Sulwde Assimilation by Ectosymbionts of the Sessile Ciliate, Zoothamnium Niveum

Total Page:16

File Type:pdf, Size:1020Kb

Sulwde Assimilation by Ectosymbionts of the Sessile Ciliate, Zoothamnium Niveum Mar Biol (2009) 156:669–677 DOI 10.1007/s00227-008-1117-6 ORIGINAL PAPER SulWde assimilation by ectosymbionts of the sessile ciliate, Zoothamnium niveum Hans Røy · Kay Vopel · Markus Huettel · Bo Barker Jørgensen Received: 17 October 2008 / Accepted: 15 December 2008 / Published online: 3 February 2009 © The Author(s) 2009. This article is published with open access at Springerlink.com Abstract We investigated the constraints on sulWde suggests that they live partly submerged in the diVusive uptake by bacterial ectosymbionts on the marine peritrich boundary layer. We showed that the Wltered volume allows ciliate Zoothamnium niveum by a combination of experi- Z. niveum to assimilate suYcient sulWde to sustain the sym- mental and numerical methods. Protists with symbionts biosis at a few micromoles per liter in ambient concentra- were collected on large blocks of mangrove-peat. The tion. Numerical modeling shows that sulWde oxidizing blocks were placed in a Xow cell with Xow adjusted to in bacteria on the surfaces of Z. niveum can sustain 100-times situ velocity. The water motion around the colonies was higher sulWde uptake than bacteria on Xat surfaces, such as then characterized by particle tracking velocimetry. This microbial mats. The study demonstrates that the Wlter feed- shows that the feather-shaped colony of Z. niveum gener- ing zooids of Z. niveum are preadapted to be prime habitats ates a unidirectional Xow of seawater through the colony for sulWde oxidizing bacteria due to Z. niveum’s habitat with no recirculation. The source of the feeding current was preference and due to the feeding current. Z. niveum is the free-Xowing water although the size of the colonies capable of exploiting low concentrations of sulWde in near norm-oxic seawater. This links its otherwise dissimilar hab- itats and makes it functionally similar to invertebrates with Communicated by M. Kühl. thiotrophic symbionts in Wltering organs. Electronic supplementary material The online version of this article (doi:10.1007/s00227-008-1117-6) contains supplementary material, which is available to authorized users. Introduction H. Røy · B. B. Jørgensen The peritrich ciliate Zoothamnium niveum (Ehrenberg Max Planck Institute for Marine Microbiology, 1838) forms attached contractile colonies that are visible to Celsiusstr. 1, 28359 Bremen, Germany the naked eye. The colony shape resembles a feather with Present Address: an average length between 3 and 5 mm. The side-branches H. Røy (&) of the “feather” carry several hundred microzooids Department of Biological Sciences, (zooid = single ciliate) in a regular pattern (see Bauer- Center for Geomicrobiology, University of Aarhus, Ny Munkegade 1535, 8000 Aarhus C, Denmark Nebelsick et al. 1996a, b for a detailed description). The e-mail: [email protected] entire surface of the zooids, stalk and branches are covered by a single layer of sulWde-oxidizing bacteria belonging to K. Vopel the Gamma-proteobacteria (Rinke et al. 2007). The peri- School of Applied Sciences, W Auckland University of Technology, Mail No C43, trich ciliates are lter-feeders, and the microzooids of Private Bag 92006, Auckland 1142, New Zealand Z. niveum possess a fully developed oral ciliature and cytopharynx, similar to Zoothamnium species that are not M. Huettel covered by sulWde oxidizing bacteria (Bauer-Nebelsick et al. Department of Oceanography, Florida State University, 117 N Woodward Ave., 1996b). Rapid contractions of zooids, branches and the dis- OSB 517, Tallahassee, FL 32306-4320, USA tal parts of the stalk are characteristic of all Zoothamnium 123 670 Mar Biol (2009) 156:669–677 ectosymbionts (Ott et al. 1998; Vopel et al. 2001). Ott et al. (1998) proposed that Z. niveum supplies the bacterial sym- bionts with sulWde through periodic contraction into the anoxic and sulWdic diVusive boundary layer (DBL). Studies of the physical and chemical microenvironment around the colonies (Vopel et al. 2001, 2002, 2005) could not conWrm this mechanism, but suggested that the feeding currents intercept sulWde and brings it to the symbiotic bacteria. In this study, we link the sulWde transport quantitatively from the turbulent water column, via the feeding current, to the bacteria on the surface of Z. niveum. We analyze the Xow Weld around individual colonies at high resolution. These data identify the source, pathway and volume of sea- water passing through the colonies. We use literature data on the oxygen consumption of Z. niveum to estimate the sulWde requirements of the consortia based on the stoichi- ometry of lithothropic growth by sulWde oxidation. The Wltered seawater volume together with the sulWde require- ment provides a rough estimate of the constraints on sulWde uptake by the ecto-symbionts on Z. niveum. We reWned the constraints further using numerical modeling. Fig. 1 White spot around a 1 cm wide conduit into