Synthesis, Characterization and Energetic Performance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of High Temperature on Wear Behavior of Stir Cast Aluminium
Mechanics and Mechanical Engineering Vol. 22, No. 4 (2018) 1031{1046 c Technical University of Lodz https://doi.org/10.2478/mme-2018-0082 Effect of High Temperature on Wear Behavior of Stir Cast Aluminium/Boron Carbide Composites X. Canute and M. C. Majumder Department of Mechanical Engineering, National Institute of Technology, Durgapur, India Received (9 May 2018) Revised (11 December 2018) Accepted (20 December 2018) The need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investi- gation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning elec- tron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance. Keywords: PCM, enhancement melting, eccentric cylinders, fins, LHS. 1. Introduction Metal matrix composites are widely preferred due to yield strength and wear re- sistance for high temperature applications [1]. -
Experiments on the Oxidation of Boron Carbide at High Temperatures
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 6979 Experiments on the Oxidation of Boron Carbide at High Temperatures M. Steinbrück, A. Meier, U. Stegmaier, L. Steinbock Institut für Materialforschung Programm Nukleare Sicherheitsforschung Mai 2004 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 6979 Experiments on the Oxidation of Boron Carbide at High Temperatures M. Steinbrück, A. Meier, U. Stegmaier, L. Steinbock Institut für Materialforschung Programm Nukleare Sicherheitsforschung Forschungszentrum Karlsruhe GmbH, Karlsruhe 2004 Impressum der Print-Ausgabe: Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) ISSN 0947-8620 urn:nbn:de:0005-069792 OXIDATION VON BORKARBID BEI HOHEN TEMPERATUREN ZUSAMMENFASSUNG Borkarbid wird weltweit in verschiedenen Kernreaktoren als Absorbermaterial in Steuer- stäben eingesetzt. Während eines hypothetischen schweren Störfalls führen eutektische Wechselwirkungen zwischen B4C und den umgebenden Hüllrohren aus rostfreiem Stahl schon bei Temperaturen um 1200 °C und somit weit unterhalb der Schmelztemperaturen der einzelnen Komponenten zur Bildung von Schmelzphasen. Das so freigelegte Absorber- material sowie gebildete B4C/Metall-Schmelzen sind dem Dampf im Reaktor ausgesetzt. Die Oxidation von Borkarbid ist stark exotherm und führt zur Bildung von gasförmigen -
Surface Properties and Morphology of Boron Carbide Nanopowders Obtained by Lyophilization of Saccharide Precursors
materials Article Surface Properties and Morphology of Boron Carbide Nanopowders Obtained by Lyophilization of Saccharide Precursors Dawid Kozie ´n 1,* , Piotr Jele ´n 1 , Joanna St˛epie´n 2 , Zbigniew Olejniczak 3 , Maciej Sitarz 1 and Zbigniew P˛edzich 1,* 1 Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicz Av., 30-059 Kraków, Poland; [email protected] (P.J.); [email protected] (M.S.) 2 Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30 Mickiewicz Av., 30-059 Kraków, Poland; [email protected] 3 Institute of Nuclear Physics, 152 Radzikowskiego St., 31-342 Kraków, Poland; [email protected] * Correspondence: [email protected] (D.K.); [email protected] (Z.P.) Abstract: The powders of boron carbide are usually synthesized by the carbothermal reduction of boron oxide. As an alternative to high-temperature reactions, the development of the carbothermal reduction of organic precursors to produce B4C is receiving considerable interest. The aim of this work was to compare two methods of preparing different saccharide precursors mixed with boric acid with a molar ratio of boron to carbon of 1:9 for the synthesis of B4C. In the first method, aqueous ◦ ◦ solutions of saccharides and boric acid were dried overnight at 90 C and pyrolyzed at 850 C for 1 h under argon flow. In the second method, aqueous solutions of different saccharides and boric acid Citation: Kozie´n,D.; Jele´n,P.; were freeze-dried and prepared in the same way as in the first method. -
Comparing the Superconductivity of Mgb2 and Sr2ruo4
Comparing the superconductivity of MgB2 and Sr2RuO4 Etienne Palosa) (PHYS 232: Electronic Materials) The physical properties of two superconducting materials are compared in their normal and superconducting states. Their similarities and differences are reviewed in a systematic manner, beginning with a description of the unit cell. Structural, thermodynamic, electronic and magnetic properties are compared. In the super- conducting state, re compare the superconducting parameters of the materials and the effect on TC induced by physical or chemical changes to the systems. The sim- ilarities and differences between the conventional superconductor MgB2 and the unconventional superconductor Sr2RuO4 are discussed mainly within the context of experimental evidence reported in the literature. I. INTRODUCTION Some of the most important unresolved questions in condensed matter physics are re- lated to superconductivity. While the phenomena was observed over one-hundred years ago and an theory that explains conventional