Comparing the Superconductivity of Mgb2 and Sr2ruo4

Total Page:16

File Type:pdf, Size:1020Kb

Comparing the Superconductivity of Mgb2 and Sr2ruo4 Comparing the superconductivity of MgB2 and Sr2RuO4 Etienne Palosa) (PHYS 232: Electronic Materials) The physical properties of two superconducting materials are compared in their normal and superconducting states. Their similarities and differences are reviewed in a systematic manner, beginning with a description of the unit cell. Structural, thermodynamic, electronic and magnetic properties are compared. In the super- conducting state, re compare the superconducting parameters of the materials and the effect on TC induced by physical or chemical changes to the systems. The sim- ilarities and differences between the conventional superconductor MgB2 and the unconventional superconductor Sr2RuO4 are discussed mainly within the context of experimental evidence reported in the literature. I. INTRODUCTION Some of the most important unresolved questions in condensed matter physics are re- lated to superconductivity. While the phenomena was observed over one-hundred years ago and an theory that explains conventional superconductivity has been established for the better half of a century, there is no unified theory of conventional and unconventional su- perconductivity. Or is there? However, through continuous theoretical, experimental and collaborative efforts, much has been learned about the physics of superconducting materi- als. The two main categories of superconductors are (i) conventional: those explained by the Bardeen{Cooper{Schrieffer (BCS) theory, and (ii) unconventional: materials whose su- perconducting mechanisms do not satisfy the conditions in BCS theory. In these materials, the superconducting mechanism is not phonon-mediated. In this work, a comparison of the physical properties of one conventional and one uncon- ventional superconductors is presented. On one hand, we have magnesium diboride, MgB2, a material whose superconductivity was discovered in 20011, decades after it's synthesis and crystal structure was first reported. This discovery represented a milestone in super- conductor physics, as at the time MgB2 had the highest TC for a (i) binary system and (ii) a non-Cuprate superconductor. A wave of studies followed, demonstrating that MgB2 is a BCS superconductor. We compare the properties of MgB2 with an unconventional superconductor, specifically a spin-triplet superconductor Sr2RuO4. With a similar history to magnesium diboride, Sr2RuO4 was synthesized decades earlier (1959) and it's supercon- ductivity wasn't discovered until 19942. Strontium ruthenate also made headlines, as it too, did not contain copper. In this sense, it is the first layered perovskite superconductor without copper. We aim to review and compare the properties of these two materials in a systematic yet pedagogical manner. II. PHYSICAL PROPERTIES IN THE NORMAL STATE A. Structure and Symmetry Magnesium diboride (MgB2) is hexagonal "omega" structure structured and crystallizes in the hexagonal P 6=mmm space group. The Mg atoms alternate or are "sandwiched" between hexagonal layers of B2. Mg is bonded to twelve equivalent B atoms to form a mixture of edge and face-sharing MgB12 cuboctahedra. All Mg{B bond lengths are ' a)Electronic mail: [email protected] 2 2.50 A.˚ B is bonded in a 9-coordinate geometry to six equivalent Mg and three equivalent B atoms. All B{B bond lengths are '1.77 A.˚ The unit cell of magnesium diboride is illustrated in Fig. 1 (a) and (b). Strontium ruthenate, Sr2RuO4, is (La, Ba)CuO4 structured (i.e. perovskite structured) + and crystallizes in the tetragonal I4=mmm space group. Sr2 is bonded in a 9-coordinate { geometry to nine O2 atoms. There are a spread of Sr{O bond distances ranging from ∼ + { 2.45{2.77 A.˚ Ru4 is bonded to six O2 atoms to form corner-sharing RuO6 octahedra. There are four shorter (1.95 A)˚ and two longer (2.10 A)˚ Ru{O bond lengths, and two { in-equivalent O2 sites as is the case with most perovskites. The unit cell of strontium ruthenate is illustrated in Fig. 1 (c) and (d). The crystallographic properties described here can be corroborated by downloading the publicly available crystallographic information .cif files and using a visualization software such as VESTA, or any other, and comparing to the information in the reviews used as main references for this special topic paper3,4. A comparison of their lattice parameters, density and a few mechanical properties are compared in Table I. While the structures themselves may not be responsible for the superconducting prop- erties of these two materials, they have been a motive for further investigation since, after all, the atomic arrangement of a given material is determined by its electronic structure. In the case of MgB2, for its simplicity and in the case of Sr2RuO4, because of it's intriguing relationship between spin parity and it's superconducting state. More on that later. TABLE I. Summary of structural and some mechanical properties of MgB2 and Sr2RuO4 in the normal state. ˚ ˚ ˚ g Compound Lattice Space Group a (A) b (A) c (A) ρ ( cm3 ) K (GPa) G (GPa) MgB2 Hexagonal P 6=mmm [191] 3.083 3.083 3.521 2.64 118 148 Sr2RuO4 Tetragonal I4=mmm [139] 7.017 7.017 7.017 5.75 108 53 FIG. 1. Illustrations of the crystal structure (conventional unit cell) is shown for both MgB2 (top panel) and Sr2RuO4 (lower panel). The unit cell is enclosed by solid black lines. We show the isostructural (a) and top (xy) in (b) of MgB2, and in (c) and (d) respectively for Sr2RuO4. Colors: Mb = orange, B = dark green; Sr = light green, Ru = grey, and O = red. Image prepared with VESTA. 