the peat wall. Several Zoothamnium niveum colonies can be seen around the hole. Material and methods Recorded in situ with a Nikon coolpix 960 in underwater housing Field site and sampling species. For Z. niveum, the contraction takes only about 4 ms, and the average velocity reaches 520 mm s¡1 (Vopel Experimental work was conducted on the island of Carrie et al. 2002). During contractions and the following slow Bow Cay, Belize, in April 2002, at the Weld station operated expansion the cilia cease. by the Caribbean Coral Reef Ecosystem program of the The type organisms for a recent re-description of Z. niv- National Museum of Natural History (Washington, DC, eum (Bauer-Nebelsick et al. 1996b) were collected on man- USA). Fieldwork was done in the channel that separates the grove islands of the Belize barrier reef. Several ecological two islands of Twin Cays, in an area locally known as Bat- investigations have been performed on this population. Wsh Point. Detailed description of Twin Cays and the tidal Aggregations of Z. niveum and non-symbiotic sulfur-bacte- channels can be found in Rützler and Macintyre (1982) and ria form characteristic “white spots” (Fig. 1) on undercut Ott et al. (1998). peat-banks under Red Mangrove (Rhizophora mangle) In situ observations and ciliate collection were per- stands. Typical spots are 5–25 mm in diameter and contain formed while SCUBA diving along undercut peat banks at 9–43 Zoothamnium colonies (Ott et al. 1998). The spots BatWsh Point. Current speed and direction were mea- often occur around bark-lined holes in the peat. The holes sured by timing 10 cm displacements of natural particles form when a mangrove root dies and the core of the root in the seawater with a stopwatch. Typical currents were decomposes. The seawater in these bark conduits is anoxic 5–20 mm s¡1 measured 1–3 cm from the peat surface. and contains up to 1 mmol L¡1 sulWde. SulWdic water in the Then the spots with ciliate colonies were cut out together conduits mixes with the surrounding seawater, primarily with a 20 £ 20 £ 20 cm3 block of surrounding peat and driven by wave-generated oscillating boundary Xow. This placed in a closed container while still under water. makes the holes function like miniature sulWde vents (Vopel et al. 2005). Laboratory Xow cell Though the published evidence is mostly suggestive, the association between Z. niveum and its ectosymbionts has After transport to the laboratory, the Wbrous peat blocks been assumed to be obligatory. A trophic character of the were trimmed to Wt a glass Xow-cell that accommodated a symbiosis is suggested from observation of bacteria mor- 45 mm thick 90 £ 150-mm peat block. Care was taken to photypes in the food vacuoles (Bauer-Nebelsick et al. align the surface of the peat Xush with the inXow and to 1996b), and by poor growth of the ciliates without place the blocks with the same orientation to the current as 123 Mar Biol (2009) 156:669–677 671 they were found in situ. Peat and ciliates were never Multiphysics (Stockholm), which can perform reaction– exposed to air. diVusion–advection calculations in an arbitrary geometry Water in the Xow cell was re-circulated through an aer- by dividing it into triangular Wnite elements. The Xow ated container holding 7 L of seawater. At the entrance of around individual zooids was calculated from the “Incom- the Xow cell, seawater was passed through 50 mm of coarse pressible Navier–Stokes” application mode from the “Earth Wlter-foam (blue EHEIM) to dissipate inXow turbulence. A Science Module”. Solute dynamics was calculated in the similar foam block was placed downstream of the peat to “Convection and DiVusion” application mode based on prevent the Xow from converging toward the outXow. The the results of the Navier–Stokes solution. Geometry of the free-Xow section between the foam blocks was 150 mm and zooids was based on Bauer-Nebelsick et al. (1996a, b) and the water depth during measurements 50 mm. Free Xow that of T. zoothamnicoli on Rinke et al. (2007). The density velocity was adjusted to 1 cm s¡1 reproducing a setting of the calculation mesh was adjusted to give adequate cal- within the velocity range measured in situ (see below). The culation speed and tested not to inXuence the model results. entire system was allowed to reach equilibrium at 29°C and Time steps were controlled dynamically to assure numerical ¡1 190 mol O2 L before measurements. These values were stability. The applied model of Z. niveum describes a single within the range observed in the habitat. All laboratory radial-symmetric zooid with surrounding seawater. The observations were performed within 18 h from the time of purpose of the model was to describe the Xux to the bacteria collection. on the ciliates surface. Three scenarios were modeled: (1) one micro-zooid with functional cilliary apparatus; (2) a Particle-tracking velocimetry hypothetical scenario with a single isolated micro-zooid without feeding current, and (3) a single bacterial symbiont The Xow cell was mounted on a metal frame together with a suspended in stagnant water.
