Book, D & Anderson, P 2014, 'Hydrogen release and uptake in the Li–Zn–N system', Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2014.12.190 Link to publication on Research at Birmingham portal Publisher Rights Statement: NOTICE: this is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as T.T.T. Nguyen, D. Reed, D. Book, P.A. Anderson, Hydrogen release and uptake in the Li–Zn–N system, Journal of Alloys and Compounds (2014), doi: http://dx.doi.org/10.1016/j.jallcom.2014.12.190 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.
    [Show full text]
  • Epitaxial Growth and Optical Properties of Mg3n2, Zn3n2, and Alloys by Peng Wu B.Sc., Xinjiang Normal University, 2010 M.Sc., Xi
    Epitaxial Growth and Optical Properties of Mg3N2, Zn3N2, and alloys by Peng Wu B.Sc., Xinjiang Normal University, 2010 M.Sc., Xinjiang Normal University/University of Science and Technology of China (joint), 2013 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Electrical and Computer Engineering ã Peng Wu, 2019 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Epitaxial Growth and Physics Properties of Mg3N2, Zn3N2, and alloys by Peng Wu B.Sc., Xinjiang Normal University, 2010 M.Sc., Xinjiang Normal University/University of Science and Technology of China (joint), 2013 Supervisory Committee Thomas Tiedje, (Department of Electrical and Computer Engineering) Supervisor Reuven Gordon, (Department of Electrical and Computer Engineering) Departmental Member Frank Van Veggel, (Department of Chemistry) Outside Member iii Abstract Supervisory Committee Thomas Tiedje, (Department of Electrical and Computer Engineering) Supervisor Reuven Gordon, (Department of Electrical and Computer Engineering) Departmental Member Frank Van Veggel, (Department of Chemistry) Outside Member Zinc nitride and magnesium nitride are examples of the relatively unexplored II3V2 group of semiconductor materials. These materials have potential applications in the electronics industry due to their excellent optical and electrical properties. This study mainly focuses on the growth and characterization of the new semiconductor materials: zinc nitride, magnesium nitride, and their alloys. The (100) oriented zinc nitride thin films were grown on both (110) sapphire substrates and (100) MgO substrates by plasma-assisted molecular beam epitaxy (MBE).
    [Show full text]
  • Zinc Amide Compounds As Potential Precursors for the Synthesis of Zinc Nitride
    ZINC AMIDE COMPOUNDS AS POTENTIAL PRECURSORS FOR THE SYNTHESIS OF ZINC NITRIDE Eva Maile, Anjana Devi, R.A. Fischer* Lehrstuhl für Anorganische Chemie II, Organometallics & Materials Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany. [email protected] Fig. 1 SEM of a Zn3N2 film grown on Si(100) Zinc nitride is, in contrast to cadmium- containing materials, a non-toxic semiconductor ) 21 ) (3 25000 2 with an optical band-gap in the VIS/NIR. There 3 (3 α are very few compounds known so far, which 20000 K Cu /2 ) λ .] ) (222) have the potential to be used as precursors for .u 15000 0 a (400) 10) (211 [ y t 40) (40 (1 i 3 s Si (4 O n MOCVD of zinc nitride. For this reason, we i e t 10000 S In synthesized zinc compounds with nitrogen Zn bonded ligands. The heteroleptic zinc amides 5000 0 3,3’-Imino bis(N,N-dimethylaminopropyl) zinc 20 30 40 50 60 2 Theta [°] [bis(trimethylsilyl)-amide] and N,N-Dimethyl- N’-ethyl-ethylene-diamin zinc [bis(trimethyl- Fig. 2 XRD of a Zn3N2 silyl)amide] were synthesized by salt metathesis film grown on Si(100) reaction. Furthermore, [(Diethylamino) propyl] zinc azide was resulted of the reaction between 1, 0x105 Bis-[(Diethylamino)propyl]zinc chloride] and 8, 0x104 an excess of sodium azide. These three Zn 3p 4 ] 6,0x10 . Zn 3s u compounds are looking promising for furher . a Zn 3d d [ 4 N 1s el 4,0x10 i C 1s applications in the preparation of nano scaled Y materials and thin films using MOCVD.
    [Show full text]
  • Zinc Nitride Thin Films: Basic Properties and Applications
    Invited Paper Zinc nitride thin films: basic properties and applications A. Redondo-Cuberoa, M. Gómez-Castañoa, C. García Núñezb, M. Domínguezc, L. Vázquezd, J. L. Paua,* aGrupo de Electrónica y Semiconductores, Facultad de Ciencias, Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente 7, Madrid 28049, Spain; bBendable Electronics and Sensing Technologies Group, School of Engineering, University of Glasgow, G12 8QQ, UK; cInstituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, México; d Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain ABSTRACT Zinc nitride films can be deposited by radio frequency magnetron sputtering using a Zn target at substrate temperatures lower than 250 °C. This low deposition temperature makes the material compatible with flexible substrates. The as- grown layers present a black color, polycrystalline structures, large conductivities, and large visible light absorption. Different studies have reported about the severe oxidation of the layers in ambient conditions. Different compositional, structural and optical characterization techniques have shown that the films turn into ZnO polycrystalline layers, showing visible transparency and semi-insulating properties after total transformation. The oxidation rate is fairly constant as a function of time and depends on environmental parameters such as relative humidity or temperature. Taking advantage of those properties, potential applications of zinc nitride films in environmental sensing have been studied in the recent years. This work reviews the state-of-the-art of the zinc nitride technology and the development of several devices such as humidity indicators, thin film (photo)transistors and sweat monitoring sensors. Keywords: zinc nitride, thin film transistors, humidity sensors, perspiration sensors 1.
