Core Inorganic Chemicals

Total Page:16

File Type:pdf, Size:1020Kb

Core Inorganic Chemicals ADVANCED MATERIALS Core Inorganic Chemicals Table of Contents Core Inorganic Chemicals .................................................................................................................................2 Materion Capabilities ............................................................................................................................................4 Flourides .........................................................................................................................................................................6 Oxides .............................................................................................................................................................................7 Battery Materials ......................................................................................................................................................8 Particle Size Conversion Table ......................................................................................................................9 Purity Designations ............................................................................................................................................10 List of Materials – listed alphabetical by chemical name .........................................................11 Periodic Table of Elements ............................................................................................................................32 MATERION OFFERS THREE CONVENIENT Please provide the following information • Your Materion customer number. WAYS TO PLACE AN ORDER: with your order. • Your purchase order number or • Company name, contact name, indication of preferred method 1. Call inside sales at 414-289-9800. telephone number and e-mail address. of payment. 2. Submit your order via email: • Item number along with chemical name [email protected]. and formula, size, purity, quantity, unit of We currently accept Discover, 3. Send your order via fax to measure and any additional product or Visa and MasterCard. 414-289-9805. packaging specifications, billing and shipping addresses. FOR MORE INFORMATION REGARDING PRICES, SHIPPING, TERMS, MSDS, WARRANTY AND RETURNS, PLEASE CONTACT US OR VISIT OUR WEBSITE AT WWW.MATERION.COM/INORGANICCHEMICALSCATALOG MATERIAL FORMS n Powders n Pellets n Slugs Core Inorganic n Grain n Shot n Pieces n Rods Chemicals n Wire n Premelts n Starter Sources The Challenge n Sputtering Targets The importance of finding the exact inorganic chemical compound and form has become RELATED PRODUCTS a crucial part of today’s technologies. The rapidly changing electronic, energy and medical & SERVICES markets are always looking for ways to improve performance. Advances in technology n New Product Development require change. This change might be a chemical property of an existing material or the n Custom Alloys need for a whole new material. Availability, reliability and a willingness to advance through n Custom Size & Forms n Crucible Liners customization are critical in the markets we serve. n Backing Plates n Target Bonding n Recycle Spent Targets The Solution n Vacuum Chamber Shield Cleaning From research and development to full production, Materion is your single reliable source n Reclaim & Recycle for the quality materials you require, custom made to your exact specifications, or selected n Metals Management from our comprehensive inventory of ready-to-ship items. As your material needs change, contact us. Our technical experts are available to answer your questions and help solve your material challenges. Since our founding in 1964 as CERACTM incorporated, our goal has been to be more than a materials supplier. We offer our customers a wealth of knowledge and expertise in synthesizing new compounds. Our manufacturing facility contains the latest processing equipment and our ISO certified labs thoroughly analyze our materials to ensure desired composition, particle size measurements and purity designations. We are your partner for materials that advance the world’s technologies. 2 SPECIALTY MATERIALS MORE THAN A SUPPLIER, n Thin Film Coating Materials WE ARE YOUR R&D PARTNER n Optical Coating Materials n Wear-Resistant Coating Materials Materion’s primary mission is to assist you in the successful development of your materials n High Purity PVD and meet your most challenging requirements. To accomplish that, we offer a broad range n Materials for Thin Film Solar n Specialty Battery Materials of chemistries and capabilities. Our industry experts will determine the best manufacturing n Heavy Metals and analytical processes, and select the appropriate chemistry to produce optimal results. n Radioactive Materials n Phosphor Precursors Our choice will depend on the combination of material, particle size, final form and specific NEW PRODUCT characteristics to produce your unique product. DEVELOPMENT SMALL SCALE BENCH Our R&D department can develop a new product, and when you’re ready for market, CHEMISTRY Will partner with research facilities. can manufacture and deliver the production quantities you need – when you need them. Bench-to-full scale production You can count on your material to be manufactured consistently to your exact n Full R&D Department n Custom Development specifications whether for a small or high volume run. With our strong network of n Custom Alloys & Features technical support, we pride ourselves on our ability to be your quality-driven supplier for the life of your product. To order: call 414.289.9800 or email us at [email