(12) Patent Application Publication (10) Pub. No.: US 2014/0287641 A1 Steiner, III (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2014/0287641 A1 Steiner, III (43) Pub US 20140287641A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0287641 A1 Steiner, III (43) Pub. Date: Sep. 25, 2014 (54) LAYERED AEROGEL COMPOSITES, USPC ..... 442/223; 428/319.1; 428/319.3: 442/221; RELATED AEROGEL MATERIALS, AND 442/224; 442/320: 442/370; 442/373; 442/326; METHODS OF MANUFACTURE 428/314.2: 428/316.6: 442/372: 442/324; 428/317.1; 428/309.9; 428/221 (71) Applicant: Aerogel Technologies, LLC, Glendale, WI (US) (57) ABSTRACT (72) Inventor: Stephen A. Steiner, III, Cambridge, MA (US) Composites comprising aerogel materials are generally described. Layered aerogel composites may be of great utility (73) Assignee: Aerogel Technologies, LLC, Glendale, for a wide variety of applications including lightweight struc WI (US) tures, ballistic panels, multilayer thermal and acoustic insu lation, spacecraft reentry shielding, Supercapacitors, batter (21) Appl. No.: 14/214,887 ies, acoustic insulation, and flexible garments. Layered aerogel composites may be prepared by combing layers of (22) Filed: Mar 15, 2014 fiber-containing sheets and multisheet plies with aerogel materials. Composites comprising mechanically strong aero Related U.S. Application Data gels and reticulated aerogel structures are described. Various (60) Provisional application No. 61/799,460, filed on Mar. nanocomposite aerogel materials may be prepared to facili 15, 2013. tate production of composites with desirable functions and properties. Layered aerogel composites and related aerogel Publication Classification materials described in the present disclosure have not been previously possible due to a lack of viable aerogel formula (51) Int. C. tions, a lack of methods for adhering and joining aerogel B32B5/24 (2006.01) materials to each other and other materials, and a lack of B32B 9/00 (2006.01) methods that enable combining offibrous materials and aero B32B5/26 (2006.01) gels into layered structures in the same material envelope. (52) U.S. C. Aerogel composites described herein enable specific capa CPC. B32B5/245 (2013.01); B32B5/26 (2013.01); bilities that have not been previously possible with aerogels B32B 9/007 (2013.01); B32B 2262/02 or through other means, for example, the ability to efficiency (2013.01); B32B 2262/106 (2013.01); B32B slow impacts from bullets and other ballistic bodies using a 2266/06 (2013.01); B32B 2266/0214 (2013.01); lightweight (<2 g/cm density) material, bear load as struc B32B 2307/54 (2013.01); B32B 2307/72 tural members at a fraction of the weight of conventional (2013.01); B32B 2571/02 (2013.01); B32B technologies, or simultaneously serve as a structural or flex 2307/30 (2013.01); B32B 2307/558 (2013.01) ible material that stores electrical energy. Exploded View With Multilayer Plies Exploded View With Single-Sheet Plies Patent Application Publication Sep. 25, 2014 Sheet 1 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 2 of 23 US 2014/0287641 A1 f Patent Application Publication Sep. 25, 2014 Sheet 3 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 4 of 23 US 2014/0287641 A1 8 w S Patent Application Publication Sep. 25, 2014 Sheet 5 of 23 US 2014/0287641 A1 S : Patent Application Publication Sep. 25, 2014 Sheet 6 of 23 US 2014/0287641 A1 s Patent Application Publication Sep. 25, 2014 Sheet 7 of 23 US 2014/0287641 A1 S. & & S S. S. 3 S. S. f f f f N Patent Application Publication Sep. 25, 2014 Sheet 8 of 23 US 2014/0287641 A1 ZE 63 92 63 83 09 Patent Application Publication Sep. 25, 2014 Sheet 9 of 23 US 2014/0287641 A1 99 28 6(61-) Patent Application Publication Sep. 25, 2014 Sheet 10 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 11 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 12 of 23 US 2014/0287641 A1 S. Patent Application Publication Sep. 25, 2014 Sheet 13 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 14 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 15 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 16 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 17 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 18 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 19 of 23 US 2014/0287641 A1 se st f a -- f 6 Patent Application Publication Sep. 25, 2014 Sheet 20 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 21 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 22 of 23 US 2014/0287641 A1 Patent Application Publication Sep. 25, 2014 Sheet 23 of 23 US 2014/0287641 A1 US 2014/0287641 A1 Sep. 25, 2014 LAYERED AEROGEL COMPOSITES, aerogel composites with good flexibility may serve as useful RELATED AEROGEL MATERIALS, AND insulation for garments. In other embodiments, layered aero METHODS OF MANUFACTURE gel composites are highly effective ballistic materials useful for bullet-proof vests, armored vehicle cladding, and ener CROSS-REFERENCED TO RELATED getic flames or jets. In some embodiments, layered aerogel APPLICATIONS composites may be useful in space applications including 0001. This application claims priority to U.S. Provisional micrometeoroid/space debris protection and vehicle reentry Application No. 61/799,460 filed Mar. 15, 2013, entitled shielding. In further embodiments, layered aerogel compos “LAYERED AEROGEL COMPOSITES, RELATED ites may serve as high stiffness-to-weight ratio materials Suit AEROGEL MATERIALS, AND METHODS OF MANU able for lightweight structures, aircraft and automotive parts, FACTURE. the entire contents of which is incorporated and high-performance sports equipment. herein by reference in its entirety. 