From Random Walks to Critical Phenomena and Conformal Field Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Ising Model
The Ising Model Today we will switch topics and discuss one of the most studied models in statistical physics the Ising Model • Some applications: – Magnetism (the original application) – Liquid-gas transition – Binary alloys (can be generalized to multiple components) • Onsager solved the 2D square lattice (1D is easy!) • Used to develop renormalization group theory of phase transitions in 1970’s. • Critical slowing down and “cluster methods”. Figures from Landau and Binder (LB), MC Simulations in Statistical Physics, 2000. Atomic Scale Simulation 1 The Model • Consider a lattice with L2 sites and their connectivity (e.g. a square lattice). • Each lattice site has a single spin variable: si = ±1. • With magnetic field h, the energy is: N −β H H = −∑ Jijsis j − ∑ hisi and Z = ∑ e ( i, j ) i=1 • J is the nearest neighbors (i,j) coupling: – J > 0 ferromagnetic. – J < 0 antiferromagnetic. • Picture of spins at the critical temperature Tc. (Note that connected (percolated) clusters.) Atomic Scale Simulation 2 Mapping liquid-gas to Ising • For liquid-gas transition let n(r) be the density at lattice site r and have two values n(r)=(0,1). E = ∑ vijnin j + µ∑ni (i, j) i • Let’s map this into the Ising model spin variables: 1 s = 2n − 1 or n = s + 1 2 ( ) v v + µ H s s ( ) s c = ∑ i j + ∑ i + 4 (i, j) 2 i J = −v / 4 h = −(v + µ) / 2 1 1 1 M = s n = n = M + 1 N ∑ i N ∑ i 2 ( ) i i Atomic Scale Simulation 3 JAVA Ising applet http://physics.weber.edu/schroeder/software/demos/IsingModel.html Dynamically runs using heat bath algorithm. -
Qualitative Picture of Scaling in the Entropy Formalism
Entropy 2008, 10, 224-239; DOI: 10.3390/e10030224 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.org/entropy Article Qualitative Picture of Scaling in the Entropy Formalism Hans Behringer Faculty of Physics, University of Bielefeld, D-33615 Bielefeld, Germany E-mail: [email protected] Received: 30 June 2008; in revised form: 27 August 2008 / Accepted: 2 September 2008 / Published: 5 September 2008 Abstract: The properties of an infinite system at a continuous phase transition are charac- terised by non-trivial critical exponents. These non-trivial exponents are related to scaling relations of the thermodynamic potential. The scaling properties of the singular part of the specific entropy of infinite systems are deduced starting from the well-established scaling re- lations of the Gibbs free energy. Moreover, it turns out that the corrections to scaling are suppressed in the microcanonical ensemble compared to the corresponding corrections in the canonical ensemble. Keywords: Critical phenomena, microcanonical entropy, scaling relations, Gaussian and spherical model 1. Introduction In a mathematically idealised way continuous phase transitions are described in infinite systems al- though physical systems in nature or in a computer experiment are finite. The singular behaviour of physical quantities such as the response functions is related to scaling properties of the thermodynamic potential which is used for the formulation [1, 2]. Normally the Gibbs free energy is chosen for the description although other potentials also contain the full information about an equilibrium phase transi- tion. The Hankey-Stanley theorem relates the scaling properties of the Gibbs free energy to the scaling properties of any other energy-like potential that is obtained from the Gibbs free energy by a Legendre transformation [3]. -
Arxiv:1511.03031V2
submitted to acta physica slovaca 1– 133 A BRIEF ACCOUNT OF THE ISING AND ISING-LIKE MODELS: MEAN-FIELD, EFFECTIVE-FIELD AND EXACT RESULTS Jozef Streckaˇ 1, Michal Jasˇcurˇ 2 Department of Theoretical Physics and Astrophysics, Faculty of Science, P. J. Saf´arikˇ University, Park Angelinum 9, 040 01 Koˇsice, Slovakia The present article provides a tutorial review on how to treat the Ising and Ising-like models within the mean-field, effective-field and exact methods. The mean-field approach is illus- trated on four particular examples of the lattice-statistical models: the spin-1/2 Ising model in a longitudinal field, the spin-1 Blume-Capel model in a longitudinal field, the mixed-spin Ising model in a longitudinal field and the spin-S Ising model in a transverse field. The mean- field solutions of the spin-1 Blume-Capel model and the mixed-spin Ising model demonstrate a change of continuous phase transitions to discontinuous ones at a tricritical point. A con- tinuous quantum phase transition of the spin-S Ising model driven by a transverse magnetic field is also explored within the mean-field method. The effective-field theory is elaborated within a single- and two-spin cluster approach in order to demonstrate an efficiency of this ap- proximate method, which affords superior approximate results with respect to the mean-field results. The long-standing problem of this method concerned with a self-consistent deter- mination of the free energy is also addressed in detail. More specifically, the effective-field theory is adapted for the spin-1/2 Ising model in a longitudinal field, the spin-S Blume-Capel model in a longitudinal field and the spin-1/2 Ising model in a transverse field. -