Recommended publications
  • Publication List – Michael Wagner
    Publication list – Michael Wagner I have published between 1992 – April 2021 in my six major research fields (nitrification, single cell microbiology, microbiome, wastewater microbiology, endosymbionts, sulfate reduction) 269 papers and more than 30 book chapters. According to Scopus (April 2021) my publications have been cited 40,640 (ISI: 37,997; Google Scholar: 59,804) and I have an H-index of 107 (ISI: 103; Google Scholar: 131). Seven of my publications appeared in Nature (plus a News & Views piece), three in Science, 13 in PNAS (all direct submission) and two in PLoS Biology. More info about my publications can be found at: Scopus: https://www.scopus.com/authid/detail.uri?authorId=57200814774 ResearcherID: https://publons.com/researcher/2814586/michael-wagner/ GoogleScholar: https://scholar.google.com/citations?user=JF6OQ_0AAAAJ&hl=de 269. Neuditschko B, Legin AA, Baier D, Schintlmeister A, Reipert S, Wagner M, Keppler BK, Berger W, Meier-Menches SM, Gerner C. 2021. Interaction with ribosomal proteins accompanies stress induction of the anticancer metallodrug BOLD-100/KP1339 in the endoplasmic reticulum. Angew Chem Int Ed Engl, 60:5063-5068 268. Willeit P, Krause R, Lamprecht B, Berghold A, Hanson B, Stelzl E, Stoiber H, Zuber J, Heinen R, Köhler A, Bernhard D, Borena W, Doppler C, von Laer D, Schmidt H, Pröll J, Steinmetz I, Wagner M. 2021. Prevalence of RT-qPCR-detected SARS-CoV-2 infection at schools: First results from the Austrian School-SARS-CoV-2 prospective cohort study. The Lancet Regional Health - Europe, 5:100086 267. Lee KS, Pereira FC, Palatinszky M, Behrendt L, Alcolombri U, Berry D, Wagner M, Stocker R.
