A New Look at Old Bread: Ancient Egyptian Baking Delwen Samuel

Total Page:16

File Type:pdf, Size:1020Kb

A New Look at Old Bread: Ancient Egyptian Baking Delwen Samuel ARCHAEOLOGY INTERNATIONAL triangles. Sometimes they were formed A new look at old bread: into more elaborate shapes, such as human or animal figures. The crusts are sometimes ancient Egyptian baking decorated with incisions, !:!rick marks and Delwen Samuel raised strips. Occasionally the marks of fin­ gers and hands can be distinguished, giving Despite abundant archaeological, pictorial and textual evidence a little hint of the baker who made them. of ancient Egyptian life and death, we have little detailed infor­ By observing a loaf with simple magni­ mation about the staple diet ofmost of the population. No w exper­ fication we can detect what is in it: inten­ imental work by a postdoctoral We llcome Research Fellow in tional ingredients such as flour, cracked grain and flavouring; as well as unwel­ Bioarchaeology at the Institute is revealing how the ancient come additions such as chaff, grit and ash. Egyptians made their daily bread. Among flavourings added were dates, figs and coriander seeds. The cereal most com­ he most famous accomplish­ excavated in houses, estates, temples, and, monly identified in the loaves that still sur­ ment of the ancient Egyptians recently, in a complex associated with the vive is emmer wheat, which today is very was probably pyramid build­ Giza pyramids. Bread loaves or magical rarely grown. However, emmer was one of T ing, an activity that required representations of bread were commonly the first plants to be domesticated and it skill and imagination. So why included in burials, as part of the essential became one of the staples of human diet, are the builders of the pyramids thought to provisions for the journey to the afterlife. especially for farmers living in the temp­ have subsisted on coarse, chaffy, gritty Model loaves, which probably functioned erate Old World. Emmer and barley were bread? Many Egyptologists have portrayed as military ration records, have been recov­ virtually the only cereals that the ancient this dietary staple ofthe ancient Egyptians ered from ancient forts. Egyptians grew, and emmer was one of as a food of very poor quality. It has even their most important crops. been blamed for rapidly wearing down Ancient loaves Because emmer is so seldom cultivated Egyptian teeth. Previously, most research­ Surviving loaves of bread provide the best today and is unfamiliar to many people, ers have drawn conclusions about ancient evidence for ancient Egyptian baking (Fig. most of those who have studied ancient Egyptian bread from tomb art and a few 1). They are often in excellent condition, Egyptian bread have not appreciated how examples of surviving bread loaves, but because they have been preserved by com­ much it differs fr om bread wheat, the recent archaeological research has estab­ plete desiccation in Egypt's arid climate. cereal now normally used for baking. lished that ancient Egyptians could be as Most loaves have been found in tombs and Emmer is a hulled wheat, in which the good at baking as they were at building.1 burial sites, although a few examples are grains are enclosed by tough scale-like A study of Egyptian baking has value known from settlements. They are rare and bracts that, when threshed, produce a lot of beyond satisfying curiosity about an are held in museums scattered throughout chaff. Its ears have two main characteris­ ancient foodstuff. Together with beer, bread the world, but there are probably a few tics that make it more difficult to process was one of the most important ancient hundred altogether. than bread wheat, which is not hulled and Egyptian foods. All members of society ate Examination of a well preserved bread which threshes freely (Fig. 2). The central bread and it was one of the most important loaf yields much information about how it stalk of the emmer ear breaks apart fairly offerings to the gods. From harvested crop was made. Ancient Egyptian loaves come in easily, but the chaffy bracts surrounding to final product, bread preparation was a a wealth of sizes and shapes. Often they are the grain are very tough and hard to daily activity that occupied much of the simply disks or low oblong mounds, but remove. In contrast, the stalk of the bread­ population. Breadmaking thus played a bread was also made into cones, craters and wheat ear is tough but the chaff falls away central role in many aspects of Egyptian life, and an understanding of bread pro­ duction reveals much about how this ancient society worked. There is abundant archaeological evi­ dence of bread production. Bread ovens and cereal processing tools have been Figure 1 An ancient Egyp tian disk loaf (maximum diameter 14 cm) of the Ninth Fi gure 2 Threshed hulled wh eat (left) and free-threshing wh eat (righ t). Th e threshed Dyn asty (c. 1500 BC}, now at the Ashmolean hulled wh eat ear falls apart into spikelets whereas the chaffof fre e-threshing wh eat fa lls Museum, Oxford (m useum no. 1921.1395). cleanly away from the grain. 