protected] 3 CHEMICAL PROCESSES MATERIAL EXPERTISE Our expert chemists and engineers Materion offers customers expertise in synthesizing new compounds, use numerous methods, including managing chemicals in controlled atmosphere environments, and meeting Wet Chemical Synthesis, Solid State their complex particle characteristic requirements. Synthesis and Reactive Gas Processing, to develop new materials and produce AIR & MOISTURE n Controlled Atmospheres established ones. SENSITIVE MATERIALS n Inert Atmosphere Manufacturing Wet Chemistry n Specialty & Custom Packaging n Precipitation Reactions n Rigorously Monitored Controls n Bottom-up Chemistry n Analysis of Sensitive Materials n Oxidation/Reduction Reactions n Purification Processes SPECIALTY n Phosphor Precursors CHEMISTRIES n Doping Reactions n High Purity n Stoichiometic & Non-Stoichiometic Reactive Gas Processes n n Multi Elemental Mixtures Halides, Nitrides, Oxides n n Challenging Chemistry & Phases Sublimation n Anion Exchange HAZARDOUS n Heavy Metals n Solid/Gas Phase Reactions MATERIALS n Radioactive Materials – Thorium Based High Temperature Synthesis n Cadmium, Arsenic, Lead n Binary & Ternary Compounds n Comprehensive Safety Controls n Heavy Metal Capabilities n Responsible Environmental Partner (Cd, As, Pb, Sb) n Sulfide, Selenide, Telluride Compounds n Borides, Carbides, Oxides, Silicides, n 50+ YEARS EXPERIENCE IN CORE INORGANIC CHEMICALS Fluorides n Calcinations n FORMERLY KNOWN AS CERAC INC. n Combustion Synthesis n 100+ YEARS EXPERIENCE WITH PRECIOUS METALS n Arc Fusion TECHNICAL SUPPORT We provide easy access to our technical experts (PhD scientists, chemists and engineers) who encompass a variety of competencies in R&D and prototype production. Vertical integration allows us to meet the accelerated pace of technical innovation in the industries we serve. Our full range of leading edge capabilities within a one-stop shop include: n Technical Assistance n Cycle Time Reduction n Product Improvement n Partnering with customers to assess specific needsw n Process Improvement 4 ANALYTICAL CAPABILITIES MATERIAL CUSTOMIZATION Access a broad range of analytical and testing facilities and state-of-the-art AND MANUFACTURING ISO-accredited labs. If a capability is not available in-house, we will partner We combine our extensive manufacturing with organizations that can provide it. We rigorously monitor vital characteristics technology and our employees’ wide- such as purity, density and homogeneity. The Certificate of Analysis provided ranging knowledge to provide the optimal with each shipment ensures that the final product meets or exceeds our inorganic chemical product for your customer’s exact specifications application. Materials are available in a wide variety of compositions and forms In-house Competencies specialized for our customers’ processes. Particle size distributions can be custom n Powder X-Ray Diffraction tailored to improve material performance n Elemental Analysis for specific applications. n ICP-MS, ICP-OES, DC Arc & Atomic Absorption n Classic Quantitative Wet Analytical Techniques Standard Forms n Combustion Analysis n Ingots n TGA/DTA n Rods n Specific Surface Area (BET) n Chunks n Particle Size n Pellets n Laser Diffraction, Mesh Size Analysis n Pieces Analyze for: n Powders n Element/compound concentration in a material Particle Size n Trace metal impurities (ppm) n Large Materials to Small Materials n Oxygen/nitrogen/carbon/sulfur content n Small Materials to Larger Materials n Average particle size, particle size distribution, and mesh size n Consolidation – hot press or cold press n Density n Crushing – jaw & roll n Crystal structure n Grinding/Milling – ball mills, grinding vibro- n Other characteristic tests upon request energy mills, mortar & pestle Quality Controls n Blending – V-Blender, cone blender, stir blender, ball mills, turbula blender, n ISO 9001 fluid medium blender n ISO 17025 Lab Accreditation n Sieving – hand
Recommended publications
  • Safety Data Sheet
    SAFETY DATA SHEET SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Name of the substance Lithium oxide (Li2O) Identification number 235-019-5 (EC number) Synonyms Lithium oxide (Li2O) * Dilithium oxide * LITHIUM OXIDE Document number 1LW Materion Code 1LW Issue date 30-September-2013 Version number 04 Revision date 11-January-2018 Supersedes date 14-July-2015 1.2. Relevant identified uses of the substance or mixture and uses advised against Identified uses Not available. Uses advised against None known. 1.3. Details of the supplier of the safety data sheet Supplier Company name Materion Advanced Chemicals Inc. Address 407 N. 13th Street 1316 W. St. Paul Avenue Milwaukee, WI 53233 United States Division Milwaukee Telephone 414.212.0257 e-mail [email protected] Contact person Noreen Atkinson 1.4. Emergency telephone number SECTION 2: Hazards identification 2.1. Classification of the substance or mixture The substance has been assessed and/or tested for its physical, health and environmental hazards and the following classification applies. Classification according to Regulation (EC) No 1272/2008 as amended Health hazards Skin corrosion/irritation Category 1B H314 - Causes severe skin burns and eye damage. Serious eye damage/eye irritation Category 1 Hazard summary Causes serious eye damage. 2.2. Label elements Label according to Regulation (EC) No. 1272/2008 as amended Contains: Lithium oxide Hazard pictograms None. Signal word None. Hazard statements H314 Causes severe skin burns and eye damage. Precautionary statements Prevention P280 Wear eye protection/face protection. Response P301 + P330 + P331 IF SWALLOWED: rinse mouth.