    [Show full text]
  • Tsuchida S, Suzuki Y, Fujiwara Y, Kawato M, Uematsu K, Yamanaka T, Mizota
    Tsuchida S, Suzuki Y, Fujiwara Y, Kawato M, Uematsu K, Yamanaka T, Mizota C, Yamamoto H (2011) Epibiotic association between filamentous bacteria and the vent-associated galatheid crab, Shinkaia crosnieri (Decapoda: Anomura). J Mar Biol Ass 91:23-32 藤原義弘 (2010) 鯨骨が育む深海の小宇宙ー鯨骨生物群集研究の最前線ー.ビオ フィリア 6(2): 25-29. 藤原義弘 (2010) 深海のとっても変わった生きもの.幻冬舎. 藤原義弘・河戸勝 (2010) 鯨骨生物群集と二つの「飛び石」仮説.高圧力の科 学と技術 20(4): 315-320. 土屋正史・力石嘉人・大河内直彦・高野淑識・小川奈々子・藤倉克則・吉田尊 雄・喜多村稔・Dhugal J. Lindsay・藤原義弘・野牧秀隆・豊福高志・山本啓之・ 丸山正・和田英太郎 (2010) アミノ酸窒素同位体比に基づく海洋生態系の食物網 構造の解析.2010年度日本地球化学会年会. Watanabe H, Fujikura K, Kojima S, Miyazaki J-i, Fujiwara Y (2009) Japan: Vents and seeps in close proximity In: Topic in Geobiology. Springer, p in press Kinoshita G, Kawato M, Shinozaki A, Yamamoto T, Okoshi K, Kubokawa K, Yamamoto H, Fujiwara Y (2010) Protandric hermaphroditism in the whale-fall mussel Adipicola pacifica. Cah Biol Mar 51:in press Miyazaki M, Kawato M, Umezu Y, Pradillon F, Fujiwara Y (2010) Isolation of symbiont-like bacteria from Osedax spp. 58p. Kawato M, Fujiwara Y (2010) Discovery of chemosymbiotic ciliate Zoothamnium niveum from a whale fall in Japan. Japan Geoscience Union Meeting 2010. Fujiwara Y, Kawato M, Miyazaki M, (2010) Diversity and evolution of symbioses at whale falls. Memorial Symposium for the 26th International Prize for Biology ”Biology of Symbiosis”. 藤原 義弘,河戸 勝,山中 寿朗 (2010) 鯨骨産イガイ類における共生様式の進 化.日本地球惑星科学連合2010年大会. Nishimura A, Yamamoto T, Fujiwara Y, Masaru Kawato, Pradillon Florence and Kaoru Kubokawa (2010) Population Structure of Protodrilus sp. (Polychaeta) in Whale Falls. Trench Connection: International Symposium on the Deepest Environment on Earth. 永堀 敦志,藤原 義弘,河戸 勝 (2010) 鯨骨産二枚貝ヒラノマクラの鰓上皮細 胞の貪食能力に関する研究.日本地球惑星科学連合2010年大会. Shinozaki A, Kawato M, Noda C, Yamamoto T, Kubokawa K, Yamanaka T, Tahara J, Nakajoh H, Aoki T, Miyake H, Fujiwara Y (2010) Reproduction of the vestimentiferan tubeworm Lamellibrachia satsuma inhabiting a whale vertebra in an aquarium.
    [Show full text]
  • Metagenomic Analysis Shows the Presence of Bacteria Related To
    ORIGINAL RESEARCH published: 28 May 2018 doi: 10.3389/fmars.2018.00171 Metagenomic Analysis Shows the Presence of Bacteria Related to Free-Living Forms of Sulfur-Oxidizing Chemolithoautotrophic Symbionts in the Rhizosphere of the Seagrass Zostera marina Catarina Cúcio 1, Lex Overmars 1, Aschwin H. Engelen 2 and Gerard Muyzer 1* 1 Edited by: Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands, 2 Marine Ecology and Evolution Research Group, Jillian Petersen, CCMAR-CIMAR Centre for Marine Sciences, Universidade do Algarve, Faro, Portugal Universität Wien, Austria Reviewed by: Stephanie Markert, Seagrasses play an important role as ecosystem engineers; they provide shelter to many Institut für Marine Biotechnologie, animals and improve water quality by filtering out nutrients and by controlling pathogens. Germany Annette Summers Engel, Moreover, their rhizosphere promotes a myriad of microbial interactions and processes, University of Tennessee, Knoxville, which are dominated by microorganisms involved in the sulfur cycle. This study United States provides a detailed insight into the metabolic sulfur pathways in the rhizobiome of the *Correspondence: Gerard Muyzer seagrass Zostera marina, a dominant seagrass species across the temperate northern [email protected] hemisphere. Shotgun metagenomic sequencing revealed the relative dominance of Gamma- and Deltaproteobacteria, and comparative analysis of sulfur genes identified a Specialty section: This article was submitted to higher abundance of genes related to sulfur oxidation than sulfate reduction. We retrieved Aquatic Microbiology, four high-quality draft genomes that are closely related to the gill symbiont of the clam a section of the journal Solemya velum, which suggests the presence of putative free-living forms of symbiotic Frontiers in Marine Science bacteria.