28 ARCHAEOLOGY INTERNATIONAL A process similar to de-husking emmer desiccated. In these circumstances plant is the preparation of Turkish bulghur, or remains can be recovered from different cracked wheat, from which the bran (the places where they were dropped in the thin covering that surrounds the kernel) course of various activities. In one ancient has been removed. Different types of wheat house of the Amarna village, a mortar was can be used and in some Turkish villages discovered set into the corner of a room the old method of de-branning is still prac­ (Fig. 4). Scattered on the floor around the tised (Fig. 3). Mortars and mallets are used mortar was a large quantity of emmer chaff. and the grain is wetted prior to pounding. It ranges from complete spikelets still con­ The result is whole grain with the bran taining the grain, to whole spikelets with stripped off, just as de-husking emmer pro­ no grain inside, to shredded chaff frag­ duces whole grain with the chaff stripped ments. This is precisely the scattered away. Although not precisely the same remains one would expect to result from process, bulghur-making provides a useful pounding whole spikelets in a mortar with parallel that helps us to understand emmer a wooden pestle. de-husking. One difference between the mortars used in ancient Egyptian and most mortars Archaeological evidence used now or in the recent past is that the Is today's method of emmer de-husking former were much smaller. This may have similar to that used by the ancient Egyp­ been because, unlike traditional Turkish tians? The archaeological record suggests processing, emmer pounding in ancient that it is. Shallow stone mortars are com­ Egypt was done in the household, not as a monly excavated from ancient Egyptian communal village activity. Large stone Figure 3 Women in a Turkish village de­ houses. In exceptional, very arid, condi­ mortars are very heavy and difficult to branning grain for bulgh ur using a large tions, even complete wooden pestles have move. These common household tools had stone mortar and wooden mallets, 1991. been recovered. What makes the connec­ to be reasonably transportable for ordinary tion between the mortars and emmer de­ people to obtain and install them. One way readily. When bread wheat is threshed, it husking secure is the evidence of plant of investigating how the small mortars is easy to free the grain from the ear, but remains from the site of Amarna, an affected emmer processing, and indeed of when emmer is threshed the ear falls apart ancient Egyptian city some 230 km south of confirming whether the shredded emmer into little packets which are known as Cairo that dates from about 1350 BC. found in the plant remains could have spikelets. They consist of the grain tightly Part of the site of Amarna consists of a been produced in them, is through exper­ enclosed in chaff. Skilled extra work is village located about 2 km from the Nile imental replication. needed to break up the chaff to free the flood plain, in the highly arid eastern grain without crushing it. desert. Here, plant remains have been Experiments with emmer In ancient Egypt, cereal processing had recovered in abundance, preserved by processing to be carried out by hand with relatively desiccation. Those found on archaeologi­ Many of the stone tools excavated at simple technology, and the best way to cal sites have usually been preserved by Amarna are in excellent condition and find out how this was accomplished is by charring through contact with fire (e.g. they presented an ideal opportunity to try investigating how emmer is processed tra­ around ovens), which arrests their decay. experimental reconstruction of emmer ditionally today. Under arid conditions no such intermedi­ processing. The equipment made from ary process is needed to preserve plant organic materials, such as wooden pestles Ethnographic examples of fragments, which survive because they are and wooden and grass sieves, is not robust traditional cereal processing Although emmer is now rare, it could until recently be found under cultivation in some remote mountainous areas in Europe, Tur­ key and Ethiopia. The number of farmers who cultivate emmer continues to shrink and traditional processing practices are dying out even more quickly. Fortunately, some records have been kept of how emmer used to be treated, and a few com­ munities still employ traditional tech­ niques of cereal processing. In many areas where emmer was grown, the chaff was removed by pounding the spikelets in wooden or stone mortars with wooden pestles or mallets. The key to the process is wetting the spikelets first.
