Basics of Low Voltage Distribution Transformers a Quickstep Online Course

Total Page:16

File Type:pdf, Size:1020Kb

Basics of Low Voltage Distribution Transformers a Quickstep Online Course Basics of Low Voltage Distribution Transformers A quickSTEP Online Course © Siemens industry, Inc. www.usa.siemens.com/step Trademarks Siemens is a trademark of Siemens AG. Product names mentioned may be trademarks or registered trademarks of their respective companies. National Electrical Code® and NEC® and NFPA 70® are registered trademarks of the National Fire Protection Association. NEMA® is a registered trademark and service mark of the National Electrical Manufacturers Association. UL® is a registered trademark of UL, LLC. Other trademarks are the property of their respective owners. © Siemens Industry, Inc. 2017 Page 1-2 Course Topics Welcome to Panelboards. This course covers the following topics: Chapter 1 - Introduction •Overview • Transformer Basics Chapter 2 – Transformer Information • Specifications and Ratings Chapter 3 – Siemens Transformers • Transformer Types Final Exam If you do not have an understanding of basic electrical concepts, you should complete Basics of Electricity before attempting this course. © Siemens Industry, Inc. 2017 Page 1-3 Course Objectives Upon completion of this course you will be able to… • Describe the role of low voltage distribution transformers in an electrical distribution system. • Describe how transformers work and the theories and concepts behind their design. • Identify important standards for low voltage distribution transformers • Describe the typical data found on a low voltage distribution transformer nameplate. • Describe various types of Siemens low voltage distribution transformers and the appropriate applications for each type. © Siemens Industry, Inc. 2017 Page 1-4 SITRAIN® Training for Industry Online Self-paced Learning – Programs with maximum flexibility so students can easily fit courses into their busy schedules Virtual Instructor-led Learning - Classroom lectures delivered in the convenience of your home or office Classroom Learning - Expert and professional instructors, proven courseware, and quality workstations combine for the most effective classroom experience possible at your facility or ours How-to Video Library - Quick, affordable, task-based learning options for a broad range of automation topics for training or purchase Simulators - World-class simulation systems available for training or purchase This course also describes learning options available from the Siemens SITRAIN USA organization and our global SITRAIN partners. For additional information: www.usa.siemens.com/sitrain © Siemens Industry, Inc. 2017 Page 1-5 Utility Power Distribution Power, originating at a power generating plant, is distributed to residential, commercial, and industrial customers through various transmission lines and substations. The most efficient way to do this is to increase the voltage while at the same time reducing the current. This is necessary to minimize the energy lost in heat on the transmission lines. These losses are referred to as I2R (I-squared-R) losses because they are equal to the square of the current times the resistance of the power lines. Once the electrical energy gets near the end user, the utility steps down the voltage to the level needed by the user. The device that utilities use to step up the voltage at the generator end and step down the voltage at the user end is called a transformer. Transformers are also used inside facilities to further reduce or increase the voltage to the level required by systems and devices. This course is intended to cover the low voltage distribution transformers used by commercial and industrial facilities as part of their power distribution systems. Siemens also sells equipment to electrical utilities; however, utility transformers are not covered in this course. © Siemens Industry, Inc. 2017 Page 1-6 Residential Power Distribution Power distribution systems are used in every residential, commercial, and industrial building to safely control the distribution of electrical power throughout the facility. Most of us are familiar with the power distribution system found in the average home. Power purchased from a utility company enters the house through a metering device. The power is then distributed from a load center to various branch circuits for lighting, appliances, and electrical outlets. Because the voltage applied to the utility meter in a typical residential application has already been stepped down to 120/240 VAC, a level usable by many electrical devices, the roll that transformers play in residential applications is not obvious. However, many devices have transformers built-in to further step down the voltage where necessary. This course does not cover these small, embedded transformers, but the principles of operation are the same as those that are covered. © Siemens Industry, Inc. 2017 Page 1-7 Commercial and Industrial Distribution Power distribution systems used in commercial and industrial locations are often complex. They include metering devices to measure power consumption, main and branch disconnects, protective devices, switching devices to start and stop power flow, conductors, and transformers. Power may be distributed through various switchboards, transformers, and panelboards. The primary role that low voltage distribution transformers play in commercial and industrial applications is essentially the same as in other applications, to transform voltage and current to the levels needed by the equipment employed. For example, in the accompanying simplified illustration, transformers are used to reduce the voltage from 480 VAC to 120 VAC for lighting and office equipment use. © Siemens Industry, Inc. 2017 Page 1-8 Low Voltage Distribution Transformers Transformers come in a variety of sizes and