0009. In an embodiment, a structure is provided. The structure includes bonded alternating layers of at least an BACKGROUND aerogel material and at least one of a fibrous sheet, a plastic sheet, a plastic plate, a ceramic sheet, a ceramic plate, and a 0002 1. Field multilayerply, the multilayer ply comprising multiple fibrous 0003 Aspects herein relate to layered composites of aero sheets bonded together. gel materials and non-aerogel materials (e.g., fibrous sheets 0010. In another embodiment, a structure is provided. The and laminates), uses thereof, and methods of preparation. For structure includes alternating layers of aerogel material example, the composites may include mechanically strong wherein said layers are bonded to each other. composites with multifunctional properties. 0011. In another embodiment, a structure is provided. The 0004 2. Discussion of Related Art structure includes alternating layers of aerogel material 0005 Aerogels are a diverse class of low-density solid wherein said layers are joined to each other by an array of materials comprised of a porous three-dimensional network oriented nanostructures. of interconnected nanostructures. Aerogels often exhibit a 0012. In yet another embodiment, a method for fabricating wide array of desirable materials properties including high a layered aerogel composite is provided. The method includes specific Surface area, low bulk density, high specific strength providing a first layer, the layer comprising at least a fibrous and stiffness, low thermal conductivity, and low dielectric sheet or a multilayer laminate; applying a second layer to the constant, among others. Certain aerogel compositions may first layer, the layer comprising an aerogel material; applying combine several of these properties into the same material a third layer to the second layer, the layer comprising another envelope and may thus be advantageous for applications fibrous sheet or multilayer laminate; bonding or joining the including thermal insulation, acoustic insulation, lightweight first layer to the second layer, and bonding or joining the structures, impact damping, electrodes, catalysts and catalyst second layer to the third layer. Supports, and sensors. 0013. In another embodiment, a method for fabricating a 0006 Laminated fiber-based composites are another class layered aerogel composite is provided. The method includes of materials with numerous materials properties advantages providing a first layer, the layer comprising at least a fibrous including high specific strength and stiffness, tailorable sheet or a multilayer laminate; applying a second layer to the mechanical properties, high specific energy absorption, and first layer, the layer comprising a liquid-phase gel precursor; in some cases good electrical and thermal conductivity. Lami applying a third layer to the second layer, the layer compris nated composites of various types are used in numerous appli ing another fibrous sheet or multilayer laminate; bonding or cations including aerospace structures, boat hulls, bicycle joining the first layer to the second layer, and bonding or frames, high-performance sports equipment, and aircraft joining the second layer to the third layer. brake pads. 0014. In yet another embodiment, a method for fabricating a layered aerogel composite is provided. The method includes SUMMARY providing two layers of aerogel material, each aerogel mate 0007. The present disclosure relates generally to compos rial exhibiting a modulus greater than about 1 MPa, and ites of aerogel materials and non-aerogel materials such as bonding the two layers together. fibrous sheets and/or laminated plies. The inventor has appre 0015. In another embodiment, a method for fabricating a ciated that by combining certain aerogel materials and non layered aerogel composite is provided. The method includes aerogel materials into laminar configurations, composites providing a liquid-phase precursor, contacting with an array with advantages not attainable by either component sepa of orientated nanostructures; forming a gel from said liquid rately can be achieved. In some cases, the resulting compos phase precursor; and forming a second gel in contact with the ite, through an effective linear weighted average of the mate array of orientated nanostructures.