    [Show full text]
  • Nanosims and Tissue Autoradiography Reveal Symbiont Carbon fixation and Organic Carbon Transfer to Giant Ciliate Host
    The ISME Journal (2018) 12:714–727 https://doi.org/10.1038/s41396-018-0069-1 ARTICLE NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host 1 2 1 3 4 Jean-Marie Volland ● Arno Schintlmeister ● Helena Zambalos ● Siegfried Reipert ● Patricija Mozetič ● 1 4 2 1 Salvador Espada-Hinojosa ● Valentina Turk ● Michael Wagner ● Monika Bright Received: 23 February 2017 / Revised: 3 October 2017 / Accepted: 9 October 2017 / Published online: 9 February 2018 © The Author(s) 2018. This article is published with open access Abstract The giant colonial ciliate Zoothamnium niveum harbors a monolayer of the gammaproteobacteria Cand. Thiobios zoothamnicoli on its outer surface. Cultivation experiments revealed maximal growth and survival under steady flow of high oxygen and low sulfide concentrations. We aimed at directly demonstrating the sulfur-oxidizing, chemoautotrophic nature of the symbionts and at investigating putative carbon transfer from the symbiont to the ciliate host. We performed pulse-chase incubations with 14C- and 13C-labeled bicarbonate under varying environmental conditions. A combination of tissue autoradiography and nanoscale secondary ion mass spectrometry coupled with transmission electron microscopy was used to fi 1234567890();,: follow the fate of the radioactive and stable isotopes of carbon, respectively. We show that symbiont cells x substantial amounts of inorganic carbon in the presence of sulfide, but also (to a lesser degree) in the absence of sulfide by utilizing internally stored sulfur. Isotope labeling patterns point to translocation of organic carbon to the host through both release of these compounds and digestion of symbiont cells. The latter mechanism is also supported by ultracytochemical detection of acid phosphatase in lysosomes and in food vacuoles of ciliate cells.
    [Show full text]
  • Phylogenetic and Functional Characterization of Symbiotic Bacteria in Gutless Marine Worms (Annelida, Oligochaeta)
    Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta) Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr. rer. nat.- dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Anna Blazejak Oktober 2005 Die vorliegende Arbeit wurde in der Zeit vom März 2002 bis Oktober 2005 am Max-Planck-Institut für Marine Mikrobiologie in Bremen angefertigt. 1. Gutachter: Prof. Dr. Rudolf Amann 2. Gutachter: Prof. Dr. Ulrich Fischer Tag des Promotionskolloquiums: 22. November 2005 Contents Summary ………………………………………………………………………………….… 1 Zusammenfassung ………………………………………………………………………… 2 Part I: Combined Presentation of Results A Introduction .…………………………………………………………………… 4 1 Definition and characteristics of symbiosis ...……………………………………. 4 2 Chemoautotrophic symbioses ..…………………………………………………… 6 2.1 Habitats of chemoautotrophic symbioses .………………………………… 8 2.2 Diversity of hosts harboring chemoautotrophic bacteria ………………… 10 2.2.1 Phylogenetic diversity of chemoautotrophic symbionts …………… 11 3 Symbiotic associations in gutless oligochaetes ………………………………… 13 3.1 Biogeography and phylogeny of the hosts …..……………………………. 13 3.2 The environment …..…………………………………………………………. 14 3.3 Structure of the symbiosis ………..…………………………………………. 16 3.4 Transmission of the symbionts ………..……………………………………. 18 3.5 Molecular characterization of the symbionts …..………………………….. 19 3.6 Function of the symbionts in gutless oligochaetes ..…..…………………. 20 4 Goals of this thesis …….…………………………………………………………..