3 B. Electronic Structure The structural and electronic properties of the materials under exam provide constraints on the superconducting properties. There electronic structure and of these systems has been investigated thoroughly, by means of different theoretical methods such as the Tight-Binding formalism, Density Functional Theory, Dynamical Mean Field Theory and others. Due to the volume of such studies, I will the reader to (in my opinion) representative references5,6. In Fig 2, we present the band structures of the materials side-to-side, along with their orbital decomposed density of states computed within the General Gradient Approximation (GGA) in Density Functional Theory. Here, we briefly discuss the band structure of the materials FIG. 2. Electronic band structure and spin-polarized density of states (DOS) of (a) MgB2 and (b) Sr2RuO4 computed by Kohn-Sham Density Functional Theory. Graphics publically avaible in the Materials Project database. in what is mostly a qualitative manner. This is to not lose generality and focus on technical details which may be specific to certain methodologies, yielding distinct quantitative results (e.g. LDA vs GGA vs DMFT). The band structure of magnesium diboride was reported well before it's superconduc- tivity was dsicovered, but the first "post-enlightenment" comprehensive first-principles in- vestigation of electronic structure and phonon coupling in MgB2 was reported by Mazin 6 and Antropov in 2001 , and refer to them for our discussion. The band structure of MgB2 resembles that of graphite, with three bonding σ bands which correspond to in-plane sp2 (spxpy) hybridization in the Boron honey-comb layer, and two bands, π; π∗ formed by hy- bridized pz orbitals. The main difference between MgB2 and graphite is that two σ bands are only partially filled. The band structure of Sr2RuO4 was first described by Tamio Oguchi shortly after the 5 discovery of it as a superconductor . He showed that Sr2RuO4 is a metal, with 12 energy bands that lye below -2 eV that correspond to the bonding states of the Ru d and O p orbitals, as well as O p non-bonding. Additionally, there are three bands that cross the Fermi energy, EF . These bands posses the antibonding character of the Ru dxz; dyz and dxy orbitals O p; π orbitals. Ultimately, the take away here is that, like in the cuprates, there exists strong dp hybridization due planar network structure. However, while these band structure calculations provide insight into the orbital nature of the material, and provides similarities and dissimilarities with related cuprates, id sheds no real insight into the superconducting mechanism of the system. Further theoretical modeling, including the proposal of effective Hamiltonians have been developed based on Oguchi's work. C. Vibrational Structure Understanding the vibrational properties of materials can provide insight into it's dynam- ical stability, thermal properties and the mechanism of superconductivity in the materials we are currently interested in. In Figure 3 we show the phonon dispersion (phonon band structure) in (a) and the phonon density of states in (b) for MgB2, and in the same order 4 (c) and (d) for Sr2RuO4. FIG. 3. Phonon dispersion bands (a) and phonon density of states (phDOS) (b) are shown for 7{10 MgB2, and in (c), (d) for Sr2RuO4 computed. Image adapted from Refs . III. PHYSICAL PROPERTIES IN THE SUPERCONDUCTING STATE A. Mechanisms of superconductivity To begin the discussion of their superconducting state properties, we will make references again to their electronic structure. Let us begin with the case of MgB2. There is experimental evidence that showcases the mechanism of superconductivity in 10 MgB2, beginning with the observation of a large different in TC between Mg B2 and 11 Mg B2. This difference, ∆TC ∼ 1K is known as the "isotope effect”. While we omit further details regarding the isotope effect coefficient (α), we highlight that in the case of MgB2 such a large isotope effect is a strong indicator that this system is a phonon- mediated superconductor. Particularly, it is the B phonon modes that are dominant for superconductivity, as there is strong coupling between the conduction electrons and the optical E2g optical phonon, where neighboring B-atoms move in opposite directions within the plane. A figure explicitly showing the isotope effect can be found in Ref4. This would classify MgB2 as a typical BCS superconductor, except for an added complexity of the boron phonon mode, which is anharmonic and the multi-band superconductivity of the material.
