Classification of Wheat Varieties Grown in the United States in 1949

Total Page:16

File Type:pdf, Size:1020Kb

Classification of Wheat Varieties Grown in the United States in 1949 ■^"çfpp^ Classification of Wheat ^''^''^ LI 3 RAR' Varieties Grown in the United States in 1949 ^'^-.lifí!'. 'f3^'''^ , *,»;$.^"''' By B. B, BAYLES Principal Agronomist and J. ALLEN CLARK Senior Agronomist Field Crops Researeh Braneh Agricultural Research Service Technical Bulletin No. 1083 March 19S4 UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, B.C. Technical Bulletin No. 1083 March 1954 Classification of Wheat Varieties Grown in the United States in 1949 By B. B. BAYLES Principal Agronomist and J. ALLEN CLARK Senior Agronomist Field Crops Research Branch Agricultural Research Service United States Department of Agriculture, Washington, D. C. For sale by the Superintendent of Documents, Washington 25, D. C. - Price 70 cents Technical Bulletin No. 1083 March 1954 Classification of Wheat Varieties Grown in the United States in 1949 ' By B. B. BAYLES, principal agronomist, and J. ALLEN CLARK, senior agronomist, Field Crops Research Branch, Agricultural Research Service CONTENTS Pa^e Page Need for classification 1 Classification of the genus Trit- Previous investigations 2 icum 35 Foreign classifications 2 Spelt.-_ 37 Domestic classifications 6 Emmer 37 Summary of previous classifica- Poulard wheat 37 tions 8 Polish wheat 40 Present investigations 9 Timopheevi 40 Classification nurseries 10 Einkorn 40 Description, history, and dis- Common wheat 40 tribution 12 Club wheat 146 Varietal nomenclature 13 Durum wheat 151 The wheat plant 14 Literature cited 158 Taxonomic characters 14 Index to varieties and synonyms.. 169 Other characters 34 NEED FOR CLASSIFICATION careful consideration by growers. The choice is partly dependent, The varieties of wheat grown in however, upon the determination the United States show a great of identity. diversity of type. This diversity is The identification of varieties natural, as wheat is produced com- requires some knowledge of the mercially in most of the 48 States appearance of plant and kernel under a wide range of environmen- and is assisted by information tal conditions. More than 200 regarding history or distribution. distinct varieties are grown. Many Wheat varieties are most generally of these are adapted only locally, designated by names, which are whereas others are well adapted to established through publication and a wide range of varying conditions. usage. Confusion in names is fre- Adaptation of varieties is an im- quent in the United States, where portant factor, as it affects the the number of varieties is very yield and profitableness of the large. This confusion occurs in crop and the standardization of two principal ways: (1) The same varieties. The choice of varieties name is applied to distinctly dif- for specific conditions and pur- ferent varieties in different parts of poses is therefore usually given the country, and (2) the same 1 Received for publication April 22, 1953. This bulletin is a revision of and super- sedes Department Bulletin 1074, Classification of American Wheat Varieties, Technical Bulletin 459, Classification of Wheat Varieties Grown in the United States, and Technical Bulletin 795, Classification of Wheat Varieties Grown in the United States in 1939. TECHNICAL BULLETIN 1083, U. S. DEPT. OF AGRICULTURE variety is grown under several Theophrastus mentioned many different names in different parts of the differences between these of the country or even in the kinds of wheat. In the writings same area. Identification is diffi- of Varro, Pliny, and Columella, in cult in cases of similar or closely the first century B. C. and the first related varieties and is confused by century A. D., the observations of the multiplicity of names. Inabil- Theophrastus were repeated, re- it}^ to identify varieties leads to arranged, and amplified. The fol- duplication in varietal experiments lowing notes, based on the writings and the fraudulent or unknowing of Varro and others, as well as those exploitation of old varieties under of Columella, were presented in the new names. translation, in 1745, of Columella's There is need, therefore, for a book entitled ^'Of Husbandry'' (62, practical and usable system of clas- p. 60): sification that will standardize the Triticum, common bare wheat, which varietal nomenclature and enable has little husk upon it, was, according growers to identify varieties with to VarrOj a name given formerly to all which they are concerned. The sorts of grain beaten or bruised out of purpose of this bulletin is to pro- ears by trituration or threshing; but afterwards it was given to a peculiar vide such a classification of the species of grain, of which there are many wheat varieties that are grown sorts, which take their name from the commercially in the United States places where they grow; as African, or may be so grown soon. The Pontic, Assyrian, Thracian, Egyptian, Sicilian, etc., which