    [Show full text]
  • 221 Gaas GRADED A
    USOO6403874B1 (12) United States Patent (10) Patent No.: US 6,403,874 B1 Shakouri et al. (45) Date of Patent: *Jun. 11, 2002 (54) HIGH-EFFICIENCY HETEROSTRUCTURE OTHER PUBLICATIONS THERMONIC COOLERS N N. W. Ashcroft, et al., Solid State Physics, manual, 1976, pp. (75) Inventors: Ali Shakouri, Santa Cruz; John E. 318-319, 320-321, 362-363. Bowers, Santa Barbara, both of CA D. A. Broido et al., “Effect of Superlattice structure on the (US) th ermoelectriclectric fiIlgure OIf meril:t: , Theline Am erican PhPinySIca 1 Society (Physical Review B.), vol. 51, No. 19, May 15, (73) Assignee: The Regents of the University of 1995, pp. 13797-800. California, Oakland, CA (US) D. A. Broido et al., “Comment of Use of quantum well Superlattices to obtain high figure of merit from nonconven (*) Notice: Subject to any disclaimer, the term of this tional thermoelectric materials”, Appl. Phys. Lett. 63, 3230 patent is extended or adjusted under 35 (1993), Applied Physics Letters, vol. 67, No. 8, Aug. 21, U.S.C. 154(b) by 0 days. 1995, pp. 1170–1171. D. A. Broido et al., “Thermoelectric figure or merit of This patent is Subject to a terminal dis- quantum wire Superlattices”, Applied Physics Letters, Jul. 3, claimer. 1995, vol. 67, No. 1, 100-102. (21) Appl. No.: 09/441,787 (List continued on next page.) (22) Filed: Nov. 17, 1999 Primary Examiner—Bruce F. Bell ASSistant Examiner Thomas H Parsons Related U.S. Application Data (74) Attorney, Agent, or Firm-Gates & Cooper LLP (60) Pisional application No. 60/109,342, filed on Nov.
    [Show full text]
  • Effect of High Temperature on Wear Behavior of Stir Cast Aluminium
    Mechanics and Mechanical Engineering Vol. 22, No. 4 (2018) 1031{1046 c Technical University of Lodz https://doi.org/10.2478/mme-2018-0082 Effect of High Temperature on Wear Behavior of Stir Cast Aluminium/Boron Carbide Composites X. Canute and M. C. Majumder Department of Mechanical Engineering, National Institute of Technology, Durgapur, India Received (9 May 2018) Revised (11 December 2018) Accepted (20 December 2018) The need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investi- gation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning elec- tron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance. Keywords: PCM, enhancement melting, eccentric cylinders, fins, LHS. 1. Introduction Metal matrix composites are widely preferred due to yield strength and wear re- sistance for high temperature applications [1].