Recommended publications
  • Identification of Cereal Remains from Archaeological Sites 2Nd Edition 2006
    Identification of cereal remains from archaeological sites 2nd edition 2006 Spikelet fork of the “new glume wheat” (Jones et al. 2000) Stefanie JACOMET and collaborators Archaeobotany Lab IPAS, Basel University English translation partly by James Greig CEREALS: CEREALIA Fam. Poaceae /Gramineae (Grasses) Systematics and Taxonomy All cereal species belong botanically (taxonomically) to the large family of the Gramineae (Poaceae). This is one of the largest Angiosperm families with >10 000 different species. In the following the systematics for some of the most imporant taxa is shown: class: Monocotyledoneae order: Poales familiy: Poaceae (= Gramineae) (Süssgräser) subfamily: Pooideae Tribus: Triticeae Subtribus: Triticinae genera: Triticum (Weizen, wheat); Aegilops ; Hordeum (Gerste; barley); Elymus; Hordelymus; Agropyron; Secale (Roggen, rye) Note : Avena and the millets belong to other Tribus. The identification of prehistoric cereal remains assumes understanding of different subject areas in botany. These are mainly morphology and anatomy, but also phylogeny and evolution (and today, also genetics). Since most of the cereal species are treated as domesticated plants, many different forms such as subspecies, varieties, and forms appear inside the genus and species (see table below). In domesticates the taxonomical category of variety is also called “sort” (lat. cultivar, abbreviated: cv.). This refers to a variety which evolved through breeding. Cultivar is the lowest taxonomic rank in the domesticated plants. Occasionally, cultivars are also called races: e.g. landraces evolved through genetic isolation, under local environmental conditions whereas „high-breed-races“ were breed by strong selection of humans. Anyhow: The morphological delimitation of cultivars is difficult, sometimes even impossible. It needs great experience and very detailed morphological knowledge.
    [Show full text]
  • Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt
    fermentation Article Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt Alice Fujita, Senay Simsek and Paul B. Schwarz * Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; [email protected] (A.F.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +1-701-231-7732 Received: 25 November 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: There have been tremendous marketing efforts and consumer interest in the so-called ancient grains. Einkorn, emmer and spelt, which are sometimes referred to as ancient wheats, are frequently included in this category, and have gained some attention among brewers. The objective of the current study was to compare the malting behavior and quality of einkorn, emmer and spelt cultivars obtained from the same growing environment. Aside from standard malt quality traits, the levels of β-amylase, protease, xylanase, wort arabinoxylans and wort phenolic acids were measured. While protein levels of the samples were higher (11.4–14.0%) than normally selected for wheat malt, the results indicated that malts of acceptable quality in terms of extract and amylolytic activity can be prepared from the three grain types. However, the ideal malting protocol will likely differ between the grains. The kernels of einkorn are significantly smaller, and steep hydration and malt modification are quicker. In terms of potential health benefits from antioxidant capacity and dietary fiber, wort from einkorn trended to higher levels of free and conjugated ferulic acid, as well as high-molecular-weight arabinoxylan. Keywords: arabinoxylan; brewing; einkorn; enzyme activity; emmer; malt; phenolic acid; spelt; and sprouting 1.