differ from one classification has been made by another in colour, bigness, and other using only such characters as can properties, too tedious to relate. One be distinguished by the naked eye, sort has its ears without beards, and is no instrument other than a meas- either of winter or summer. Another sort is armed with long beards, and uring rule having been used in the grows up sometimes with one, sometimes investigations. The names of vari- with more ears. Of these the grains are eties have been standardized insofar of different sorts : some of them are white, as practicable in accordance with a some reddish, some round, others oblong, some large, others small. Some sorts code of nomenclature. are early ripe, others late in ripening; some yield a great increase, some are PREVIOUS INVESTIGATIONS hungry, and yield little; some put forth a great ear, others a small. One sort stays long in the hose (folliculo); another FOREIGN CLASSIFICATIONS frees itself very soon out of it. Some have a small stalk or straw; others have The existence of many different a thick one, as the African. Some are varieties of wheat has been recog- cloathed with few coats, some with many, as the Thracian. Some grains put forth nized for more than 2,300 years. only one stalk, some many stalks. Some Theophrastus (206, p. 167),' a require more, some less time to bring pupil of Plato, in his Enquiry into them to maturity. For which reason Plants, written about 300 B. C, some are called trimestrian, some bimestrian; and they say, that, in Euhoea, states : there is a sort, which may be brought to There are also many kinds of wheat perfection in 40 days; but most of these which take their names simply from the sorts, which ripen in a short time, are places where they grow, as Libyan, light, unfruitful, and yield very little, Pontic, Thracian, Assyrian, Egyptian, tho' they are sweet and agreeable to the Sicilian. They show differences in color, taste and of easy digestion. size, form, and individual character, and also as regards their capacities in general In the early Koman literature and especially their value as food. mentioned, reference is found to 2 Italic numbers in parentheses refer two groups of wheat; namely, to Literature Cited, p. 158. triticum and adoreum, or far. Col- CLASSIFICATION OF WHEAT VARIETIES GROWN IN 1949 umella referred to the Jar as species have since been included in bearded wheat. The grain of trit- another genus. In the second edi- icum was separated from the chaff tion of the Species Plantarum, in threshing, whereas that of far published in 1762 (135, p. 126) he was not, indicating that the former described six species that are still consisted of true wheats, but the included in the genus Triticum: T. latter was emmer or spelt. aestivum, T. hybernum, T. turgidum, Columella recognized three types T. polonicum, T. spelta, and T. of Triticum, robus (red), siligo monococcum, the species T. poloni- (white), and trimestrian (spring), cum having been added. Linnaeus and in addition four types of divided the common wheat into bearded wheat (spelt or emmer), two species—T. aestivum, awned viz. (62, pp. 61-62): spring, and T. hybernum, awnless winter—apparently believing that Clusinian, of a shining, bright, white colour; a bearded wheat, which is called all spring wheats were awned and venuculum. One sort of it is of a firy all winter wheats awnless. Writers red colour, and another sort of it is who followed him usually have not white; * * *. The trimestrian seed, or recognized these distinctions. that of 3 months' growth, which is called halicastrum * * *. Lamarck in 1778 (127) created the species T. sativum to include It is evident from these quota- both the species T. aestivum and T. tions that many of the leading hybernum that Linnaeus had characters of the wheat plant were adopted. Each species and sub- recognized in this early period. species was described according to What attention was given to studies the presence or absence of awns, of wheat during the Dark Ages no the color and covering of the one can say. With the revival of glumes, the color, size, and density learning the botanists and medical of the kernels, the solidity of the men began the publication of the stem, and several other characters. folio and royal octavo herbáis, Villars in 1787 (21J,) divided the many of them illustrated with common wheats into two species, woodcuts. In these, wheat species T. vulgäre and T. touzelle. The were included, the forms mostly latter consisted of awnless wheat being those described by Theo- having white kernels. phrastus, Pliny, and Varro, but Schrank in 1789 (182, pp, 387- from time to time new ones were 389) arranged the cultivated wheats added. There is little advantage in in three species. For common trying to guess what particular wheat he established the name form of common wheat each so- ^^Triticum cereale^' and placed T. called species represented. More aestivum and T, hybernum under it recent botanical writers described as varieties.