Recommended publications
  • Effect of High Temperature on Wear Behavior of Stir Cast Aluminium
    Mechanics and Mechanical Engineering Vol. 22, No. 4 (2018) 1031{1046 c Technical University of Lodz https://doi.org/10.2478/mme-2018-0082 Effect of High Temperature on Wear Behavior of Stir Cast Aluminium/Boron Carbide Composites X. Canute and M. C. Majumder Department of Mechanical Engineering, National Institute of Technology, Durgapur, India Received (9 May 2018) Revised (11 December 2018) Accepted (20 December 2018) The need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investi- gation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning elec- tron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance. Keywords: PCM, enhancement melting, eccentric cylinders, fins, LHS. 1. Introduction Metal matrix composites are widely preferred due to yield strength and wear re- sistance for high temperature applications [1].
    [Show full text]
  • Experiments on the Oxidation of Boron Carbide at High Temperatures
    Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 6979 Experiments on the Oxidation of Boron Carbide at High Temperatures M. Steinbrück, A. Meier, U. Stegmaier, L. Steinbock Institut für Materialforschung Programm Nukleare Sicherheitsforschung Mai 2004 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 6979 Experiments on the Oxidation of Boron Carbide at High Temperatures M. Steinbrück, A. Meier, U. Stegmaier, L. Steinbock Institut für Materialforschung Programm Nukleare Sicherheitsforschung Forschungszentrum Karlsruhe GmbH, Karlsruhe 2004 Impressum der Print-Ausgabe: Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) ISSN 0947-8620 urn:nbn:de:0005-069792 OXIDATION VON BORKARBID BEI HOHEN TEMPERATUREN ZUSAMMENFASSUNG Borkarbid wird weltweit in verschiedenen Kernreaktoren als Absorbermaterial in Steuer- stäben eingesetzt. Während eines hypothetischen schweren Störfalls führen eutektische Wechselwirkungen zwischen B4C und den umgebenden Hüllrohren aus rostfreiem Stahl schon bei Temperaturen um 1200 °C und somit weit unterhalb der Schmelztemperaturen der einzelnen Komponenten zur Bildung von Schmelzphasen. Das so freigelegte Absorber- material sowie gebildete B4C/Metall-Schmelzen sind dem Dampf im Reaktor ausgesetzt. Die Oxidation von Borkarbid ist stark exotherm und führt zur Bildung von gasförmigen
    [Show full text]
  • Synthesis, Characterization and Energetic Performance
    SYNTHESIS, CHARACTERIZATION AND ENERGETIC PERFORMANCE OF METAL BORIDE COMPOUNDS FOR INSENSITIVE ENERGETIC MATERIALS by Michael L. Whittaker A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Master of Science Department of Materials Science and Engineering University of Utah May 2012 Copyright © Michael L. Whittaker 2012 All Rights Reserved The University of Utah Graduate School STATEMENT OF THESIS APPROVAL The thesis of Michael L. Whittaker has been approved by the following supervisory committee members: Raymond A. Cutler , Chair 03/09/2012 Date Approved Anil V. Virkar , Member 03/09/2012 Date Approved Gerald B. Stringfellow , Member 03/09/2012 Date Approved and by Feng Liu , Chair of the Department of Materials Science and Engineering and by Charles A. Wight, Dean of The Graduate School. ABSTRACT Six metal boride compounds (AlB2, MgB2, Al0.5Mg0.5B2, AlB12, AlMgB14 and SiB6) with particle sizes between 10-20 m were synthesized for insensitive energetic fuel additives from stoichiometric physical mixtures of elemental powders by high temperature solid state reaction. B4C was also investigated as a lower cost source of boron in AlB2 synthesis and showed promise as a boron substitute. Thermal analysis confirmed that the formation of boride compounds from physical mixtures decreased sensitivity to low temperature oxidation over the aluminum standard. Both Al+2B and AlB2 were much less sensitive to moisture degradation than aluminum in high humidity (10-100% relative humidity) and high temperature (20-80°C) environments. AlB2 was determined to be safe to store for extended periods of time in cool, dry environments.