    [Show full text]
  • Downloaded from on January 18, 2015
    Downloaded from http://rspb.royalsocietypublishing.org/ on January 18, 2015 Proc. R. Soc. B (2007) 274, 2259–2269 doi:10.1098/rspb.2007.0631 Published online 27 July 2007 The effects of sulphide on growth and behaviour of the thiotrophic Zoothamnium niveum symbiosis Christian Rinke1,*, Raymond Lee2, Sigrid Katz1 and Monika Bright1 1Department of Marine Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria 2School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA Zoothamnium niveum (Ciliophora, Oligohymenophora) is a giant, colonial marine ciliate from sulphide-rich, shallow-water habitats, obligatorily associated with the ectosymbiotic, chemoautotrophic, sulphide-oxidizing bacterium ‘Candidatus Thiobios zoothamnicoli’. The aims of this study were to characterize the natural habitat and investigate growth, reproduction, survival and maintenance of the symbiosis from Corsica, France (Mediterranean Sea) using a flow-through respirometer providing stable chemical conditions. We were able to successfully cultivate the Z. niveum symbiosis during its entire lifespan and document K1 reproduction, whereby the optimum conditions were found to range from 3 to 33 mmol l SH2S in normoxic seawater. Starting with an inoculum of 13 specimens, we found up to 173 new specimens that were asexually produced after only 11 days. Observed mean lifespan of the Z. niveum colonies was approximately 11 days and mean colony size reached 51 branches, from which rapid host division rates of up to every 4.1 hours were calculated. Comparing the ectosymbiotic population from Z. niveum colonies collected from their natural habitat with those cultivated under optimal conditions, we found significant differences in the bacterial morphology and the frequency of dividing cells on distinct host parts, which is most likely caused by behaviour of the host ciliate.
    [Show full text]
  • Lust Und Last Des Bezeichnens - • • Über Namen Aus Der Mikroskopischen Welt1
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Denisia 13 I 17.09.2004 I 383-402 Lust und Last des Bezeichnens - • • Über Namen aus der mikroskopischen Welt1 E. AESCHT Abstract: Delight and burden of naming - About names from the microscopic world. — A short history of desi- gnating mainly genera and species of ciliates (Ciliophora), which are relatively "large" and rich of characters, is gi- ven. True vernacular (genuine) names are understandably absent; German names have been established from 1755 to 1838 and in the last three decades of the 20lh century in scientific and popular literature. A first analysis from a linguistic point of view of about 1400 scientific names of type species shows that frequently metaphoric names have been applied referring to objects of everday use and somatic characters of well known animals including human beings. A nomenclaturally updated list of 271 species including German names is provided, of which numerous syn- onyms and homonyms have to be clarified cooperatively; 160 of these species are of saprobiological relevance and 119 refer to type species of genera. Malpractices of amateurs and scientists have been due to a confusion of nomen- clature, a formalized exact tool of designation, and taxonomy, the theory and practice of classifying organisms. It is argued that names in national languages may help to publicise the diversity and importance of microscopic orga- nisms; their description and labeling are a particular challenge to creative, recently underestimated linguistic com- petence. Key words: history of nomenclature, protozoans, ciliates (Ciliophora), scientific and vernacular names, populariza- tion, taxonomy. „Nur Namen! Aber Namen sind nicht Schall und Rauch.
    [Show full text]
  • Zoothamnium Ignavum Sp
    RESEARCH ARTICLE A Novel Colonial Ciliate Zoothamnium ignavum sp. nov. (Ciliophora, Oligohymeno- phorea) and Its Ectosymbiont Candidatus Navis piranensis gen. nov., sp. nov. from Shallow-Water Wood Falls Lukas Schuster*, Monika Bright University of Vienna, Departmentof Limnology and Bio-Oceanography, Althanstraße 14, A-1090 Vienna, Austria * [email protected] a11111 Abstract Symbioses between ciliate hosts and prokaryote or unicellular eukaryote symbionts are widespread. Here, we report on a novel ciliate species within the genus Zoothamnium Bory de St. Vincent, 1824, isolated from shallow-water sunken wood in the North Adriatic Sea OPEN ACCESS (Mediterranean Sea), proposed as Zoothamnium ignavum sp. nov. We found this ciliate Citation: Schuster L, Bright M (2016) A Novel species to be associated with a novel genus of bacteria, here proposed as “Candidatus Colonial Ciliate Zoothamnium ignavum sp. nov. Navis piranensis” gen. nov., sp. nov. The descriptions of host and symbiont species are (Ciliophora, Oligohymeno-phorea) and Its based on morphological and ultrastructural studies, the SSU rRNA sequences, and in situ Ectosymbiont Candidatus Navis piranensis gen. nov., sp. nov. from Shallow-Water Wood Falls. PLoS ONE hybridization with symbiont-specific probes. The host is characterized by alternate micro- 11(9): e0162834. doi:10.1371/journal.pone.0162834 zooids on alternate branches arising from a long, common stalk with an adhesive disc. Editor: Jonathan H. Badger, National Cancer Three different types of zooids are present: microzooids with a bulgy oral side, roundish to Institute,UNITED STATES ellipsoid macrozooids, and terminal zooids ellipsoid when dividing or bulgy when undividing. Received: June 9, 2016 The oral ciliature of the microzooids runs 1¼ turns in a clockwise direction around the peri- stomial disc when viewed from inside the cell and runs into the infundibulum, where it Accepted: August 29, 2016 makes another ¾ turn.