Recommended publications
  • Canadian Wheat
    Canadian Wheat By: J. E. Dexter1, K.R. Preston1 and N. J. Woodbeck2 Chapter 6: Future of flour a compendium of flour improvement, 2006, pg - 43-62 Edited by Lutz Popper, Wermer Schafer and Walter Freund. Agrimedia, Bergen. Dunne, Germany. 1 Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada 2 Canadian Grain Commission, Industry Services, 900-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada Introduction The vast majority of Canadian wheat is produced in western Canada (Manitoba and provinces to the west). A high proportion of western Canadian wheat is exported, and it is marketed in a highly regulated fashion. As soon as western Canadian wheat is delivered by producers to a grain elevator the wheat becomes the property of the Canadian Wheat Board, which is a single desk seller for western Canadian wheat. Approval for registration into any of the eight classes of wheat in western Canada is based on merit according to disease resistance, agronomic performance and processing quality. Wheat is also produced in eastern Canada, primarily in southern Ontario. Eastern Canadian wheat is also registered on the basis of merit, although processing quality models are not quite as strictly defined as for western Canada. There is no single desk seller for eastern Canadian wheat. Eastern Canadian wheat is marketed by private trading companies and the Ontario Wheat Producers Marketing Board. Approximately 50% of eastern Canadian wheat disappears domestically. The Canadian Grain Commission (CGC), a Department within Agriculture and Agri- Food Canada (AAFC), oversees quality assurance of Canadian grains, oilseeds, pulses and special crops.
    [Show full text]
  • Identification of Cereal Remains from Archaeological Sites 2Nd Edition 2006
    Identification of cereal remains from archaeological sites 2nd edition 2006 Spikelet fork of the “new glume wheat” (Jones et al. 2000) Stefanie JACOMET and collaborators Archaeobotany Lab IPAS, Basel University English translation partly by James Greig CEREALS: CEREALIA Fam. Poaceae /Gramineae (Grasses) Systematics and Taxonomy All cereal species belong botanically (taxonomically) to the large family of the Gramineae (Poaceae). This is one of the largest Angiosperm families with >10 000 different species. In the following the systematics for some of the most imporant taxa is shown: class: Monocotyledoneae order: Poales familiy: Poaceae (= Gramineae) (Süssgräser) subfamily: Pooideae Tribus: Triticeae Subtribus: Triticinae genera: Triticum (Weizen, wheat); Aegilops ; Hordeum (Gerste; barley); Elymus; Hordelymus; Agropyron; Secale (Roggen, rye) Note : Avena and the millets belong to other Tribus. The identification of prehistoric cereal remains assumes understanding of different subject areas in botany. These are mainly morphology and anatomy, but also phylogeny and evolution (and today, also genetics). Since most of the cereal species are treated as domesticated plants, many different forms such as subspecies, varieties, and forms appear inside the genus and species (see table below). In domesticates the taxonomical category of variety is also called “sort” (lat. cultivar, abbreviated: cv.). This refers to a variety which evolved through breeding. Cultivar is the lowest taxonomic rank in the domesticated plants. Occasionally, cultivars are also called races: e.g. landraces evolved through genetic isolation, under local environmental conditions whereas „high-breed-races“ were breed by strong selection of humans. Anyhow: The morphological delimitation of cultivars is difficult, sometimes even impossible. It needs great experience and very detailed morphological knowledge.