International Centre for Theoretical Physics
REFi IC/90/116 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS FIXED SCALE TRANSFORMATION FOR ISING AND POTTS CLUSTERS A. Erzan and L. Pietronero INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION 1990 MIRAMARE- TRIESTE IC/90/116 International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS FIXED SCALE TRANSFORMATION FOR ISING AND POTTS CLUSTERS A. Erzan International Centre for Theoretical Physics, Trieste, Italy and L. Pietronero Dipartimento di Fisica, Universita di Roma, Piazzale Aldo Moro, 00185 Roma, Italy. ABSTRACT The fractal dimension of Ising and Potts clusters are determined via the Fixed Scale Trans- formation approach, which exploits both the self-similarity and the dynamical invariance of these systems at criticality. The results are easily extended to droplets. A discussion of inter-relations be- tween the present approach and renormalization group methods as well as Glauber—type dynamics is provided. MIRAMARE - TRIESTE May 1990 To be submitted for publication. T 1. INTRODUCTION The Fixed Scale Transformation, a novel technique introduced 1)i2) for computing the fractal dimension of Laplacian growth clusters, is applied here to the equilibrium problem of Ising clusters at criticality, in two dimensions. The method yields veiy good quantitative agreement with the known exact results. The same method has also recendy been applied to the problem of percolation clusters 3* and to invasion percolation 4), also with very good results. The fractal dimension D of the Ising clusters, i.e., the connected clusters of sites with identical spins, has been a controversial issue for a long time ^ (see extensive references in Refs.5 and 6). -
Statistical Field Theory University of Cambridge Part III Mathematical Tripos
Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2017 Statistical Field Theory University of Cambridge Part III Mathematical Tripos David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/sft.html [email protected] –1– Recommended Books and Resources There are a large number of books which cover the material in these lectures, although often from very di↵erent perspectives. They have titles like “Critical Phenomena”, “Phase Transitions”, “Renormalisation Group” or, less helpfully, “Advanced Statistical Mechanics”. Here are some that I particularly like Nigel Goldenfeld, Phase Transitions and the Renormalization Group • Agreatbook,coveringthebasicmaterialthatwe’llneedanddelvingdeeperinplaces. Mehran Kardar, Statistical Physics of Fields • The second of two volumes on statistical mechanics. It cuts a concise path through the subject, at the expense of being a little telegraphic in places. It is based on lecture notes which you can find on the web; a link is given on the course website. John Cardy, Scaling and Renormalisation in Statistical Physics • Abeautifullittlebookfromoneofthemastersofconformalfieldtheory.Itcoversthe material from a slightly di↵erent perspective than these lectures, with more focus on renormalisation in real space. Chaikin and Lubensky, Principles of Condensed Matter Physics • Shankar, Quantum Field Theory and Condensed Matter • Both of these are more all-round condensed matter books, but with substantial sections on critical phenomena and the renormalisation group. Chaikin and Lubensky is more traditional, and packed full of content. Shankar covers modern methods of QFT, with an easygoing style suitable for bedtime reading. Anumberofexcellentlecturenotesareavailableontheweb.Linkscanbefoundon the course webpage: http://www.damtp.cam.ac.uk/user/tong/sft.html. -
Lecture 8: the Ising Model Introduction
Lecture 8: The Ising model Introduction I Up to now: Toy systems with interesting properties (random walkers, cluster growth, percolation) I Common to them: No interactions I Add interactions now, with significant role I Immediate consequence: much richer structure in model, in particular: phase transitions I Simulate interactions with RNG (Monte Carlo method) I Include the impact of temperature: ideas from thermodynamics and statistical mechanics important I Simple system as example: coupled spins (see below), will use the canonical ensemble for its description The Ising model I A very interesting model for understanding some properties of magnetic materials, especially the phase transition ferromagnetic ! paramagnetic I Intrinsically, magnetism is a quantum effect, triggered by the spins of particles aligning with each other I Ising model a superb toy model to understand this dynamics I Has been invented in the 1920's by E.Ising I Ever since treated as a first, paradigmatic model The model (in 2 dimensions) I Consider a square lattice with spins at each lattice site I Spins can have two values: si = ±1 I Take into account only nearest neighbour interactions (good approximation, dipole strength falls off as 1=r 3) I Energy of the system: P E = −J si sj hiji I Here: exchange constant J > 0 (for ferromagnets), and hiji denotes pairs of nearest neighbours. I (Micro-)states α characterised by the configuration of each spin, the more aligned the spins in a state α, the smaller the respective energy Eα. I Emergence of spontaneous magnetisation (without external field): sufficiently many spins parallel Adding temperature I Without temperature T : Story over. -