Recommended publications
  • Synthesis, Characterization and Energetic Performance
    SYNTHESIS, CHARACTERIZATION AND ENERGETIC PERFORMANCE OF METAL BORIDE COMPOUNDS FOR INSENSITIVE ENERGETIC MATERIALS by Michael L. Whittaker A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Master of Science Department of Materials Science and Engineering University of Utah May 2012 Copyright © Michael L. Whittaker 2012 All Rights Reserved The University of Utah Graduate School STATEMENT OF THESIS APPROVAL The thesis of Michael L. Whittaker has been approved by the following supervisory committee members: Raymond A. Cutler , Chair 03/09/2012 Date Approved Anil V. Virkar , Member 03/09/2012 Date Approved Gerald B. Stringfellow , Member 03/09/2012 Date Approved and by Feng Liu , Chair of the Department of Materials Science and Engineering and by Charles A. Wight, Dean of The Graduate School. ABSTRACT Six metal boride compounds (AlB2, MgB2, Al0.5Mg0.5B2, AlB12, AlMgB14 and SiB6) with particle sizes between 10-20 m were synthesized for insensitive energetic fuel additives from stoichiometric physical mixtures of elemental powders by high temperature solid state reaction. B4C was also investigated as a lower cost source of boron in AlB2 synthesis and showed promise as a boron substitute. Thermal analysis confirmed that the formation of boride compounds from physical mixtures decreased sensitivity to low temperature oxidation over the aluminum standard. Both Al+2B and AlB2 were much less sensitive to moisture degradation than aluminum in high humidity (10-100% relative humidity) and high temperature (20-80°C) environments. AlB2 was determined to be safe to store for extended periods of time in cool, dry environments.
    [Show full text]
  • Pressure-Induced Phase Transitions and Superconductivity In
    www.nature.com/scientificreports OPEN Pressure-induced phase transitions and superconductivity in magnesium carbides Sooran Kim1,2, Kyoo Kim 1,3,7, Jahyun Koo4, Hoonkyung Lee 4, Byung Il Min1 & Duck Young Kim5,6* Crystal structure prediction and in silico physical property observations guide experimental synthesis in high-pressure research. Here, we used magnesium carbides as a representative example of computational high-pressure studies. We predicted various compositions of Mg–C compounds up to 150 GPa and successfully reproduced previous experimental results. Interestingly, our proposed MgC2 at high pressure >7 GPa consists of extended carbon bonds, one-dimensional graphene layers, and Mg atomic layers, which provides a good platform to study superconductivity of metal intercalated graphene nano-ribbons. We found that this new phase of MgC2 could be recovered to ambient pressure and exhibited a strong electron-phonon coupling (EPC) strength of 0.6 whose corresponding superconductivity transition temperature reached 15 K. The EPC originated from the cooperation of the out-of-plane and the in-plane phonon modes. The geometry confnement and the hybridization between the Mg s and C pz orbitals signifcantly afect the coupling of phonon modes and electrons. These results show the importance of the high-pressure route to the synthesis of novel functional materials, which can promote the search for new phases of carbon-based superconductors. Carbon has attracted much attention as a key element of contemporary science and technology. It is even con- sidered as the most promising platform for emergent energy materials, which might be able to replace the current main player, silicon, in the near future.