    [Show full text]
  • Wholesale Grains & Flours
    Grains and Flours IN OUR REGION Available through Greenmarket’s wholesale distribution arm, Greenmarket Co. Prices and complete product list given upon request. Buckwheat* High in amino acids and vitamins. Best as toasted whole groats, or “kasha.” Flour is best for pan- cakes, crepes, biscuits, soba noodles. Cornmeal & Polenta* Made with flint, or “Indian” corn, and dent corn. Einkorn An “ancient grain,” high in protein content and min- erals. Best for cooking whole and using flour for pancakes and crackers. Emmer (Farro) An “ancient grain,” best as a cooked Wholesale grain and for pasta and flat breads. Freekeh Wheat that is harvested green and roasted. Toasted, mildly sweet flavor. High in protein, minerals and Grains fiber, very low in gluten. Best in soups and stews. Oats* Rolled or cracked, flour upon request. Rye Low gluten, bold, assertive flavor. Blended with wheat Mission Driven Food. & Flours for bread. Grains can be cooked whole or as cracked rye. Spelt An “ancient grain,” low gluten, high protein content. Flour used for bread, pasta, crackers. Triticale A wheat-rye hybrid. High protein, low gluten. Best for breads, pancakes, crackers. Contact us for more information. Wheat flours Whole and sifted, all-purpose & pastry For wholesale inquires: flour, special blends [email protected] % Hard wheat, or “bread flour” Higher protein content, The Greenmarket Regional Grains Project best for baking bread. For more information on grains: is helping re-establish grain production in the Northeast. % Soft wheat, or “pastry flour” Lower protein content, [email protected] Greenmarket’s customers, both wholesale and retail, are best for pastry and flat breads.
    [Show full text]
  • The Macrobotanical Evidence for Vegetation in the Near East, C. 18 000/16 000 B.C to 4 000 B.C
    University of Pennsylvania ScholarlyCommons University of Pennsylvania Museum of University of Pennsylvania Museum of Archaeology and Anthropology Papers Archaeology and Anthropology 1997 The Macrobotanical Evidence for Vegetation in the Near East, c. 18 000/16 000 B.C to 4 000 B.C. Naomi F. Miller University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/penn_museum_papers Part of the Near Eastern Languages and Societies Commons Recommended Citation Miller, N. F. (1997). The Macrobotanical Evidence for Vegetation in the Near East, c. 18 000/16 000 B.C to 4 000 B.C.. Paléorient, 23 (2), 197-207. http://dx.doi.org/10.3406/paleo.1997.4661 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/penn_museum_papers/36 For more information, please contact [email protected]. The Macrobotanical Evidence for Vegetation in the Near East, c. 18 000/16 000 B.C to 4 000 B.C. Abstract Vegetation during the glacial period, post-glacial warming and the Younger Dryas does not seem to have been affected by human activities to any appreciable extent. Forest expansion at the beginning of the Holocene occurred independently of human agency, though early Neolithic farmers were able to take advantage of improved climatic conditions. Absence of macrobotanical remains precludes discussion of possible drought from 6,000 to 5,500 ВС. By farming, herding, and fuel-cutting, human populations began to have an impact on the landscape at different times and places. Deleterious effects of these activities became evident in the Tigris-Euphrates drainage during the third millennium ВС based on macrobotanical evidence from archaeological sites.
    [Show full text]
  • Black Chaff of Wheat Stephen N
    ® ® University of Nebraska–Lincoln Extension, Institute of Agriculture and Natural Resources Know how. Know now. G1672 (Revised December 2012) Black Chaff of Wheat Stephen N. Wegulo, Extension Plant Pathologist widely distributed bacterial disease of small grains and can Cause, symptoms, disease cycle, and management cause yield losses of up to 40 percent. of black chaff of wheat. Cause and Symptoms Black chaff is a bacterial disease of wheat common in Black chaff is caused by the bacterium Xanthomonas irrigated fields or in areas with abundant rainfall during the campestris pathovar (pv.) undulosa. The disease derives its growing season. It is also known as bacterial stripe or bacte- name from the darkened glumes of infected plants (Figure rial leaf streak. The disease also occurs on barley, oats, rye, 1A). This symptom is similar to that caused by genetic triticale, and many grasses. It is the most important and most melanism (darkening of tissue) and glume blotch incited by Stagonospora nodorum. Black chaff can be distinguished from other diseases by the appearance of cream to yellow bacterial ooze in the form of slime or viscous droplets produced on infected plant parts during wet or humid weather. This ooze appears light colored and scale-like when dry. Bands of necrotic and healthy tissue on awns (“barber’s pole” appearance) are indicative of black chaff. A dark brown to purple discoloration may appear on the stem below the head and above the flag leaf (Figure 1B). On leaves, symptoms start as small water-soaked spots or streaks that turn brown after a few days.