    [Show full text]
  • Experiments on the Oxidation of Boron Carbide at High Temperatures
    Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 6979 Experiments on the Oxidation of Boron Carbide at High Temperatures M. Steinbrück, A. Meier, U. Stegmaier, L. Steinbock Institut für Materialforschung Programm Nukleare Sicherheitsforschung Mai 2004 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 6979 Experiments on the Oxidation of Boron Carbide at High Temperatures M. Steinbrück, A. Meier, U. Stegmaier, L. Steinbock Institut für Materialforschung Programm Nukleare Sicherheitsforschung Forschungszentrum Karlsruhe GmbH, Karlsruhe 2004 Impressum der Print-Ausgabe: Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) ISSN 0947-8620 urn:nbn:de:0005-069792 OXIDATION VON BORKARBID BEI HOHEN TEMPERATUREN ZUSAMMENFASSUNG Borkarbid wird weltweit in verschiedenen Kernreaktoren als Absorbermaterial in Steuer- stäben eingesetzt. Während eines hypothetischen schweren Störfalls führen eutektische Wechselwirkungen zwischen B4C und den umgebenden Hüllrohren aus rostfreiem Stahl schon bei Temperaturen um 1200 °C und somit weit unterhalb der Schmelztemperaturen der einzelnen Komponenten zur Bildung von Schmelzphasen. Das so freigelegte Absorber- material sowie gebildete B4C/Metall-Schmelzen sind dem Dampf im Reaktor ausgesetzt. Die Oxidation von Borkarbid ist stark exotherm und führt zur Bildung von gasförmigen
    [Show full text]
  • Open Cyphersthesis FINAL.Pdf
    The Pennsylvania State University The Graduate School College of Engineering RESEARCH ON LOW FREQUENCY COMPOSITE TRANSDUCERS FABRICATED USING A SOL-GEL SPRAY-ON METHOD A Thesis in Engineering Science by Robert L. Cyphers c 2012 Robert L. Cyphers Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2012 The thesis of Robert L. Cyphers was reviewed and approved∗ by the following: Bernhard R. Tittmann Schell Professor of Engineering Science and Mechanics Thesis Advisor Clifford Lissenden Professor of Engineering Science and Mechanics Mark W. Horn Professor of Engineering Science and Mechanics Judith A. Todd Professor of Engineering Science and Mechanics // P. B. Breneman Department Head Head of the Department of Engineering Science and Mechanics ∗Signatures are on file in the Graduate School. Abstract Ultrasonic nondestructive evaluation is currently used in countless applications to maintain a system's operational integrity. Piezoelectric transducers are the devices commonly used in this field to search for defects. A sol-gel fabrication method utilizing a spray-on deposition method has proven to produce ultrasonic transducers useful in harsh environments. This procedure produces thin film transducers, which adhere directly to a substrate making it favorable in use with irregular surface geometries. These transducers operate at relatively high frequencies due to their minute thickness. The objective of this research is to investigate the ability for low frequency operation into the low kilohertz range. Depositing thicker layers of piezoelectric composites, including bismuth titanate and lead zirconate titanate, led to adhesion problems between the metal substrates and ceramic material. Delamination of the piezoelectric elements was determined to be caused by a large mismatch in thermal expansion coefficients.
    [Show full text]
  • High Temperature Ultrasonic Transducers: a Review
    sensors Review High Temperature Ultrasonic Transducers: A Review Rymantas Kazys * and Vaida Vaskeliene Ultrasound Research Institute, Kaunas University of Technology, Barsausko st. 59, LT-51368 Kaunas, Lithuania; [email protected] * Correspondence: [email protected] Abstract: There are many fields such as online monitoring of manufacturing processes, non-destructive testing in nuclear plants, or corrosion rate monitoring techniques of steel pipes in which measure- ments must be performed at elevated temperatures. For that high temperature ultrasonic transducers are necessary. In the presented paper, a literature review on the main types of such transducers, piezoelectric materials, backings, and the bonding techniques of transducers elements suitable for high temperatures, is presented. In this review, the main focus is on ultrasonic transducers with piezoelectric elements suitable for operation at temperatures higher than of the most commercially available transducers, i.e., 150 ◦C. The main types of the ultrasonic transducers that are discussed are the transducers with thin protectors, which may serve as matching layers, transducers with high temperature delay lines, wedges, and waveguide type transducers. The piezoelectric materi- als suitable for high temperature applications such as aluminum nitride, lithium niobate, gallium orthophosphate, bismuth titanate, oxyborate crystals, lead metaniobate, and other piezoceramics are analyzed. Bonding techniques used for joining of the transducer elements such as joining with glue, soldering,
    [Show full text]
  • Reactions of Lithium Nitride with Some Unsaturated Organic Compounds. Perry S
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1963 Reactions of Lithium Nitride With Some Unsaturated Organic Compounds. Perry S. Mason Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mason, Perry S. Jr, "Reactions of Lithium Nitride With Some Unsaturated Organic Compounds." (1963). LSU Historical Dissertations and Theses. 898. https://digitalcommons.lsu.edu/gradschool_disstheses/898 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 64—5058 microfilmed exactly as received MASON, Jr., Perry S., 1938- REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS. Louisiana State University, Ph.D., 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requireiaents for the degree of Doctor of Philosophy in The Department of Chemistry by Perry S. Mason, Jr. B. S., Harding College, 1959 August, 1963 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