    [Show full text]
  • Electronic Structure of Superconducting Graphite
    Electronic structure of superconducting graphite intercalate compounds: The role of the interlayer state G´abor Cs´anyi, P. B. Littlewood, Andriy H. Nevidomskyy, C. J. Pickard and B. D. Simons Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK (Dated: October 29, 2018) arXiv:cond-mat/0503569v2 [cond-mat.supr-con] 12 Sep 2005 1 Although not an intrinsic superconductor, it has been long–known that, when intercalated with certain dopants, graphite is capable of exhibiting supercon- ductivity [1]. Of the family of graphite–based materials which are known to superconduct, perhaps the most well–studied are the alkali metal–graphite in- tercalation compounds (GIC) [2] and, of these, the most easily fabricated is the C8K system [3] which exhibits a transition temperature Tc ≃ 0.14 K [2]. By increasing the alkali metal concentration (through high pressure fabrication techniques), the transition temperature has been shown to increase to as much as 5K in C2Na [4]. Lately, in an important recent development, Weller et al. have shown that, at ambient conditions, the intercalated compounds C6Yb and C6Ca exhibit superconductivity with transition temperatures Tc ≃ 6.5 K and 11.5 K respectively [5], in excess of that presently reported for other graphite– based compounds. We explore the architecture of the states near the Fermi level and identify characteristics of the electronic band structure generic to GICs. As expected, we find that charge transfer from the intercalant atoms to the graphene sheets results in the occupation of the π–bands. Yet, remarkably, in all those – and only those – compounds that superconduct, we find that an interlayer state, which is well separated from the carbon sheets, also becomes occupied.
    [Show full text]
  • High Pressure Study of High-Temperature Superconductors
    High Pressure Study of High-Temperature Superconductors Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung Vorgelegt von Sofia-Michaela Souliou aus Thessaloniki (Griechenland) Hauptberichter: Prof. Dr. Bernhard Keimer Mitberichter: Prof. Dr. Martin Dressel Tag der mündlichen Prüfung: 29 September 2014 Max-Planck-Institut für Festkörperforschung Stuttgart 2014 Contents Zusammenfassung in deutscher Sprache9 Introduction 13 1 High-Temperature Superconductors 17 1.1 Cuprate superconductors . 17 1.1.1 Crystal Structure and Carrier Doping . 17 1.1.2 Electronic Structure . 20 1.1.3 Phase diagram . 24 1.1.4 The YBa2Cu3O6+x and YBa2Cu4O8 systems . 37 1.1.5 High Pressure Effects . 43 1.2 Iron-based Superconductors . 47 1.2.1 Crystal Structure and Superconductivity . 47 1.2.2 Electronic Structure . 49 1.2.3 Phase Diagram . 52 1.2.4 The REFeAsO "1111" family . 57 1.2.5 High Pressure Effects . 59 2 Raman scattering 63 2.1 Overview of Inelastic Light Scattering . 63 2.2 Phononic Raman scattering . 65 2.2.1 Classical description of phononic Raman scattering . 65 2.2.2 Quantum mechanical description of phononic Raman scattering . 68 2.2.3 Phonon Interactions . 71 2.3 Phononic Raman scattering under high pressure . 75 2.4 The Raman spectrum of high-Tc cuprate and iron-based superconductors . 77 2.4.1 Raman modes of YBa2Cu3O6+x .................. 77 2.4.2 Raman modes of YBa2Cu4O8 ................... 84 2.4.3 Raman modes of REFeAsO1−xFx .................. 86 2.5 Analysis of the phononic Raman data . 89 5 Contents 3 Experimental Techniques 93 3.1 High Pressures and Low Temperatures .