    [Show full text]
  • Surface Properties and Morphology of Boron Carbide Nanopowders Obtained by Lyophilization of Saccharide Precursors
    materials Article Surface Properties and Morphology of Boron Carbide Nanopowders Obtained by Lyophilization of Saccharide Precursors Dawid Kozie ´n 1,* , Piotr Jele ´n 1 , Joanna St˛epie´n 2 , Zbigniew Olejniczak 3 , Maciej Sitarz 1 and Zbigniew P˛edzich 1,* 1 Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicz Av., 30-059 Kraków, Poland; [email protected] (P.J.); [email protected] (M.S.) 2 Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30 Mickiewicz Av., 30-059 Kraków, Poland; [email protected] 3 Institute of Nuclear Physics, 152 Radzikowskiego St., 31-342 Kraków, Poland; [email protected] * Correspondence: [email protected] (D.K.); [email protected] (Z.P.) Abstract: The powders of boron carbide are usually synthesized by the carbothermal reduction of boron oxide. As an alternative to high-temperature reactions, the development of the carbothermal reduction of organic precursors to produce B4C is receiving considerable interest. The aim of this work was to compare two methods of preparing different saccharide precursors mixed with boric acid with a molar ratio of boron to carbon of 1:9 for the synthesis of B4C. In the first method, aqueous ◦ ◦ solutions of saccharides and boric acid were dried overnight at 90 C and pyrolyzed at 850 C for 1 h under argon flow. In the second method, aqueous solutions of different saccharides and boric acid Citation: Kozie´n,D.; Jele´n,P.; were freeze-dried and prepared in the same way as in the first method.
    [Show full text]
  • Ceramic Carbides: the Tough Guys of the Materials World
    Ceramic Carbides: The Tough Guys of the Materials World by Paul Everitt and Ian Doggett, Technical Specialists, Goodfellow Ceramic and Glass Division c/o Goodfellow Corporation, Coraopolis, Pa. Silicon carbide (SiC) and boron carbide (B4C) are among the world’s hardest known materials and are used in a variety of demanding industrial applications, from blasting-equipment nozzles to space-based mirrors. But there is more to these “tough guys” of the materials world than hardness alone—these two ceramic carbides have a profile of properties that are valued in a wide range of applications and are worthy of consideration for new research and product design projects. Silicon Carbide Use of this high-density, high-strength material has evolved from mainly high-temperature applications to a host of engineering applications. Silicon carbide is characterized by: • High thermal conductivity • Low thermal expansion coefficient • Outstanding thermal shock resistance • Extreme hardness FIGURE 1: • Semiconductor properties Typical properties of silicon carbide • A refractive index greater than diamond (hot-pressed sheet) Chemical Resistance Although many people are familiar with the Acids, concentrated Good Acids, dilute Good general attributes of this advanced ceramic Alkalis Good-Poor (see Figure 1), an important and frequently Halogens Good-Poor overlooked consideration is that the properties Metals Fair of silicon carbide can be altered by varying the Electrical Properties final compaction method. These alterations can Dielectric constant 40 provide knowledgeable engineers with small Volume resistivity at 25°C (Ohm-cm) 103-105 adjustments in performance that can potentially make a significant difference in the functionality Mechanical Properties of a finished component.
    [Show full text]
  • The Formation and Reactivity of I BORON CARBIDE and Related
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 1970 The Formation and Reactivity of BORON CARBIDE and related materials JONES, JAMES ALFRED http://hdl.handle.net/10026.1/1880 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. The Formation and Reactivity of I BORON CARBIDE and related materials A Thesis presented for the Research Degree of DOCTOR OF PHILOSOPHY of the COUNCIL FOR NATIONAL ACADEMIC AWARDS London by JAMES ALFRED JONES Department of Chemistry Plymouth Polytechnic Plymouth, Devon- February^ 1970o F'.V flCCH. i'iC. 1 CLASS, T Shi LJl JoH 13' ABSTRACT 1 The formation of boron carbide, (CBC)*B^^0*^(3^0 is re• viewed with special reference to newer production methods and fabrication techniques. Its crystal structure and the nature of its bonding are discussed in relation to those of other borides and carbides. Information so far available on the sintering of this material is summarised in relation to its reactivity. Sintering into monolithic compoaentBcan only be achieved by hot pressing at pressures between 200 and 300 Kgcm'^ and at temperatures above 2000°C preferably at about 2,300^0 for the most rapid achievement of theoretical density, i.e.