Arxiv:1504.02898V2 [Cond-Mat.Stat-Mech] 7 Jun 2015 Keywords: Percolation, Explosive Percolation, SLE, Ising Model, Earth Topography
Recent advances in percolation theory and its applications Abbas Ali Saberi aDepartment of Physics, University of Tehran, P.O. Box 14395-547,Tehran, Iran bSchool of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5531, Tehran, Iran Abstract Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, di- mensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive per- colation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic L¨ownerevolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. -
Multiple Schramm-Loewner Evolutions and Statistical Mechanics Martingales
Multiple Schramm-Loewner Evolutions and Statistical Mechanics Martingales Michel Bauer a, Denis Bernard a 1, Kalle Kyt¨ol¨a b [email protected]; [email protected]; [email protected] a Service de Physique Th´eorique de Saclay CEA/DSM/SPhT, Unit´ede recherche associ´ee au CNRS CEA-Saclay, 91191 Gif-sur-Yvette, France. b Department of Mathematics, P.O. Box 68 FIN-00014 University of Helsinki, Finland. Abstract A statistical mechanics argument relating partition functions to martingales is used to get a condition under which random geometric processes can describe interfaces in 2d statistical mechanics at critical- ity. Requiring multiple SLEs to satisfy this condition leads to some natural processes, which we study in this note. We give examples of such multiple SLEs and discuss how a choice of conformal block is related to geometric configuration of the interfaces and what is the physical meaning of mixed conformal blocks. We illustrate the general arXiv:math-ph/0503024v2 21 Mar 2005 ideas on concrete computations, with applications to percolation and the Ising model. 1Member of C.N.R.S 1 Contents 1 Introduction 3 2 Basics of Schramm-L¨owner evolutions: Chordal SLE 6 3 A proposal for multiple SLEs 7 3.1 Thebasicequations ....................... 7 3.2 Archprobabilities......................... 8 4 First comments 10 4.1 Statistical mechanics interpretation . 10 4.2 SLEasaspecialcaseof2SLE. 10 4.3 Makingsense ........................... 12 4.4 A few martingales for nSLEs .................. 13 4.5 Classicallimit........................... 14 4.6 Relations with other work . 15 5 CFT background 16 6 Martingales from statistical mechanics 19 6.1 Tautological martingales . -
Phase Transitions and Critical Phenomena: an Essay in Natural Philosophy (Thales to Onsager)
Phase Transitions and Critical Phenomena: An Essay in Natural Philosophy (Thales to Onsager) Prof. David A. Edwards Department of Mathematics University of Georgia Athens, Georgia 30602 http://www.math.uga.edu/~davide/ http://davidaedwards.tumblr.com/ [email protected] §1. Introduction. In this essay we will present a detailed analysis of the concepts and mathematics that underlie statistical mechanics. For a similar discussion of classical and quantum mechanics the reader is referred to [E-1] and [E-4]. For a similar discussion of quantum field theory the reader is referred to [E-2]. For a discussion of quantum geometrodynamics the reader is referred to [E- 3] Scientific theories go through many stages in their development, some eventually reaching the stage at which one might say that "the only work left to be done is the computing of the next decimal." We shall call such theories climax theories in analogy with the notion of a climax forest (other analogies are also appropriate). A climax theory has two parts: one theoretical, which has become part of pure mathematics; and the other empirical, which somehow relates the mathematics to experience. The earliest example of a climax theory is Euclidean geometry. That such a development of geometry is even possible is not obvious. One can easily imagine an Egyptian geometer explaining to a Babylonian number theorist why geometry could never become a precise science like number theory because pyramids and other such bodies are intrinsically irregular and fuzzy (similar discussions occur often today between biologists and physicists). Archimedes' fundamental work showing that the four fundamental constants related to circles and spheres (C =αr, A = βr2 , S = ϒr 2, V= δr3 ) are all simply related (1/2α=β = 1/4ϒ= 3/4δ= π), together with his estimate that 3+10/71< π < 3+1/7 will serve for us as the paradigm of what science should be all about. -
Thermodynamic Derivation of Scaling at the Liquid–Vapor Critical Point