    [Show full text]
  • Wheat Landraces from Oman: a Botanical Analysis
    Emir. J. Food Agric. 2014. 26 (2): 119-136 doi: 10.9755/ejfa.v26i2.16760 http://www.ejfa.info/ REGULAR ARTICLE Wheat landraces from Oman: A botanical analysis A. A. Filatenko1* and K. Hammer2 1N. I. Vavilov Research Institute of Plant Industry, Veteran Council, St. Petersburg, Russia 2University of Kassel, Faculty of Agriculture, International Rural Development and Environmental Protection, Witzenhausen, Germany Abstract The wheat landraces of Oman are chacterized. Their main constituents are Triticum aestivum L. ssp. aestivum, T. aestivum ssp. hadropyrum (Flaksb.) Tzvel., T. compactum Host, T. aethiopicum Jakubz.ssp. aethiopicum, T. aethiopicum ssp. vavilovianum Jakubz. et A. Filat. and T. dicoccon Schrank. The classification of the landraces was performed using the morphological method developed by Dorofeev, Filatenko et al. (1979), considering species, subspecies, convarieties and a great number of botanical varieties. Single landraces contained up to three different species (“Sareeaa”) and up to 17 different botanical varieties (“Missani”). T. aethiopicum var. hajirense A. Filat. et K. Hammer is newly described. Keys for the determination of important Omani wheat races are proposed. 15 wheat landraces of Oman are characterized morphologically. A detailed list describing origin, local names, and infraspecific taxa of the material is provided. Transformation processes of the oasis settlements lead to a replacement of the traditional agricultural systems and the landraces are threatened by genetic erosion. Additional measures are necessary
    [Show full text]
  • Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt
    fermentation Article Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt Alice Fujita, Senay Simsek and Paul B. Schwarz * Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; [email protected] (A.F.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +1-701-231-7732 Received: 25 November 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: There have been tremendous marketing efforts and consumer interest in the so-called ancient grains. Einkorn, emmer and spelt, which are sometimes referred to as ancient wheats, are frequently included in this category, and have gained some attention among brewers. The objective of the current study was to compare the malting behavior and quality of einkorn, emmer and spelt cultivars obtained from the same growing environment. Aside from standard malt quality traits, the levels of β-amylase, protease, xylanase, wort arabinoxylans and wort phenolic acids were measured. While protein levels of the samples were higher (11.4–14.0%) than normally selected for wheat malt, the results indicated that malts of acceptable quality in terms of extract and amylolytic activity can be prepared from the three grain types. However, the ideal malting protocol will likely differ between the grains. The kernels of einkorn are significantly smaller, and steep hydration and malt modification are quicker. In terms of potential health benefits from antioxidant capacity and dietary fiber, wort from einkorn trended to higher levels of free and conjugated ferulic acid, as well as high-molecular-weight arabinoxylan. Keywords: arabinoxylan; brewing; einkorn; enzyme activity; emmer; malt; phenolic acid; spelt; and sprouting 1.
    [Show full text]
  • The Canadian Wheat Board, Warburtons, and the Creative
    The Canadian Wheat Board and the creative re- constitution of the Canada-UK wheat trade: wheat and bread in food regime history by André J. R. Magnan A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Sociology University of Toronto © Copyright by André Magnan 2010. Abstract Title: The Canadian Wheat Board and the creative re-constitution of the Canada-UK wheat trade: wheat and bread in food regime history Author: André J. R. Magnan Submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Sociology University of Toronto, 2010. This dissertation traces the historical transformation of the Canada-UK commodity chain for wheat-bread as a lens on processes of local and global change in agrofood relations. During the 1990s, the Canadian Wheat Board (Canada‟s monopoly wheat seller) and Warburtons, a British bakery, pioneered an innovative identity- preserved sourcing relationship that ties contracted prairie farmers to consumers of premium bread in the UK. Emblematic of the increasing importance of quality claims, traceability, and private standards in the reorganization of agrifood supply chains, I argue that the changes of the 1990s cannot be understood outside of historical legacies giving shape to unique institutions for regulating agrofood relations on the Canadian prairies and in the UK food sector. I trace the rise, fall, and re-invention of the Canada-UK commodity chain across successive food regimes, examining the changing significance of wheat- bread, inter-state relations between Canada, the UK, and the US, and public and private forms of agrofood regulation over time.