    [Show full text]
  • Processing of Reaction-Bonded B4C–Sic Composites in a Single-Mode Microwave Cavity
    Available online at www.sciencedirect.com CERAMICS INTERNATIONAL Ceramics International 39 (2013) 1215–1219 www.elsevier.com/locate/ceramint Processing of reaction-bonded B4C–SiC composites in a single-mode microwave cavity Anthony Thuaulta,n, Sylvain Marinela,b, Etienne Savarya,c, Romain Heugueta, Se´bastien Saunierc, Dominique Goeuriotc, Dinesh Agrawalb aCRISMAT Laboratory UMR 6508 CNRS-ENSICAEN-UCBN, 6 Boulevard du Mare´chal Juin, 14050 Caen Cedex, France bMaterials Research Institute, Materials Research Laboratory Building, The Pennsylvania State University, University Park, PA 16802, USA cDe´partement Me´canique et Proce´de´s d’e´laboration, Centre des Sciences des Mate´riaux et des Structures, Ecole Nationale Supe´rieure des Mines de Saint- Etienne, 42023 Saint-Etienne Cedex 2, France Received 5 July 2012; received in revised form 16 July 2012; accepted 16 July 2012 Available online 24 July 2012 Abstract In this study, the reaction sintering of boron carbide, which consists in doing reactive infiltration of molten silicon throughout a porous sample made of B4C and carbon graphite was investigated. Thus, it has been shown that a single-mode microwave cavity can be successfully used to produce reaction-bonded B4C–SiC composite. A specific package, consisting of a SiC based susceptor and a boron nitride based insulating container, was used to heat up the B4C–Si system using a single-mode microwaves cavity under an Ar–H2 atmosphere. Pore-free B4C–SiC composite successfully produced consists of a mixture of B4C and polygonal shaped b-SiC within a residual silicon matrix. The indentation technique permits to determine mechanical properties of the samples which are compared to those obtained conventionally.
    [Show full text]
  • Effect of the Addition of Carbon on the Sintering Properties of Boron Carbide Ceramics Prepared by Pressureless Sintering
    3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015) Effect of the Addition of Carbon on the Sintering Properties of Boron Carbide Ceramics prepared by Pressureless Sintering Xiumei Shi1,2a*, Jianwu Cao2b, Zhipeng Li2c, Dongming Yan2d 1,2a* Northwestern Polytechnical University, Xi’an ,710072 China [email protected] Ningbo Branch of China Academy of Ordnance Science, Ningbo,315103 China 2b Ningbo Branch of China Academy of Ordnance Science, Ningbo,315103 China, [email protected] 2c Ningbo Branch of China Academy of Ordnance Science, Ningbo,315103 China, [email protected] 2d Ningbo Branch of China Academy of Ordnance Science, Ningbo,315103 China, [email protected] Keywords: Boron carbide; Pressureless Sintering; Carbon; Densification. Abstract. Effect of the addition of carbon on the sintering properties of pressureless sintered boron carbide ceramics was investigated by using carbon black and phenolic resins as the main additives. There were three ways for adding Carbon, carbon black adding, phenolic resins adding and adding carbon black and phenolic resins mixtures . The density and microstructure of sintered B4C ceramics were analyzed by densitometer and optical microscope respectively. The effect on the densification of B4C ceramics by different content and adding method of carbon were analyzed and summarized. The results showed that the B4C ceramics has the optimum properties, that bulk density , bending strength, hardness and fracture toughness achieve 2.42g/cm3,335MPa,22Gpa and 3.17 Mpa•m1/2, respectively under the adding the mixture of 5.5%, carbon black and 1.5%, phenolic resins. Introduction B4C materials have been widely used in the fields of nuclear power industry, bombproof armour, military and other high-tech industries due to its excellent physical and chemical properties.