    [Show full text]
  • Superconducting Properties of Graphene Doped Magnesium Diboride
    10 Superconducting Properties of Graphene Doped Magnesium Diboride Xun Xu, Wenxian Li, Xiaolin Wang and Shi-Xue Dou University of Wollongong/ Institute for Superconducting and Electronic Materials Australia 1. Introduction Graphene, carbon in the form of monolayer sheets, has revealed astonishing and unique chemical and physical properties, which have made it an extremely active research topic in both materials science and physics (Novoselov, K. S. et al., 2004). Through chemical and materials integration, graphene is being actively exploited in a range of technological applications (Stankovich, S. et al., 2006). Superconductors can carry electrical current without any energy dissipation. The combination of both graphene and a superconductor into a composite has great potential for electrical devices and large scale applications. MgB2, a superconductor with a simple composition and two-gap feature has great potential for large current carrying applications, as demonstrated through a series of chemical dopings (Dou, S. X. et al. 2007). In the case of graphene’s, the strict two-dimensionality and its high electrical and thermal conductivities, make it an ideal candidate for integrating/doping into MgB2 in order to improve the superconducting properties. Substitutional chemistry can modify, in a controlled way, the electronic structures of superconductors and their superconducting properties, such as the transition temperature (Tc), critical current density (Jc), upper critical field (Hc2), and irreversibility field (Hirr). In particular, carbon containing dopants, including nano-meter sized carbon (nano-C), silicon carbide (SiC), carbon nanotubes (CNTs) and hydrocarbons/carbohydrates are effective means to enhance the Jc- field dependence and Hc2 (Ma, Y. et al., 2006, Senlowocz, B.
    [Show full text]
  • Pressured-Induced Structural Phase Transition and Superconductivity in Nasn5
    Pressured-induced structural phase transition and superconductivity in NaSn5 Chun-Mei Hao1, Yunguo Li1,2, Hong-Mei Huang1*, Yinwei Li1 and Yan-Ling Li1* 1. School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China 2. Department of Earth Sciences, UCL, Gower Street, London, WC1E 6BT, UK ABSTRACT: The structural and electronic properties of tin-rich compound NaSn5 were investigated under pressure up to 10 GPa based on the evolutionary algorithm (EA) technique coupled with first-principles total energy calculations. Upon compression, the known metallic tetragonal P-421m phase transforms into a metallic hexagonal P6/mmm phase at 1.85 GPa accompanied by an unusual change of existing form of Sn atoms. The P6/mmm phase can be interpreted as a quasi-layered sandwich structure with two Sn layers and one sodium layer. The presence of softening phonon modes and the existence of Fermi pockets together with the obvious Fermi surface nesting indicate a strong electron-phonon coupling (EPC) and thus potential superconductivity in P6/mmm phase. The strong EPC in P6/mmm phase is mainly attributed to the phonons from Sn1 atoms together with electrons from the Sn1-py and Sn1-pz states. The calculated superconducting critical temperature Tc of the P6/mmm phase is 5.91 K at 1.85 GPa. This study provides a new clue for designing intercalated compounds with superconductivity. 1 1. INTRODUCTION Study on the Na-Sn system started a century ago1, but the more concentrated study began in the 21st century. The study of phase formation and potential curves during sodium insertion has attracted many experimental and theoretical studies,2-5 because Na compounds with group IVA elements are considered to be a power source better than the widely used lithium-ion batteries (LIBS).
    [Show full text]
  • Potential Application of Magnesium Diboride for Accelerator Magnet Applications*
    Proceedings of the 2001 Particle Accelerator Conference, Chicago POTENTIAL APPLICATION OF MAGNESIUM DIBORIDE FOR ACCELERATOR MAGNET APPLICATIONS* L. D. Cooley, C. B. Eom, E. E. Hellstrom, and D. C. Larbalestier Applied Superconductivity Center, University of Wisconsin, Madison, Wisconsin 53706 USA Abstract flux pinning is lost and the critical current density Jc falls This paper reviews the potential of the newly discov- to zero. The maximum operating points for magnets are ered and unexpected 39 K superconductor MgB2 as a ~0.8H* because of the need to have finite Jc in the material for accelerator magnet strands. Unlike the high windings. The irreversibility fields of Nb-Ti, Nb3Sn and temperature cuprate superconductors, intergranular cur- MgB2 as a function of temperature are shown in fig. 1. rent flow in MgB2 is not obstructed by weak links, Due to the finite thermal energy of the magnetic flux-line removing one serious obstacle to the fabrication of wires. lattice, all three materials have H* 10-15% below Hc2. 5 2 The critical current density Jc exceeds 10 A/cm in 1 T Nb47Ti magnets can thus reach ~9 T at 4.2 K while field at 4.2 K and in self-field at 20 K. However, the Nb3Sn magnets can reach 20 to 22 T at 4.2 K. In compound is anisotropic and the perpendicular upper principle, HTS and Chevrel-phase conductors can reach critical field Hc2 in present bulk samples is comparable to still higher fields; for example, Bi-2212 conductors were or less than that in Nb47wt.%Ti at 4.2 K.