    [Show full text]
  • RNA-Seq and Itraq Reveal the Dwarfing Mechanism of Dwarf
    Int. J. Biol. Sci. 2016, Vol. 12 653 Ivyspring International Publisher International Journal of Biological Sciences 2016; 12(6): 653-666. doi: 10.7150/ijbs.14577 Research Paper RNA-Seq and iTRAQ Reveal the Dwarfing Mechanism of Dwarf Polish Wheat (Triticum polonicum L.) Yi Wang1*, Xue Xiao1*, Xiaolu Wang1*, Jian Zeng2, Houyang Kang1, Xing Fan1, Lina Sha1, Haiqin Zhang1, Yonghong Zhou1 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China. 2. College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China. *The authors contributed equally to this work. Corresponding author: Yonghong Zhou, Fax: +86 028 826 503 50, E-mail address: [email protected]. © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. Received: 2015.12.02; Accepted: 2016.02.15; Published: 2016.04.08 Abstract The dwarfing mechanism of Rht-dp in dwarf Polish wheat (DPW) is unknown. Each internode of DPW was significantly shorter than it in high Polish wheat (HPW), and the dwarfism was insensitive to photoperiod, abscisic acid (ABA), gibberellin (GA), cytokinin (CK), auxin and brassinolide (BR). To understand the mechanism, three sets of transcripts, DPW, HPW, and a chimeric set (a combination of DPW and HPW), were constructed using RNA sequencing (RNA-Seq). Based on the chimeric transcripts, 2,446 proteins were identified using isobaric tags for relative and absolute quantification (iTRAQ). A total of 108 unigenes and 12 proteins were considered as dwarfism-related differentially expressed genes (DEGs) and differentially expressed proteins (DEPs), respectively.
    [Show full text]
  • Wild Wheat to Productive Drylands: Global Scientific Practice and the Agroecological Remaking of Palestine
    Geoforum 78 (2017) 43–51 Contents lists available at ScienceDirect Geoforum journal homepage: www.elsevier.com/locate/geoforum Wild wheat to productive drylands: Global scientific practice and the agroecological remaking of Palestine Omar Tesdell Department of Geography, Birzeit University, PO Box 14, Birzeit, West Bank, Palestine article info abstract Article history: This paper traces how scientific research on wheat (Triticum) worked to establish Palestine as a region Received 23 May 2016 sought for colonization. Recent work in geography has refined our understanding of agricultural expan- Received in revised form 16 November 2016 sion as an outcome of colonization, however, this work leaves the place-making capacity of agricultural Accepted 18 November 2016 research largely unexplored. My claim is that rather than a byproduct of colonization, wheat research served to remake Palestine as a biophysical region in need of improvement and colonization. I show how a shift in the plant sciences from research in taxonomy to plant breeding corresponded to an Keywords: agro-climatic shift on Palestine from an undesirable, arid region to a promising dryland agricultural Agro-climatology region. In this way, wheat research drew Palestine and the United States into a wider effort to transform Agro-ecology Colonization arid areas into agricultural drylands. Drawing on a previously unexplored episode of technical coopera- Palestine tion between researchers in the United States and Palestine, I argue that we must examine how wildness, United States native-ness, and agro-climatic suitability are scientifically constituted within and not apart from colonial Drylands conquest. In doing so, the paper calls for reconsideration within geography and political ecology of the place-making relationship between colonization and scientific practice.