    [Show full text]
  • UCLA UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Tetrides and Pnictides for Fast-Ion Conductors, Phosphor-Hosts, Structural Materials and Improved Thermoelectrics Permalink https://escholarship.org/uc/item/9068g8b2 Author Hick, Sandra Marie Publication Date 2013 Supplemental Material https://escholarship.org/uc/item/9068g8b2#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Tetrides and Pnictides for Fast-Ion Conductors, Phosphor-Hosts, Structural Materials and Improved Thermoelectrics A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Sandra Marie Hick 2013 ABSTRACT OF THE DISSERTATION Tetrides and Pnictides for Fast-Ion Conductors, Phosphor-Hosts, Structural Materials and Improved Thermoelectrics by Sandra Marie Hick Doctor of Philosophy in Chemistry University of California, Los Angeles, 2013 Professor Richard B. Kaner, Chair New routes to solid states materials are needed for discovery and the realization of improved reactions. By utilizing reactive approaches such as solid-state metathesis, pyrolysis, and nitride fluxes new routes to hard materials, phosphor hosts, and fast ion conductors were developed. The fast ion conductor lithium silicon nitride, Li2SiN2, was produced in a metathesis reaction between silicon chloride, SiCl4 and lithium nitride, Li3N, initiated in a conventional microwave oven. The Li2SiN2 produced had a conductivity of 2.70 x 10-3 S/cm at 500 °C. Colorless millimeter-sized crystals of Ca16Si17N34 were synthesized at high temperatures from a flux generated in situ from reaction intermediates. The ii compound was found to crystallize in the cubic space group F-43m (a = 14.8882 Å).
    [Show full text]
  • Synthesis and Characterization of Sral4o7:Eu Nanophosphors
    International Journal of NanoScience and Nanotechnology. ISSN 0974-3081 Volume 7, Number 1 (2016), pp. 57-61 © International Research Publication House http://www.irphouse.com Synthesis and Characterization of SrAl4O7:Eu Nanophosphors V.T. Jisha Research Centre, S.T. Hindu College, Nagercoil -629 002, Tamilnadu, India. Abstract Monoclinic Eu activated Strontium aluminate phosphor was successfully synthesized by a sol–gel method method at a relatively low temperature . The prepared samples were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and photoluminescence emission spectra (PL). The photoluminescence emission was obtained at 395 nm, 520 nm,790 nm corresponding to blue, green and IR region of the spectrum, respectively.The XRD analysis showed that SrAl4O7: Eu have monoclinic structure. Keywords: XRD, FTIR, SEM, sol–gel method , Photoluminescence. INTRODUCTION The scientific researches on phosphors have a long history going back to more than 100 years.The rare earths are a unique series of elements in so far as they have an inner shell of electrons which is not full. The 3d and 4d shells of the first and second transition series elements are also unfilled but they are admixed to some extent with the valence band permitting the d electrons to become involved in chemical bonding. In the rare earth elements (lanthanides),however the unfilled 4f shell is truly an inner shell and the 4f electrons play little part in chemical bonding. Optical properties of rare-earth ions in nanostructure materials have also been extensively studied,the life time emission,the quantum- efficiency and the concentration quenching are some of the crystallite size-dependent properties in these materials [1–5].
    [Show full text]
  • Application of Green Solvents for Rare Earth Element Recovery from Aluminate Phosphors
    minerals Article Application of Green Solvents for Rare Earth Element Recovery from Aluminate Phosphors Clive H. Yen * and Rui Cheong Department of Cosmetic Science, Providence University, Taichung City 43301, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-4-2632-8001 (ext. 15416) Abstract: Two processes applying green solvents for recovering rare earth elements (REEs) from different types of aluminate phosphors are demonstrated in this report. For magnesium aluminate- type phosphors, a pretreatment with peroxide calcination was implemented first, and then followed by a supercritical fluid extraction (SFE) process. Supercritical carbon dioxide (sc-CO2) provides an effective and green medium for extracting REEs from dry materials. With the addition of a complex agent, tri-n-butyl phosphate-nitric acid complex, highly efficient and selective extraction of REEs using supercritical carbon dioxide can be achieved. The highest extraction efficiency was 92% for europium from the europium doped barium magnesium aluminate phosphor (BAM), whereas the highest extraction selectivity was more than 99% for the REEs combined from the trichromatic phosphor. On the other hand, for strontium aluminate type phosphors, a direct acid leaching process is suggested. It was found out that acetic acid, which is considerably green, could have high recovery rate for dysprosium (>99%) and europium (~83%) from this strontium aluminate phosphor materials. Nevertheless, both green processes showed promising results and could have high potential for industrial applications. Citation: Yen, C.H.; Cheong, R. Keywords: rare earth elements; phosphors; supercritical carbon dioxide; aluminate; acid leaching Application of Green Solvents for Rare Earth Element Recovery from Aluminate Phosphors.