    [Show full text]
  • Model Creation and Electronic Structure Calculation Of
    MODEL CREATION AND ELECTRONIC STRUCTURE CALCULATION OF AMORPHOUS HYDROGENATED BORON CARBIDE A THESIS IN Physics Presented to the F c!"ty o# the Uni$ersity o# Misso!ri%& ns s City in p rti " f!"#i""(ent o# the re)!ire(ents for the de*ree MASTER OF SCIENCE +y MOHAMMED BELHAD, LARBI B. S., Uni$ersity o# H ssi+ Ben%Bo! "i Ch"e#, A"*eri , 2010 M. S., Uni$ersity o# H ssi+ Ben%Bo! "i Ch"e#, A"*eri , 201/ & ns s City, Misso!ri /012 2015 MO HAMMED BELHADJ LARBI ALL RIGHTS RESERVED MODEL CREATION AND ELECTRONIC STRUCTURE CALCULATION OF AMORPHOUS HYDROGENATED BORON CARBIDE Moh ((ed Be"h dj L r+i, C ndid te for the M ster o# Science De*ree Uni$ersity o# Misso!ri%& ns s City, 2012 ABSTRACT Boron%rich so"ids re o# *re t interest #or ( ny ''"ic tions, ' rtic!" r"y. (or'ho!s hydro*en ted +oron c r+ide 5 %BC6H7 thin #i"(s re "e din* c ndid te #or n!(ero!s ''"ic tions s!ch s6 heterostr!ct!re ( teri "s, ne!tron detectors, nd 'hoto$o"t ic ener*y con$ersion. Des'ite this i('ortance, the "oc " str!ct!r " 'roperties o# these ( teri "s re not 8e""%9no8n, nd $ery #e8 theoretic " st!dies #or this # (i"y o# disordered so"ids e:ist in the "iter t!re. In order to opti(i;e this ( teri " #or its 'otenti " ''"ic tions the str!ct!re 'roperty re" tionshi's need to +e disco$ered.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Low Temperature Synthesis of Boron Carbide Using a Polymer Precursor Powder Route
    School of Metallurgy and Materials MRes in the Science and Engineering of Materials Paul Murray Low Temperature Synthesis of Boron Carbide Using a Polymer Precursor Powder Route September 2010 – September 2011 1 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. This report is submitted in fulfilment of the requirements for the degree of MRes in the Science and Engineering of Materials. Acknowledgements The University of Birmingham Dr. Isaac Chang Dr. Lucian Falticeanu Synopsis Boron carbide has a leading role in high performance applications due to its extreme hardness, low density, high melting point, high Young’s modulus, great resistance to chemical agents, excellent thermoelastic and thermoelectric properties and high corrosion and oxidation resistance. Due to its excellent properties it has many high performance applications including; body and vehicle armour, abrasive powder, nuclear applications and aerospace applications. Currently, boron carbide is commercially produced by a carbothermal reduction process. This involves the carbon reduction of boric acid by heating in an electric heating furnace. However, the process has many associated problems, including: Considerable amount of free carbon residue in the final product.
    [Show full text]
  • Boron Nanoparticle - the Least Studied Nanoparticle
    1 Boron Nanoparticle - The Least Studied Nanoparticle Materials Chemistry Scientific Research Review Article Nida Tabassum Khan1*, Muhammad Jibran Khan2 *Correspondence author 1Department of Biotechnology, Faculty of Life Sciences and Nida Tabassum Khan Informatics, Balochistan University of Information Technology Department of Biotechnology Engineering and Management Sciences, (BUITEMS), Quetta, Faculty of Life Sciences and Informatics Pakistan. Balochistan University of Information Technology Engineering and Management Sciences(BUITEMS) 2Department of Electrical Engineering, Faculty of Information Quetta and Communication Technology, Balochistan. Balochistan Pakistan University of Information Technology Engineering and Management Sciences, (BUITEMS), Quetta, Pakistan Submitted : 7 July 2020 ; Published : 5 Aug 2020 Abstract Boron is the least understood metalloid of group III in the periodic table that is present in small quantity in the meteoroids however uncombined boron also exists naturally on earth. Besides being an essential micronutrient in human diet, Boron nanoparticles possess high thermal and electrical resistance which makes it suitable to be used in thermoelectric reactors, nuclear reactors and thermal control devices. Keywords: Metalloid; Catalysts; Amorphous; Vapor phase; Electrolytic condensation; Mechanochemical Introduction The chemical element boron is an essential trace element Amorphous boron nanoparticle that is required in the living metabolism of humans, animals This form of boron nanoparticle is white in color
    [Show full text]