Atmos. Chem. Phys., 15, 2473–2486, 2015 www.atmos-chem-phys.net/15/2473/2015/ doi:10.5194/acp-15-2473-2015 © Author(s) 2015. CC Attribution 3.0 License. Aerosol properties over the western Mediterranean basin: temporal and spatial variability H. Lyamani1,2, A. Valenzuela1,2, D. Perez-Ramirez3,4, C. Toledano5, M. J. Granados-Muñoz1,2, F. J. Olmo1,2, and L. Alados-Arboledas1,2 1Andalusian Institute for Earth System Research (IISTA-CEAMA), 18006, Granada, Spain 2Department of Applied Physic, University of Granada, 18071, Granada, Spain 3Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA 4Goddard Earth Sciences Technology and Research, Universities Space Research Association (GESTAR/USRA), Columbia, Maryland, USA 5Atmospheric Optics Group (GOA), University of Valladolid (UVA), 47071, Valladolid, Spain Correspondence to: H. Lyamani (
[email protected]) Received: 1 July 2014 – Published in Atmos. Chem. Phys. Discuss.: 21 August 2014 Revised: 2 February 2015 – Accepted: 15 February 2015 – Published: 5 March 2015 Abstract. This study focuses on the analysis of Aerosol 1 Introduction Robotic Network (AERONET) aerosol data obtained over Alborán Island (35.90◦ N, 3.03◦ W, 15 m a.s.l.) in the west- ern Mediterranean from July 2011 to January 2012. Addi- Atmospheric aerosol particles play an important role in the tional aerosol data from the three nearest AERONET stations atmosphere because they can affect the Earth’s radiation bud- (Málaga, Oujda and Palma de Mallorca) and the Maritime get directly by the scattering and absorption of solar and ter- Aerosol Network (MAN) were also analyzed in order to in- restrial radiation (e.g., Haywood and Shine, 1997), and indi- vestigate the temporal and spatial variations of aerosol over rectly by modifying cloud properties (e.g., Kaufman et al., this scarcely explored region.