    [Show full text]
  • Magnesium Diboride: Better Late Than Never
    Magnesium Diboride: Better Late than Never With a superconducting transition temperature of 40 K and simple compound of two abundant, in- two superconducting gaps, MgB is full of surprises for both expensive elements. The long sought- 2 after, high-temperature, intermetallic experimentalists and theorists. superconductor had finally made its appearance—better late than never. Although the initial interest in Paul C. Canfield and George W. Crabtree MgB2 arose solely from its high Tc, fur- ther work revealed that MgB2 breaks he heyday of research into the basic properties of in- new ground for superconductivity based on the well-known Ttermetallic superconductors took place between 1950 electron–phonon interaction. The material displays a and 1980. During those years, the number of known su- plethora of remarkable features. MgB2 not only has im- perconducting intermetallic compounds (consisting of sev- portant technological potential (figure 1 and the cover of eral metallic and metalloid elements) grew explosively, this issue show images of MgB2 wire), but also will have a lasting impact on how the research community looks at and superconducting transition temperatures Tc were and looks for superconductors. pushed to just over 23 K (Nb3Ge). (In comparison, the first superconductor, discovered by Heike Kamerlingh Onnes in The understanding of this material has grown at a whirlwind rate, driven by the immediacy of preprint post- 1911, was mercury, with Tc = 4.15 K). Research groups all ings on the Internet. The daily appearance of new research over the world searched for higher and higher Tc values. The researchers were motivated by a basic desire to find results brought theory and experiment into resonance and an intrinsic limiting temperature for this intriguing quan- dramatically accelerated progress in the international tum phase and by a very applied interest in making use- community.
    [Show full text]
  • Synthesis of Magnesium Diboride Superconductor with Cu Doping
    SYNTHESIS OF MAGNESIUM DIBORIDE SUPERCONDUCTOR WITH CU DOPING A Thesis Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Master of Science by Shihao Tian January 2015 ⃝c 2015 Shihao Tian ALL RIGHTS RESERVED ABSTRACT For this thesis, we are going to explore the method of fabricating Magnesium Diboride (MgB2) superconductor using Magnesium and Boron powder with Copper doping. The composition and structural analysis of our products are examined by X-ray diffrac- tion(XRD) and Scanning Electron Microscopy(SEM). Later, we also perform resistance vs. temperature measurements on our products to find out the critical temperature. Based on the results of XRD and SEM, we believe we have successfully fabricated MgB2 with Cu doping. The successful products are fabricated using LabTemp furnace heated at 800◦C and 900◦C for 12 hours under argon environment. Also, the superconduct- ing test suggests our products possess high quality, and the superconducting transition temperature is found at Tc=39K. In the end, we discuss briefly about the possibility of making superconducting cavity employing our method. i ACKNOWLEDGEMENTS This project is supervised by Prof.Pierre Gourdain and Prof.Georg Hoffsatetter. Sincere thanks to my supervisors for their guidance and encouragement. Also, this work made use of the Cornell Center for Materials Research Shared Facilities which are supported through the NSF MRSEC program (DMR-1120296). ii Contents Abstract i Acknowledgements ii List of Figuresv
    [Show full text]
  • Experimental Investigations of Magnesium Diboride Josephson Junctions
    Experimental Investigations of Magnesium Diboride Josephson Junctions A Thesis Submitted to the Faculty of Drexel University by Steven A. Carabello in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2016 c Copyright 2016 Steven A. Carabello. This work is licensed under the terms of the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International license. The license is available at http://creativecommons.org/licenses/by-nc-nd/4.0/. ii Acknowledgments As with any project spanning multiple years, I received help, encouragement, and support from many sources. The most direct help came from those who joined me in the ultra-low temperature laboratory at Drexel. I am especially thankful to have worked alongside Joey Lambert. We were a very effective team, and I am very grateful for his efforts. I also thank Dr. Roberto Ramos, for providing advice and support, pushes in the right direction, and for opening the world of condensed matter physics to me. Other students in the group, including Zechariah Thrailkill, Mariyan Stoyanov, Jerome Mlack, and Pubudu Galwaduge, made contributions without which I could not have achieved most of the results presented in this thesis. I am also very grateful to many others at Drexel. I thank the members of my committee for their service and support, and for keeping me on track: Dr. Bose, Dr. Barsoum, Dr. Penn, and Dr. Harb. Dr. Vogeley helped this part-time commuter student in maneuvering through all aspects of the physics graduate program. Maryann Fitzpatrick and Wolfgang Nadler were always available, encouraging, and able to help with hardware or technology of any kind.