entropy Article Thermodynamic Derivation of Scaling at the Liquid–Vapor Critical Point Juan Carlos Obeso-Jureidini , Daniela Olascoaga and Victor Romero-Rochín * Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico; [email protected] (J.C.O.-J.); [email protected] (D.O.) * Correspondence: romero@fisica.unam.mx; Tel.: +52-55-5622-5096 Abstract: With the use of thermodynamics and general equilibrium conditions only, we study the entropy of a fluid in the vicinity of the critical point of the liquid–vapor phase transition. By assuming a general form for the coexistence curve in the vicinity of the critical point, we show that the functional dependence of the entropy as a function of energy and particle densities necessarily obeys the scaling form hypothesized by Widom. Our analysis allows for a discussion of the properties of the corresponding scaling function, with the interesting prediction that the critical isotherm has the same functional dependence, between the energy and the number of particles densities, as the coexistence curve. In addition to the derivation of the expected equalities of the critical exponents, the conditions that lead to scaling also imply that, while the specific heat at constant volume can diverge at the critical point, the isothermal compressibility must do so. Keywords: liquid–vapor critical point; scaling hypothesis; critical exponents Citation: Obeso-Jureidini, J.C.; 1. Introduction Olascoaga, D.; Romero-Rochín, V. The full thermodynamic description of critical phenomena in the liquid–vapor phase Thermodynamic Derivation of transition of pure substances has remained as a theoretical challenge for a long time [1]. -
Markov Random Fields and Stochastic Image Models
Markov Random Fields and Stochastic Image Models Charles A. Bouman School of Electrical and Computer Engineering Purdue University Phone: (317) 494-0340 Fax: (317) 494-3358 email [email protected] Available from: http://dynamo.ecn.purdue.edu/»bouman/ Tutorial Presented at: 1995 IEEE International Conference on Image Processing 23-26 October 1995 Washington, D.C. Special thanks to: Ken Sauer Suhail Saquib Department of Electrical School of Electrical and Computer Engineering Engineering University of Notre Dame Purdue University 1 Overview of Topics 1. Introduction (b) Non-Gaussian MRF's 2. The Bayesian Approach i. Quadratic functions ii. Non-Convex functions 3. Discrete Models iii. Continuous MAP estimation (a) Markov Chains iv. Convex functions (b) Markov Random Fields (MRF) (c) Parameter Estimation (c) Simulation i. Estimation of σ (d) Parameter estimation ii. Estimation of T and p parameters 4. Application of MRF's to Segmentation 6. Application to Tomography (a) The Model (a) Tomographic system and data models (b) Bayesian Estimation (b) MAP Optimization (c) MAP Optimization (c) Parameter estimation (d) Parameter Estimation 7. Multiscale Stochastic Models (e) Other Approaches (a) Continuous models 5. Continuous Models (b) Discrete models (a) Gaussian Random Process Models 8. High Level Image Models i. Autoregressive (AR) models ii. Simultaneous AR (SAR) models iii. Gaussian MRF's iv. Generalization to 2-D 2 References in Statistical Image Modeling 1. Overview references [100, 89, 50, 54, 162, 4, 44] 4. Simulation and Stochastic Optimization Methods [118, 80, 129, 100, 68, 141, 61, 76, 62, 63] 2. Type of Random Field Model 5. Computational Methods used with MRF Models (a) Discrete Models i. -
Classifying Potts Critical Lines
Classifying Potts critical lines Gesualdo Delfino1,2 and Elena Tartaglia1,2 1SISSA – Via Bonomea 265, 34136 Trieste, Italy 2INFN sezione di Trieste Abstract We use scale invariant scattering theory to exactly determine the lines of renormalization group fixed points invariant under the permutational symmetry Sq in two dimensions, and show how one of these scattering solutions describes the ferromagnetic and square lattice antiferromagnetic critical lines of the q-state Potts model. Other solutions we determine should correspond to new critical lines. In particular, we obtain that a Sq-invariant fixed point can be found up to the maximal value q = (7+ √17)/2. This is larger than the usually assumed maximal value 4 and leaves room for a second order antiferromagnetic transition at q = 5. arXiv:1707.00998v2 [cond-mat.stat-mech] 16 Oct 2017 1 Introduction Symmetry plays a prominent role within the theory of critical phenomena. The circumstance is usually illustrated referring to ferromagnetism, for which systems with different microscopic real- izations but sharing invariance under transformations of the same group G of internal symmetry fall within the same universality class of critical behavior. In the language of the renormalization group (see e.g. [1]) this amounts to say that the critical behavior of these ferromagnets is ruled by the same G-invariant fixed point. In general, however, there are several G-invariant fixed points of the renormalization group in a given dimensionality. Even staying within ferromag- netism, a system with several tunable parameters may exhibit multicriticality corresponding to fixed points with the same symmetry but different field content.