    [Show full text]
  • And Modern Wheat Species (Durum and Common Wheat)
    foods Article Comparative Study on Gluten Protein Composition of Ancient (Einkorn, Emmer and Spelt) and Modern Wheat Species (Durum and Common Wheat) Sabrina Geisslitz 1, C. Friedrich H. Longin 2, Katharina A. Scherf 1,3,* and Peter Koehler 4 1 Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany 2 State Plant Breeding Institute, University of Hohenheim, Fruwirthstraße 21, 70599 Stuttgart, Germany 3 Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany 4 biotask AG, Schelztorstrasse 54-56, 73728 Esslingen am Neckar, Germany * Correspondence: [email protected] Received: 16 August 2019; Accepted: 6 September 2019; Published: 12 September 2019 Abstract: The spectrophotometric Bradford assay was adapted for the analysis of gluten protein contents (gliadins and glutenins) of spelt, durum wheat, emmer and einkorn. The assay was applied to a set of 300 samples, including 15 cultivars each of common wheat, spelt, durum wheat, emmer and einkorn cultivated at four locations in Germany in the same year. The total protein content was equally influenced by location and wheat species, however, gliadin, glutenin and gluten contents were influenced more strongly by wheat species than location. Einkorn, emmer and spelt had higher protein and gluten contents than common wheat at all four locations. However, common wheat had higher glutenin contents than einkorn, emmer and spelt resulting in increasing ratios of gliadins to glutenins from common wheat (< 3.8) to spelt, emmer and einkorn (up to 12.1). With the knowledge that glutenin contents are suitable predictors for high baking volume, cultivars of einkorn, emmer and spelt with good predicted baking performance were identified.
    [Show full text]
  • Wheat Cleaning Basics
    Goal in Wheat Cleaning • Remove Non-Wheat Material – Metal – Foreign Material (Debris) – Stones – Grains other than wheat (soybean, corn, sorghum,… etc. – Weed Seeds • Remove Wheat not-fit for Milling – Shrunken & Broken – Diseased & Damaged Non-Wheat Material Wheat not-fit for Milling Shrunken/Shriveled Diseased- Scab Insect Damaged Black Tip (color defect) Ergot Heat Damaged Physical Properties of Common Impurities • Impurities are separated from wheat based physical differences which aid their removal. • Magnetic properties • Flow in air properties • Size and shape • Density • Friability (easily broken by impact) • Surface characteristics (color and texture) Wheat Cleaning System Cleaning System Design Principle 1. Eliminate impurities that pose a significant health and safety risk first. – Ferrous Metal (grain dust explosion hazard). – Grain Dust (explosion risk, health/safety risk). 2. Eliminate impurities which impact downstream machine efficiency. – Light chaff and dust (bulky, poor flow characteristics, decreases screening efficiency). Generic Cleaning Flow Principle Magnetic Separation Dust/chaff removal Size- coarse tolerance Larger/Smaller Size- fine tolerance Density Length Width Shape Friction/Abrasion Impact Friability Color/ Surface Characteristics Pre-Cleaning for Wheat Storage Benefits of Pre-Cleaning • Decrease infestation risk. • Improve sanitation and dust control. • Decrease microbial growth. • Improves flow of grain through the bin. • Increases storage life of grain. Generic Cleaning Flow Principle Grain Dust Explosion Risk. Magnetic Separation Explosion risk, sanitation, health and safety risk. Dust/chaff Removal Greatly improves equipment efficiency. Least similar to wheat based on size. Easy to remove. Larger/Smaller than wheat Reduces bulk. Lighter than wheat. Stones and mud removal. Density High and low density separation. Magnetic Separator • Tramp Iron or Tramp metal is metal brought in with grain at recieveing.