    [Show full text]
  • Scanning Tunneling Microscopy Study on Strongly Correlated Materials
    Scanning Tunneling Microscopy Study on Strongly Correlated Materials The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation He, Yang. 2016. Scanning Tunneling Microscopy Study on Strongly Correlated Materials. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:26718719 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Scanning Tunneling Microscopy Study on Strongly Correlated Materials a dissertation presented by Yang He to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Physics Harvard University Cambridge, Massachusetts June 2015 ©2014 – Yang He all rights reserved. Thesis advisor: Professor Jennifer E. Hoffman Yang He Scanning Tunneling Microscopy Study on Strongly Correlated Materials Abstract Strongly correlated electrons and spin-orbit interaction have been the two major research direc- tions of condensed matter physics in recent years. The discovery of high temperature superconduc- tors in 1986 not only brought excitement into the field but also challenged our theory on quantum materials. After almost three decades of extensive study, the underlying mechanism of high temper- ature superconductivity is still not fully understood, the reason for which is mainly a poor under- standing of strongly correlated systems. The phase diagram of cuprate superconductors has become more complicated throughout the years as multiple novel electronic phases have been discovered, while few of them are fully understood.
    [Show full text]
  • A Quantum Critical Point at the Heart of High Temperature Superconductivity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo A quantum critical point at the heart of high temperature superconductivity B. J. Ramshaw,1 S. E. Sebastian,2 R. D. McDonald,1 James Day,3 B. Tan,2 Z. Zhu,1 J.B. Betts,1 Ruixing Liang,3, 4 D. A. Bonn,3, 4 W. N. Hardy,3, 4 and N. Harrison1 1Mail Stop E536, Los Alamos National Labs, Los Alamos, NM 87545∗ 2Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, U.K 3Department of Physics and Astronomy, University of British Columbia, Vancouver V6T 1Z4, Canada 4Canadian Institute for Advanced Research, Toronto M5G 1Z8, Canada (Dated: April 27, 2014) 1 In the quest for superconductors with high transition temperatures (Tc s), one emerging motif is that unconventional superconductivity is enhanced by fluc- tuations of a broken-symmetry phase near a quantum-critical point. While re- cent experiments have suggested the existence of the requisite broken symmetry phase in the high-Tc cuprates, the signature of quantum-critical fluctuations in the electronic structure has thus far remained elusive, leaving their importance for high-Tc superconductivity in question. We use magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa2Cu3O6+δ over an unprecedented range of doping, and magnetic quantum oscillations reveal a strong enhancement in the quasiparticle effective mass toward optimal doping. This mass enhancement is a characteristic signature of quantum criticality, and identifies a quantum-critical point at pcrit ≈ 0:18. This point also represents the juncture of the vanishing pseudogap energy scale and the disappearance of Kerr rotation, the negative Hall coefficient, and the recently observed charge order, suggesting a mechanism of high-Tc that is strongest when these definitive exper- imental signatures of the underdoped cuprates converge at a quantum critical point.
    [Show full text]