    [Show full text]
  • 179 RICE HUSK USED AS a BREAD INGREDIENT Matheus Francisco
    Revista Brasileira de Produtos Agroindustriais, Campina Grande, v.20, n.2, p.179-184, 2018 179 ISSN: 1517-8595 RICE HUSK USED AS A BREAD INGREDIENT Matheus Francisco da Paz1, Roger Vasques Marques2, Camilo Bruno Fonseca3, Lauren Andrade Vieira4, Luciara Bilhalva Corrêa5, Érico Kunde Corrêa6 ABSTRACT The rice husk corresponds to approximately one fifth of the grain mass and is usually a devalued byproduct. However, it presents a significant amount of insoluble fibers, which may favor its use as a source of fiber in the human diet. On the other hand, the insertion of these fibers into baking may drastically affect the technological characteristics of the breads. In this context, the objective of this experiment was to evaluate the loss of cooking mass, the color of the crust and the crumb, and the specific volume of bread with inclusion of different rice husk contents in its formulation. For this, the rice husk was previously dried, milled with a gram weight fixed at 0.5 mm and mixed in bread formulations with substitution of wheat flour by rice husk in the following proportions, respectively: T1 (100: 0), T2 (95: 5), T3 (90:10), T4 (85:15) and T5 (80:20). The experiment was performed in triplicate and the data processed statically. The results demonstrated that there was no difference of specific volume and loss of mass between the formulations. However, in relation to color, the parameter of luminosity was largely affected, with a marked decrease in both crust and crumb, since there was greater substitution of wheat flour by rice husks.
    [Show full text]
  • Classification of Wheat Varieties Grown in the United States in 1949
    Technical Bulletin No. 1083 March 1954 /' Classification of Wheat Varieties Grown in the United States in 1949 By B. B. BAYLES Principal Agronomist and J. ALLEN CLARK Senior Agronomist Field Crops Research Bran~h United States Department of Agriculture, Washingtc'll, D. C. For gale by the Superintendent of Documents, WaehinMlon 25, D. C. • Price 70 cent. 66 TECHNICAL BULLETIN 1083, U. S. DEPT. OF AGRICULTURE to strong; spike apically awnleted, fusi­ Distribution.-Estimated area in 1949, form, middense to dense, inclined; glumes 452,427 acres (fig. 32). glabrous, white with black stripes, mid­ long, wide; shoulders wide, oblique to LOFTHOUSE square; beaks mid wide, obtuse, 0.5 mm. long; awnlets 3 to 10 mm. long, some­ Description.-Plant winter habit mid­ tim,;s incurved; kernels red, midlong, se:;tson, midtall; ste:n white,. midstrong; semlhard, ovate; germ midsized· crease s~lke awnleted, fusIform, mlddense, in­ midwide, middeep; cheeks rounded; brush cllped_; glumes glabrous, white, midlong, midsized, midlong. ml~wlde; should~rs wanting to narrow, History.-Kanqueen (C. 1. 12762) was oblIque; beaks WIde, obtuse, 1 mm. long; developed by Earl G. Clark, the farmer­ awnlets several, 5 to 30 mill. long; wheat breeder of Sedgwick, Kans., and kernels red, mic_llon.g, sof~, ovate; germ first offered for sale in the fall of 1949. small; crease mldwlde, mlddeep; cheeks It was sold in small lots in all sections usually angular; brush small, midlong. of Kansas. There is some confusion as to the VIGO identity of this variety. It frequently has been referred to as white-kerneled Description.-Plant' winter habit, mid­ and often is confused with the Kofod variety.