    [Show full text]
  • Wheat Improvement: the Truth Unveiled
    Wheat Improvement: The Truth Unveiled By The National Wheat Improvement Committee (NWIC) From wheat farmers to wheat scientists, we know consumers are yearning for more transparency and trust within their food “system.” We understand those concerns as consumers ourselves. In an effort to give consumers full scientific knowledge of how wheat has been improved over the years, we have worked together to publish a concise response to recent claims made by Dr. William Davis. The National Wheat Improvement Committee has compiled the following responses to Davis’ slander attack on wheat’s breeding and science improvements. Responses were developed with a scientific and historical perspective, utilizing references from peer-reviewed research and input from U.S. and international wheat scientists. Wheat Breeding & Science The wheat grown around the world today came from three grassy weed species that naturally hybridized around 10,000 years ago. The past 70 years of wheat breeding have essentially capitalized on the variation provided by wheat’s hybridization thousands of years ago and the natural mutations which occurred over the millennia as the wheat plant spread around the globe. There is no crop plant in the modern, developed world – from grass and garden flowers, to wheat and rice – that is the same as it first existed when the Earth was formed, nor is the environment the same. There is no mystery to wheat breeding. To breed new varieties, breeders employ two basic methods: Conventional crossing involves combining genes from complementary wheat plant parents to produce new genetic combinations (not new genes) in the offspring. This may account for slightly higher yield potential or disease and insect resistance relative to the parents.
    [Show full text]
  • Qualities of Einkorn, Emmer, and Spelt
    Qualities of Einkorn, Emmer, and Spelt Frank J. Kutka Farm Breeding Club Co-Coordinator Northern Plains Sustainable Agriculture Society Einkorn | Favored for adding excellent flavor to foods. | Suitable for baked products, some good for bread. | Higher lipid content than bread wheat (4.2 vs. 2.8 g/100g. | Usually high in minerals although low in Cadmium. | Usually higher in protein, lutein, and Vitamin E; Lower in total phenols. | Has same allergenic proteins as other wheats but may be lower in some of the gliadins that cause responses in those with celiac disease: more research is needed. Emmer | Favored for adding excellent flavor to foods. | Recommended for children and new mothers in Ethiopia and for diabetics in India. | Gluten varies from very low to higher than bread wheat: bread making properties vary but are usually lower than bread wheat. Missing some gliadin proteins. | Usually has higher minerals, higher fiber and lower glycemic index. | Often has higher antioxidants (total phenolics and flavonoids) and protein. Not high in carotenoids. | Often has higher phytic acid concentration. Emmer | The species is a known source of disease and pest resistance traits (common bunt, stem rust, leaf rust, powdery mildew, Septoria Leaf Blotch, Loose smut, Tan Spot, Russian wheat aphid, Hessian Fly) | Asian and African types appear to be more drought tolerant | Some varieties have shown tolerance to higher soil salinity | Alternate source of dwarfing trait Spelt | Spelt has gluten and similar protein composition to bread wheat but reduced bread making quality. | Higher lipid and unsaturated fatty acid content. | Some minerals tend to be higher in spelt: Fe, Zn, Mg, P.