    [Show full text]
  • United States Patent (19) (11) 3,899,444 Stephens (45) Aug
    United States Patent (19) (11) 3,899,444 Stephens (45) Aug. 12, 1975 54 EXHAUST GAS CATALYST SUPPORT 75) Inventor: Ruth E. Stephens, Royal Oak, Mich. Primary Examiner-Carl F. Dees Attorney, Agent, or Firm-Donald L. Johnson; Robert 73) Assignee: Ethyl Corporation, Richmond, Va. A. Linn; Joseph D. Odenweller 22 Filed: Dec. 22, 1972 (21) Appl. No.: 317,831 57 ... ' ABSTRACT A thermally stable and attrition resistant catalyst sup Related U.S. Application Data port consisting essentially of an alumina coating on an 63 Continuation-in-part of Ser. No. 224,240, Feb. 7, inert substrate. The alumina coating has a rare earth 1972. metal oxide substantially uniformly distributed throughout. Catalyst compositions utilizing this sup 52 U.S. Cl.............. 252/455 R; 252/462; 252/463; port, processes for preparing both support and cata 252/471; 423/213.5 lyst, and a method of treating internal combustion en (51) Int. Cl..... B01j 11/40; B01j 1 1/06; B01j 1 1/32 gine exhaust gases and preventing crystallization of 58) Field of Search........ 252/462, 463, 455 R, 457; alumina are disclosed. Catalysts consisting essentially 423/213.5 of an alumina matrix containing rare earth metal oxide and a catalytic metal oxide are also disclosed. The 56 References Cited atom ratio of rare earth metal to aluminum in the sup UNITED STATES PATENTS port is 1:5.7-25. The atom ratio of catalytic metal to 3,284,370 1 1/1966 Clifford et al...................... 252/462 rare earth metal to aluminum in the catalysts is 3,554,929 1/1971 Aarons...............................
    [Show full text]
  • Us 2016/0017536A1 Tang
    US 2016.0017536A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0017536A1 TANG. et al. (43) Pub. Date: Jan. 21, 2016 (54) A TREATMENT PLATE FORA GARMENT (30) Foreign Application Priority Data TREATMENT APPLIANCE Apr. 2, 2013 (EP) .................................. 13161937.1 (71) Applicant: both the PHILIPS N.V., Publication Classification (51) Int. Cl. (72) Inventors: JIECONGTANG, EINDHOVEN (NL); D6F 75/38 (2006.01) YTSEN WIELSTRA, EINDHOVEN B5D3/00 (2006.01) (NL); YA LINGLEE, EINDHOVEN BOSDI/02 (2006.01) (NL); SABRINA MAY FONG KHOO, (52) U.S. Cl. EINDHOVEN (NL); LIHONG ZHAO, CPC D06F 75/38 (2013.01); B05D 1/02 (2013.01); EINDHOVEN (NL) B05D3/007 (2013.01) (57) ABSTRACT (73) Assignee: Koninklijke Philips N.V., Eindhoven The invention relates to a treatment plate (10) for a garment (NL) treatment appliance (100) for treating garments (30), which plate has a contact surface which is provided with a sol-gel (21) Appl. No.: 14/764,015 coating (20) that comprises an oxide of titanium, Zirconium, hafnium, Scandium, yttrium, or a mixture or combination (22) PCT Filed: Jan. 23, 2014 thereof. The layer preferably has a thickness of less than 1 lum. Such a layer shows excellent properties. A garment treatment (86). PCT No.: PCT/EP2014/051281 appliance comprising Such a treatment plate, as well as pro S371 (c)(1), cesses to produce the coating on the contact Surface of the (2) Date: Jul. 28, 2015 treatment plate are also disclosed. 1OO Patent Application Publication Jan. 21, 2016 Sheet 1 of 3 US 2016/0017536A1 E Patent Application Publication Jan.
    [Show full text]