    [Show full text]
  • Minireview Indigenous Ectosymbiotic Bacteria Associated with Diverse
    Environmental Microbiology Reports (2010) doi:10.1111/j.1758-2229.2010.00136.x Minireview Indigenous ectosymbiotic bacteria associated with diverse hydrothermal vent invertebratesemi4_136 1..10 Shana K. Goffredi* Historical documentation suggests that the prevalence Biology Department, Occidental College, 1600 Campus and possible importance of these associations, whether Rd, Los Angeles, CA 90041, USA. beneficial or detrimental, was realized long ago (Ander- son and Stephens, 1969; Johnson et al., 1971; Sochard et al., 1979). Today, there are many well-known ectosym- Summary bioses involving hosts within at least three subgroups of Symbioses involving bacteria and invertebrates con- the Ciliophora, one Euglenozoan,twoNematoda subfami- tribute to the biological diversity and high productiv- lies, three Mollusca families, two classes of Annelida, and ity of both aquatic and terrestrial environments. many Crustacea, including both decapods and cirripeds Well-known examples from chemosynthetic deep-sea (Buck et al., 2000; Polz et al., 2000; Dubilier et al., 2008). hydrothermal vent environments involve ectosymbi- The vent shrimp Rimicaris exoculata, for example, pos- otic microbes associated with the external surfaces of sesses dense bacteria on its carapace and mouthparts marine invertebrates. Some of these ectosymbioses (Van Dover et al., 1988). Once thought to be a monocul- confer protection or defence from predators or the ture of a single, pleomorphic epsilonproteobacterium, it is environment itself, some are nutritional in nature, and now known that the bacterial community includes two many still are of unknown function. Several recently dominant bacterial types, whatever the prevailing chemi- discovered hydrothermal vent invertebrates, includ- cal conditions surrounding the animal (Gebruk et al., ing two populations of yeti crab (Kiwa spp.), a limpet 1993; Polz and Cavanaugh, 1995; Struck et al., 2008).
    [Show full text]
  • The Ecology of a Novel Symbiosis Between a Marine Peritrich Ciliate and Chemoautotrophic Bacteria
    P.S.Z.N.: Marine Ecology, 19 (3): 229-243 (1998) FI 1998 Blackwell Wissenschafts-Verlag, Berlin Accepted: June 17, 1998 ISSN 0173-9565 The Ecology of a Novel Symbiosis Between a Marine Peritrich Ciliate and Chemoautotrophic Bacteria JORC A. OTT.MONIKA BRIGHT & FRIEDRICHSCHIEMER Institute of Zoology, University of Vienna, Althanstr. 14. A-1090 Vienna. Austria. E-mail: joerg.ottm univie.ac.at With 12 figures Key words: Zoollrunrriiuni nii~euni.Ciliophora, Peritrichida, sulfur bacteria, symbiosis. mangal. Abstract. A symbiosis between a sessile colonial ciliate, Zoolharnriiroir nii~cwrir(HEMPRICH & EHRENBERG. 1831). and chemolithoautotrophic bacteria oxidizing reduced sulfur compounds is described. The ciliates and their ectosymbionts occur on mangrove peat in the Caribbean. The feather-shaped ciliate colonies expand and contract, thus exposing the microbes alternately to oxygenated water above and sulfidic water within the boundary layer developed on the surface of the highly sulfidic peat. The symbioticciliates colonize sites with high sulfide flux where the microbial surface mat has been disturbed and grow there until the microbe mat re-establishes itself. Problem Symbioses between chemolithoautotrophic sulfur-oxidizing bacteria and protists or invertebrates are common in marine habitats where reduced sulfur compounds are abundant. The discovery of animal communities around deep-sea hot vents and cold seeps (for reviews see TUNNICLIFFE,1991, 1992; CHILDRESS& FISHER, 1992; CAVANAUGH,1994; NELSON& FISHER,1995; FISHER,1996) which depend largely on the organic production of symbiotic bacteria that utilize sulfide as an energy source for the reduction of carbon dioxide, has spurred the search for such symbioses in shallow waters. Not surprisingly, similar microbe/animal associations have been found in all marine sulfidic habitats such as sheltered and organic-rich sediments, seagrass-rhizome mats and mangrove peat.