superconductivity has been established for the better half of a century, there is no unified theory of conventional and unconventional su- perconductivity. Or is there? However, through continuous theoretical, experimental and collaborative efforts, much has been learned about the physics of superconducting materi- als. The two main categories of superconductors are (i) conventional: those explained by the Bardeen{Cooper{Schrieffer (BCS) theory, and (ii) unconventional: materials whose su- perconducting mechanisms do not satisfy the conditions in BCS theory. In these materials, the superconducting mechanism is not phonon-mediated. In this work, a comparison of the physical properties of one conventional and one uncon- ventional superconductors is presented. On one hand, we have magnesium diboride, MgB2, a material whose superconductivity was discovered in 20011, decades after it's synthesis and crystal structure was first reported. -
Ceramic Carbides: the Tough Guys of the Materials World
Ceramic Carbides: The Tough Guys of the Materials World by Paul Everitt and Ian Doggett, Technical Specialists, Goodfellow Ceramic and Glass Division c/o Goodfellow Corporation, Coraopolis, Pa. Silicon carbide (SiC) and boron carbide (B4C) are among the world’s hardest known materials and are used in a variety of demanding industrial applications, from blasting-equipment nozzles to space-based mirrors. But there is more to these “tough guys” of the materials world than hardness alone—these two ceramic carbides have a profile of properties that are valued in a wide range of applications and are worthy of consideration for new research and product design projects. Silicon Carbide Use of this high-density, high-strength material has evolved from mainly high-temperature applications to a host of engineering applications. Silicon carbide is characterized by: • High thermal conductivity • Low thermal expansion coefficient • Outstanding thermal shock resistance • Extreme hardness FIGURE 1: • Semiconductor properties Typical properties of silicon carbide • A refractive index greater than diamond (hot-pressed sheet) Chemical Resistance Although many people are familiar with the Acids, concentrated Good Acids, dilute Good general attributes of this advanced ceramic Alkalis Good-Poor (see Figure 1), an important and frequently Halogens Good-Poor overlooked consideration is that the properties Metals Fair of silicon carbide can be altered by varying the Electrical Properties final compaction method. These alterations can Dielectric constant 40 provide knowledgeable engineers with small Volume resistivity at 25°C (Ohm-cm) 103-105 adjustments in performance that can potentially make a significant difference in the functionality Mechanical Properties of a finished component. -
The Formation and Reactivity of I BORON CARBIDE and Related
University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 1970 The Formation and Reactivity of BORON CARBIDE and related materials JONES, JAMES ALFRED http://hdl.handle.net/10026.1/1880 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. The Formation and Reactivity of I BORON CARBIDE and related materials A Thesis presented for the Research Degree of DOCTOR OF PHILOSOPHY of the COUNCIL FOR NATIONAL ACADEMIC AWARDS London by JAMES ALFRED JONES Department of Chemistry Plymouth Polytechnic Plymouth, Devon- February^ 1970o F'.V flCCH. i'iC. 1 CLASS, T Shi LJl JoH 13' ABSTRACT 1 The formation of boron carbide, (CBC)*B^^0*^(3^0 is re• viewed with special reference to newer production methods and fabrication techniques. Its crystal structure and the nature of its bonding are discussed in relation to those of other borides and carbides. Information so far available on the sintering of this material is summarised in relation to its reactivity. Sintering into monolithic compoaentBcan only be achieved by hot pressing at pressures between 200 and 300 Kgcm'^ and at temperatures above 2000°C preferably at about 2,300^0 for the most rapid achievement of theoretical density, i.e. -
Processing of Reaction-Bonded B4C–Sic Composites in a Single-Mode Microwave Cavity
Available online at www.sciencedirect.com CERAMICS INTERNATIONAL Ceramics International 39 (2013) 1215–1219 www.elsevier.com/locate/ceramint Processing of reaction-bonded B4C–SiC composites in a single-mode microwave cavity Anthony Thuaulta,n, Sylvain Marinela,b, Etienne Savarya,c, Romain Heugueta, Se´bastien Saunierc, Dominique Goeuriotc, Dinesh Agrawalb aCRISMAT Laboratory UMR 6508 CNRS-ENSICAEN-UCBN, 6 Boulevard du Mare´chal Juin, 14050 Caen Cedex, France bMaterials Research Institute, Materials Research Laboratory Building, The Pennsylvania State University, University Park, PA 16802, USA cDe´partement Me´canique et Proce´de´s d’e´laboration, Centre des Sciences des Mate´riaux et des Structures, Ecole Nationale Supe´rieure des Mines de Saint- Etienne, 42023 Saint-Etienne Cedex 2, France Received 5 July 2012; received in revised form 16 July 2012; accepted 16 July 2012 Available online 24 July 2012 Abstract In this study, the