    [Show full text]
  • ELP and ESP Station Handout Grist Mill
    ELP and ESP Station Handout Grist Mill INTRODUCTION The goal of this handout is to prepare you to lead the Grist Mill station during your Environmental Living Program or Environmental Studies Program. At the Grist Mill station, your students will experience firsthand what it was like to grind wheat into flour using a hand- powered grist mill. This station will allow you and your students to explore the history, science, language, and math related to agriculture. HISTORY The Fort’s primary crop was wheat and there were a number of fields near the Fort, so the grist mill had an important place at Sutter’s Fort. The mill was likely in operation both day and night, and prior to the establishment of the Fort, the nearest grist mill was about 65 miles away in Sonoma. It was not until 1846, when a grist mill was opened, near present day Sloughhouse, that there was another local source for flour. The mill and agriculture were central to John Sutter’s business plan for the Fort. He hoped create a thriving agricultural business. However, to be successful in agriculture, Sutter needed countless laborers. The large majority of those laborers were local California Indians. Early visitors to the Fort, such as the French diplomat and dignitary Comte de Mofras, wrote glowingly about the limitless potential for agriculture at New Helvetia. The rich soil and the flat grasslands were an agricultural paradise to the trained eye. However, potential does not always translate into production; Sutter and the large California Indian workforce had many obstacles to overcome.
    [Show full text]
  • Hulled Wheat Productivity and Quality in Modern Agriculture Against Conventional Wheat Species
    agriculture Article Hulled Wheat Productivity and Quality in Modern Agriculture Against Conventional Wheat Species Leszek Racho ´n 1, Aneta Bobryk-Mamczarz 2 and Anna Kiełtyka-Dadasiewicz 1,* 1 Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; [email protected] 2 PZZ LUBELLA GMW Sp. z o.o. Sp. k., ul. Wrotkowska 1, 20-469 Lublin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +4881-445-6629 Received: 1 June 2020; Accepted: 19 June 2020; Published: 7 July 2020 Abstract: The objective of this study is to compare the yields and qualities of the hulled wheats emmer (Triticum dicoccum Schübl.) and spelt (Triticum aestivum L. ssp. spelta) with the commonly cultivated naked wheats common wheat (Triticum aestivum L. ssp. vulgare) and durum wheat (Triticum durum Desf.). Three years of field experiments were carried out from 2015 to 2017 in the Lubelskie province (Poland) on rendzina soils. The experimental results indicate that the hulled wheats, even when cultivated with advanced technology, produced lower yields compared to the common and durum wheats (reduced by 30–56%). In spite of their lower yields, emmer and spelt retained appropriate technological parameters. Higher ash, protein, and wet gluten yields were characteristic of the hulled wheats; however, the high gluten spread of emmer (13.3 mm) may limit its application as a raw material in some food processes. In summary, hulled wheat species can be recommended for modern agricultural production as an alternative source of high-quality materials for the agricultural and food industries.
    [Show full text]
  • Archaeobotanical and Isotopic Evidence of Early Bronze Age
    Archaeobotanical and isotopic evidence of Early Bronze Age farming activities and diet in the mountainous environment of the South Caucasus: a pilot study of Chobareti site (Samtskhe–Javakheti region) Erwan Messager, Estelle Herrscher, Lucie Martin, Eliso Kvavadze, Inga Martkoplishvili, Claire Delhon, Kakha Kakhiani, Giorgi Bedianashvili, Antonio Sagona, Liana Bitadze, et al. To cite this version: Erwan Messager, Estelle Herrscher, Lucie Martin, Eliso Kvavadze, Inga Martkoplishvili, et al.. Ar- chaeobotanical and isotopic evidence of Early Bronze Age farming activities and diet in the moun- tainous environment of the South Caucasus: a pilot study of Chobareti site (Samtskhe–Javakheti region). Journal of Archaeological Science, Elsevier, 2015, 53, pp.214-226. 10.1016/j.jas.2014.10.014. hal-01814002 HAL Id: hal-01814002 https://hal.archives-ouvertes.fr/hal-01814002 Submitted on 12 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Archaeobotanical and isotopic evidence of Early Bronze Age farming activities and diet in the
    [Show full text]