    [Show full text]
  • Ccre Reports 2005
    Smithsonian Institution CCRE REPORTS 2005 Caribbean Coral Reef Ecosystems • National Museum of Natural History January 2006 0 km 100 $BSSJF#PX3FTFBSDI"SFB XJUINPTU$BZTOBNFE SFWJTFE Mexico Columbus Cay Mosquito Cay 17˚00'N Sandfly Cay $BSJCCFBO Hutson Cay Cross Cay 4FB Dangriga Garbutt Cay Belize City. $PMVNCVT3FFG 17ºN Dangriga . 16˚55'N 5PCBDDP3BOHF Tobacco Cay Guatemala Coco Plum Cay Honduras 5PCBDDP3FFG Man-o'-War 88ºW Cay Ragged Cay Twin Cays #MVF(SPVOE 3BOHF South Water Cay Sittee Point Carrie Bow Cay $VSMFX#BOL 4BQPEJMMB Stewart Cay 1BUDI3FFGT -BHPPO Wee Wee Cay 4BOE#PSFT 16˚45'N Spruce Cay 4PVUI$VU Douglas Cay Elbow Cays Riversdale N mag. 1FMJDBO$BZT Manatee Cay Cat Cay Jonathan Point Quamino Cays Channel Cay Lagoon Cays 1BUDI3FFGT False Cay 4BOE#PSFT Crawl Cay False Point 16˚35'N Tarpum Cay Bakers Rendezvous 5 km Gladden Cays Rendezvous Cay 88˚15'W 88˚05'W CCRE REPORTS 2005 National Museum of Natural History Caribbean Coral Reef Ecosystem Program Washington, D. C. 20013-7012 April, 2006 Table of Contents News...................................................................................................................................................................................1 Flashbacks...........................................................................................................................................................................4 Research Projects .............................................................................................................................................................5
    [Show full text]
  • An Ectosymbiotic Bacterium Covering the Giant Marine Ciliate Zoothamnium Niveum Christian Rinke,1* Stephan Schmitz-Esser,2 Kilian Stoecker,2 Andrea D
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 2006, p. 2014–2021 Vol. 72, No. 3 0099-2240/06/$08.00ϩ0 doi:10.1128/AEM.72.3.2014–2021.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. “Candidatus Thiobios zoothamnicoli,” an Ectosymbiotic Bacterium Covering the Giant Marine Ciliate Zoothamnium niveum Christian Rinke,1* Stephan Schmitz-Esser,2 Kilian Stoecker,2 Andrea D. Nussbaumer,1 Da´vid A. Molna´r,3 Katrina Vanura,1,4 Michael Wagner,2 Matthias Horn,2 Jo¨rgA.Ott,1 and Monika Bright1 Department of Marine Biology, University of Vienna, 1090 Vienna, Austria1; Department of Microbial Ecology, University of Vienna, 1090 Vienna, Austria2; Department of Microbiology, Eo¨tvo¨s Lora´nd University of Sciences, 1112 Budapest, Hungary3; and Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University Vienna, 1090 Vienna, Austria4 Received 20 September 2005/Accepted 29 November 2005 Zoothamnium niveum is a giant, colonial marine ciliate from sulfide-rich habitats obligatorily covered with chemoautotrophic, sulfide-oxidizing bacteria which appear as coccoid rods and rods with a series of intermediate shapes. Comparative 16S rRNA gene sequence analysis and fluorescence in situ hybridization showed that the ectosymbiont of Z. niveum belongs to only one pleomorphic phylotype. The Z. niveum ectosymbiont is only moder- ately related to previously identified groups of thiotrophic symbionts within the Gammaproteobacteria, and shows highest 16S rRNA sequence similarity with the free-living sulfur-oxidizing bacterial strain ODIII6 from shallow- water hydrothermal vents of the Mediterranean Sea (94.5%) and an endosymbiont from a deep-sea hydrothermal vent gastropod of the Indian Ocean Ridge (93.1%).
    [Show full text]