reaction sintering of boron carbide, which consists in doing reactive infiltration of molten silicon throughout a porous sample made of B4C and carbon graphite was investigated. Thus, it has been shown that a single-mode microwave cavity can be successfully used to produce reaction-bonded B4C–SiC composite. A specific package, consisting of a SiC based susceptor and a boron nitride based insulating container, was used to heat up the B4C–Si system using a single-mode microwaves cavity under an Ar–H2 atmosphere. Pore-free B4C–SiC composite successfully produced consists of a mixture of B4C and polygonal shaped b-SiC within a residual silicon matrix. The indentation technique permits to determine mechanical properties of the samples which are compared to those obtained conventionally. -
Pressure-Induced Phase Transitions and Superconductivity In
www.nature.com/scientificreports OPEN Pressure-induced phase transitions and superconductivity in magnesium carbides Sooran Kim1,2, Kyoo Kim 1,3,7, Jahyun Koo4, Hoonkyung Lee 4, Byung Il Min1 & Duck Young Kim5,6* Crystal structure prediction and in silico physical property observations guide experimental synthesis in high-pressure research. Here, we used magnesium carbides as a representative example of computational high-pressure studies. We predicted various compositions of Mg–C compounds up to 150 GPa and successfully reproduced previous experimental results. Interestingly, our proposed MgC2 at high pressure >7 GPa consists of extended carbon bonds, one-dimensional graphene layers, and Mg atomic layers, which provides a good platform to study superconductivity of metal intercalated graphene nano-ribbons. We found that this new phase of MgC2 could be recovered to ambient pressure and exhibited a strong electron-phonon coupling (EPC) strength of 0.6 whose corresponding superconductivity transition temperature reached 15 K. The EPC originated from the cooperation of the out-of-plane and the in-plane phonon modes. The geometry confnement and the hybridization between the Mg s and C pz orbitals signifcantly afect the coupling of phonon modes and electrons. These results show the importance of the high-pressure route to the synthesis of novel functional materials, which can promote the search for new phases of carbon-based superconductors. Carbon has attracted much attention as a key element of contemporary science and technology. It is even con- sidered as the most promising platform for emergent energy materials, which might be able to replace the current main player, silicon, in the near future. -
Electronic Structure of Superconducting Graphite
Electronic structure of superconducting graphite intercalate compounds: The role of the interlayer state G´abor Cs´anyi, P. B. Littlewood, Andriy H. Nevidomskyy, C. J. Pickard and B. D. Simons Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK (Dated: October 29, 2018) arXiv:cond-mat/0503569v2 [cond-mat.supr-con] 12 Sep 2005 1 Although not an intrinsic superconductor, it has been long–known that, when intercalated with certain dopants, graphite is capable of exhibiting supercon- ductivity [1]. Of the family of graphite–based materials which are known to superconduct, perhaps the most well–studied are the alkali metal–graphite in- tercalation compounds (GIC) [2] and, of these, the most easily fabricated is the C8K system [3] which exhibits a transition temperature Tc ≃ 0.14 K [2]. By increasing the alkali metal concentration (through high pressure fabrication techniques), the transition temperature has been shown to increase to as much as 5K in C2Na [4]. Lately, in an important recent development, Weller et al. have shown that, at ambient conditions, the intercalated compounds C6Yb and C6Ca exhibit superconductivity with transition temperatures Tc ≃ 6.5 K and 11.5 K respectively [5], in excess of that presently reported for other graphite– based compounds. We explore the architecture of the states near the Fermi level and identify characteristics of the electronic band structure generic to GICs. As expected, we find that charge transfer from the intercalant atoms to the graphene sheets results in the occupation of the π–bands. Yet, remarkably, in all those – and only those – compounds that superconduct, we find that an interlayer state, which is well separated from the carbon sheets, also becomes occupied. -
(12) Patent Application Publication (10) Pub. No.: US 2014/0287641 A1 Steiner, III (43) Pub