    [Show full text]
  • Northwestern Ontario Specialty Crop Market Report
    2013 Northwestern Ontario Specialty Crop Market Report 3/31/2013 Acknowledgements Funded By: NRC-IRAP Prepared By: The Northwestern Ontario Innovation Centre Inc With assistance from: Dr. Tarlok Singh Satoka, Thunder Bay Agriculture Research Station Wayne Vanderwees, Freight Managers Inc. Paul Tulonen, IRAP Allan Mitchell, AgraTactics Agronomy Marlene Boersch, Merchantile Consulting Venture Inc. iii Table of Contents Executive Summary ........................................................................................................ 1 Agriculture Market Research Report ............................................................................... 3 Project Overview.......................................................................................................... 3 Section 1: Crop Analysis and Profile of Economically Viable Crops ................................ 5 Chickpeas .................................................................................................................... 5 Lentils .......................................................................................................................... 5 Field Peas .................................................................................................................... 6 Hard White Spring Wheat ............................................................................................ 6 Millhouse Barley .......................................................................................................... 6 Durum Wheat .............................................................................................................
    [Show full text]
  • Growing Small Grains Organically
    LAKEVIEW ORGANIC GRAIN Box 361, Penn Yan, NY 14527 315-531-1038 MANAGING SMALL GRAINS ORGANICALLY Small grains respond strongly to soil fertility and soil condition. Most small grains will do best in well-drained, fertile soils with a pH of at least 6.0. Barley needs a higher pH (>6.5pH) and oats can tolerate more acidity (>5.8pH) Barley prefers high fertility and dry soil, oats can tolerate lower fertility and wetter fields. More fertile soil that has adequate calcium will definitely give better yields. If possible, spread compost, lime and gypsum in the fall on fields where spring small grains are planned, especially if there is a cover crop to put the amendments on. Fall is also a great time to take soil tests to determine nutrient deficiencies. Oats and rye respond well to manure or compost applications, but putting on too much nitrogen may cause lodging. Fall planted grains need generous amounts of P and K for good fall tillering and winter survival. As soil cools, phosphorus becomes less available making high P levels more important than with summer planted crops. When soil test levels of P and K are low, poultry litter or compost can be spread before planting to prevent deficiencies. When K is very low, spreading some additional potassium fertilizers (potassium sulfate, potassium chloride, SulPoMag, or green sand) may be needed to improve winter survival and prevent lodging. According to European research, barley is an extremely heavy feeder, especially of potassium and phosphorus. High nitrogen levels will reduce potassium uptake, possibly creating a shortage if potash soil levels are moderate.
    [Show full text]
  • Wholesale Grains & Flours
    Grains and Flours IN OUR REGION Available through Greenmarket’s wholesale distribution arm, Greenmarket Co. Prices and complete product list given upon request. Buckwheat* High in amino acids and vitamins. Best as toasted whole groats, or “kasha.” Flour is best for pan- cakes, crepes, biscuits, soba noodles. Cornmeal & Polenta* Made with flint, or “Indian” corn, and dent corn. Einkorn An “ancient grain,” high in protein content and min- erals. Best for cooking whole and using flour for pancakes and crackers. Emmer (Farro) An “ancient grain,” best as a cooked Wholesale grain and for pasta and flat breads. Freekeh Wheat that is harvested green and roasted. Toasted, mildly sweet flavor. High in protein, minerals and Grains fiber, very low in gluten. Best in soups and stews. Oats* Rolled or cracked, flour upon request. Rye Low gluten, bold, assertive flavor. Blended with wheat Mission Driven Food. & Flours for bread. Grains can be cooked whole or as cracked rye. Spelt An “ancient grain,” low gluten, high protein content. Flour used for bread, pasta, crackers. Triticale A wheat-rye hybrid. High protein, low gluten. Best for breads, pancakes, crackers. Contact us for more information. Wheat flours Whole and sifted, all-purpose & pastry For wholesale inquires: flour, special blends [email protected] % Hard wheat, or “bread flour” Higher protein content, The Greenmarket Regional Grains Project best for baking bread. For more information on grains: is helping re-establish grain production in the Northeast. % Soft wheat, or “pastry flour” Lower protein content, [email protected] Greenmarket’s customers, both wholesale and retail, are best for pastry and flat breads.
    [Show full text]