    [Show full text]
  • Structural and Optical Properties of Zn 3N2 Films Prepared by Magnetron
    Vol. 33, No. 4 Journal of Semiconductors April 2012 Structural and optical properties of Zn3N2 films prepared by magnetron sputtering in NH3–Ar mixture gases Wu Jiangyan(吴江燕), Yan Jinliang(闫金良), Yue Wei(岳伟), and Li Ting(李厅) School of Physics, Ludong University, Yantai 264025, China Abstract: Zinc nitride films were prepared by RF magnetron sputtering a metallic zinc target in NH3–Ar mixture gases on glass substrate at room temperature. The effects of NH3 ratio on the structural and optical properties of the films were examined. X-ray diffraction (XRD) analysis indicates that the films are polycrystalline and have a preferred orientation of (321). An indirect optical band gap increased from 2.33 to 2.70 eV when the NH3 ratio varied from 5% to 25%. The photoluminescence (PL) spectrum shows two emission peaks; the peak located at 437 nm is attributed to the incorporation of oxygen, and the other at 459 nm corresponds to the intrinsic emission. Key words: zinc nitride films; magnetron sputtering; NH3 ratios; photoluminescence DOI: 10.1088/1674-4926/33/4/043001 PACC: 7360F; 7865; 8115 and optical properties of zinc nitride films are discussed in de- 1. Introduction tail. During the past few years, zinc compounds have emerged 2. Experimental as attractive materials owing to their significant propertiesŒ1; 2. Zinc nitride (Zn3N2/ has attracted the research interest in re- Zinc nitride films were deposited onto glass substrates by cent years since it can be converted into p-type ZnO:N after ox- RF magnetron sputtering a metal zinc target (purity of 99.99%) Œ3; 4 idation at temperatures higher than 400 ıC .
    [Show full text]
  • Synthesis of Widely Tunable and Highly Luminescent Zinc Nitride Nanocrystals
    Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014 Synthesis of Widely Tunable and Highly Luminescent Zinc Nitride Nanocrystals Peter N. Taylor,* Michael A. Schreuder, Tim Smeeton, Alastair J. D. Grundy, James A. R. Dimmock, Stewart E. Hooper, Jonathan Heffernan and Matthias Kauer Electronic Supplementary Information Methods Synthesis All nanocrystals were prepared in a nitrogen atmosphere glove box and handled using standard air–free methods. The general method for the formation of oleylamine capped Zn3N2 nanocrystals is as follows - A 50 ml round bottomed flask containing 1-octadecene (30 ml) and oleylamine (1 ml) was heated to 225oC. Ammonia gas was bubbled through the reaction at a rate of 5ml/min. After 5 minutes diethylzinc (102 µl, 1.0 mmol) was rapidly injected, after a further 5 minutes additional diethylzinc (102 µl, 1.0 mmol) was added. Injections were continued in this fashion until the desired size of nanocrystal was obtained. The data in figures 2, 5 and S3 comes from measurement of small samples of the reaction mixture which were removed immediately before each diethylzinc addition and diluted with toluene. The above procedure was altered by either changing the ammonia flow rate or the size of the individual diethylzinc injections to observe the impact of these reaction parameters on the synthesis. In a typical purification, 15 ml of the reaction mixture was centrifuged to remove any insoluble material. The resulting solution was then treated with toluene (6 ml), isobutyronitrile (15 ml) and acetonitrile (8 ml) . The mixture was centrifuged and the top layer was discarded.
    [Show full text]
  • A Dissertation Entitled Fabrication of Zinc Nitride Thin Films Using RF
    A Dissertation entitled Fabrication of Zinc Nitride Thin Films using RF Magnetron Sputtering Deposition for Optoelectronic Applications by Ting Wen Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctoral of Philosophy Degree in Mechanical Engineering _________________________________________ Dr. Ahalapitiya H. Jayatissa, Committee Chair _________________________________________ Dr. Sorin Cioc, Committee Member _________________________________________ Dr. Sarit Bhaduri, Committee Member _________________________________________ Dr. Mehdi Pourazady, Committee Member _________________________________________ Dr. Georgiev Daniel, Committee Member _________________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo December 2012 Copyright 2012, Ting Wen This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Fabrication of Zinc Nitride Thin Films using RF Magnetron Sputtering Deposition for Optoelectronic Applications by Ting Wen Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering The University of Toledo December 2012 Zinc nitride thin films possess a small optical band gap with direct transition, low resistivity, high mobility and carrier concentration. Therefore, it may be suitable as an optoelectronic material for infrared sensors, smart windows and energy conversion devices. The objective of this work is to grow zinc nitride thin films using RF magnetron sputtering, understand its mechanical, optical, and electrical properties, and investigate its performance as light sensing devices. Synthesis and characterization of zinc nitride thin films has been investigated in this work. An RF magnetron sputtering deposition was employed to synthesize zinc nitride thin films using pure metal zinc target in either N2-Ar or N2-Ar-H2 mixtures.
    [Show full text]