US 20140287641A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0287641 A1 Steiner, III (43) Pub. Date: Sep. 25, 2014 (54) LAYERED AEROGEL COMPOSITES, USPC ..... 442/223; 428/319.1; 428/319.3: 442/221; RELATED AEROGEL MATERIALS, AND 442/224; 442/320: 442/370; 442/373; 442/326; METHODS OF MANUFACTURE 428/314.2: 428/316.6: 442/372: 442/324; 428/317.1; 428/309.9; 428/221 (71) Applicant: Aerogel Technologies, LLC, Glendale, WI (US) (57) ABSTRACT (72) Inventor: Stephen A. Steiner, III, Cambridge, MA (US) Composites comprising aerogel materials are generally described. Layered aerogel composites may be of great utility (73) Assignee: Aerogel Technologies, LLC, Glendale, for a wide variety of applications including lightweight struc WI (US) tures, ballistic panels, multilayer thermal and acoustic insu lation, spacecraft reentry shielding, Supercapacitors, batter (21) Appl. No.: 14/214,887 ies, acoustic insulation, and flexible garments. Layered aerogel composites may be prepared by combing layers of (22) Filed: Mar 15, 2014 fiber-containing sheets and multisheet plies with aerogel materials. Composites comprising mechanically strong aero Related U.S. Application Data gels and reticulated aerogel structures are described. Various (60) Provisional application No. 61/799,460, filed on Mar. nanocomposite aerogel materials may be prepared to facili 15, 2013. tate production of composites with desirable functions and properties. Layered aerogel composites and related aerogel Publication Classification materials described in the present disclosure have not been previously possible due to a lack of viable aerogel formula (51) Int. C. tions, a lack of methods for adhering and joining aerogel B32B5/24 (2006.01) materials to each other and other materials, and a lack of B32B 9/00 (2006.01) methods that enable combining offibrous materials and aero B32B5/26 (2006.01) gels into layered structures in the same material envelope. -
Superconducting Properties of Graphene Doped Magnesium Diboride
10 Superconducting Properties of Graphene Doped Magnesium Diboride Xun Xu, Wenxian Li, Xiaolin Wang and Shi-Xue Dou University of Wollongong/ Institute for Superconducting and Electronic Materials Australia 1. Introduction Graphene, carbon in the form of monolayer sheets, has revealed astonishing and unique chemical and physical properties, which have made it an extremely active research topic in both materials science and physics (Novoselov, K. S. et al., 2004). Through chemical and materials integration, graphene is being actively exploited in a range of technological applications (Stankovich, S. et al., 2006). Superconductors can carry electrical current without any energy dissipation. The combination of both graphene and a superconductor into a composite has great potential for electrical devices and large scale applications. MgB2, a superconductor with a simple composition and two-gap feature has great potential for large current carrying applications, as demonstrated through a series of chemical dopings (Dou, S. X. et al. 2007). In the case of graphene’s, the strict two-dimensionality and its high electrical and thermal conductivities, make it an ideal candidate for integrating/doping into MgB2 in order to improve the superconducting properties. Substitutional chemistry can modify, in a controlled way, the electronic structures of superconductors and their superconducting properties, such as the transition temperature (Tc), critical current density (Jc), upper critical field (Hc2), and irreversibility field (Hirr). In particular, carbon containing dopants, including nano-meter sized carbon (nano-C), silicon carbide (SiC), carbon nanotubes (CNTs) and hydrocarbons/carbohydrates are effective means to enhance the Jc- field dependence and Hc2 (Ma, Y. et al., 2006, Senlowocz, B. -
Pressured-Induced Structural Phase Transition and Superconductivity in Nasn5
Pressured-induced structural phase transition and superconductivity in NaSn5 Chun-Mei Hao1, Yunguo Li1,2, Hong-Mei Huang1*, Yinwei Li1 and Yan-Ling Li1* 1. School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China 2. Department of Earth Sciences, UCL, Gower Street, London, WC1E 6BT, UK ABSTRACT: The structural and electronic properties of tin-rich compound NaSn5 were investigated under pressure up to 10 GPa based on the evolutionary algorithm (EA) technique coupled with first-principles total energy calculations. Upon compression, the known metallic tetragonal P-421m phase transforms into a metallic hexagonal P6/mmm phase at 1.85 GPa accompanied by an unusual change of existing form of Sn atoms. The P6/mmm phase can be interpreted as a quasi-layered sandwich structure with two Sn layers and one sodium layer. The presence of softening phonon modes and the existence of Fermi pockets together with the obvious Fermi surface nesting indicate a strong electron-phonon coupling (EPC) and thus potential superconductivity in P6/mmm phase. The strong EPC in P6/mmm phase is mainly attributed to the phonons from Sn1 atoms together with electrons from the Sn1-py and Sn1-pz states. The calculated superconducting critical temperature Tc of the P6/mmm phase is 5.91 K at 1.85 GPa. This study provides a new clue for designing intercalated compounds with superconductivity. 1 1. INTRODUCTION Study on the Na-Sn system started a century ago1, but the more concentrated study began in the 21st century. The study of phase formation and potential curves during sodium insertion has attracted many experimental and theoretical studies,2-5 because Na compounds with group IVA elements are considered to be a power source better than the widely used lithium-ion batteries (LIBS).