ratings. Most of transformers covered in this course are referred to as low voltage distribution transformers. Most of the transformers covered in this course are also referred to as dry-type transformers because they are not filled with any fluid. These transformers are rated for 600 VAC and below and intended for supplying appliance, lighting, and power loads. Common supply voltages include: 600, 480, 277, 240, and 208 VAC. © Siemens Industry, Inc. 2017 Page 1-9 Online Self-paced Learning With Siemens online self-paced learning, you select the topics and set your own pace for completing chosen courses. All course material can be accessed online. Instruction starts upon completing the purchase of a subscription. You can choose from over 500 courses consisting of high- quality graphics, on-screen text, supporting voiceover narration, and interactive exercises. Features include printable course content for reference and underlined key vocabulary terms with definitions displayed with a simple mouse-over action. Depending on the subscription purchased, you can choose any 10 or 25 courses or select the entire online self-paced course catalog. These courses are offered 24/7/365, so you can begin your subscription at any time. From the date of registration, you have one year to complete your course selections. For additional information: www.usa.siemens.com/sitrain © Siemens Industry, Inc. 2017 Page 1-10 Chapter 1 – Introduction This chapter covers the following topics: • Overview • Transformer Basics © Siemens Industry, Inc. 2017 Page 1-11 What is a Transformer? Transformers are electromagnetic devices that transfer electrical energy from one circuit to another by mutual induction. As previously mentioned, they are frequently used to step a voltage or current up to a higher level or down to a lower level. They can also be used to limit electrical noise transfer or to match circuit impedances. A single-phase transformer has two coils, a primary coil and a secondary coil. Energy is transferred from the primary to the secondary via mutual induction. The accompanying illustration shows an AC source connected to the primary coil. The magnetic field produced by the primary induces a voltage in the secondary coil, which supplies power to a load. Mutual inductance between two coils depends on their flux linkage. Maximum coupling occurs when all the lines of flux from the primary coil cut through the secondary coil. To maximize the amount of coupling, both coils are often wound on the same iron core, which provides a good path for the lines of flux. Keep in mind that the coils of wire are insulated from each other and from the core. The following discussions of transformers apply to transformers with a core made from iron or steel. © Siemens Industry, Inc. 2017 Page 1-12 Basic Principles Transformers operate on alternating current, rather than direct current. This is because it takes constantly varying current to allow the transformer to operate. The alternating current applied to the transformer’s primary coil causes magnetic flux to flow in the core. This flux, in turn, induces an alternating current in the secondary coil. Because this type of transformer has a core of iron, steel, or similar material, the magnetic flux is concentrated in the core. This allows virtually all the energy from the primary to be transferred to the secondary. Some energy is lost in heat in the conductors or core, but transformers are designed to minimize these losses. © Siemens Industry, Inc. 2017 Page 1-13 Transformer Turns Ratio There is a relationship between primary and secondary voltage, current, and impedance and the ratio of transformer primary turns to secondary turns. When the primary has fewer turns than the secondary, voltage is stepped up from primary to secondary. For the circuit on the left, the transformer secondary has twice as many turns as the primary, and voltage is stepped up from 120 VAC to 240 VAC. Because the impedance of the load is also higher than the impedance of the primary, current is stepped down from 10 amps to 5 amps. When the primary has more turns than the secondary, voltage is stepped down from primary to secondary. For the circuit on the right, the primary coil has twice as many turns as the secondary coil, and voltage is stepped down from 240 VAC to 120 VAC. Because the impedance of the load is lower than the impedance of the primary, the secondary current is stepped up from 5 amps to 10 amps. Transformers are rated for the amount of apparent power they can provide.
Recommended publications
  • Synchrophasor Monitoring for Distribution Systems: Technical Foundations and Applications
    NASPI-2018-TR-001 Synchrophasor Monitoring for Distribution Systems: Technical Foundations and Applications A White Paper by the NASPI Distribution Task Team January 2018 Editor: Alexandra von Meier - UC Berkeley Contributing Authors (in alphabetical order): Reza Arghandeh - Florida State University Kyle Brady - UC Berkeley Merwin Brown – UC Berkeley George R. Cotter – Isologic LLC Deepjyoti Deka – Los Alamos National Laboratory Hossein Hooshyar – Rennselaer Polytechnic Institute Mahdi Jamei – Arizona State University Harold Kirkham – Pacific Northwest National Laboratory Alex McEachern – Power Standards Lab Laura Mehrmanesh – UC Berkeley Tom Rizy – Oak Ridge National Laboratory Anna Scaglione – Arizona State University Jerry Schuman – PingThings, Inc. Younes Seyedi – Polytechnique Montreal Alireza Shahvasari – UC Riverside Alison Silverstein - NASPI Emma Stewart – Lawrence Livermore National Laboratory Luigi Vanfretti – Rensselaer Polytechnic Institute Alexandra von Meier - UC Berkeley Lingwei Zhan – Oak Ridge National Laboratory Junbo Zhao – Virginia Tech 2 Contents 1.0 Introduction ........................................................................................................................ 5 1.1 Premise of Distribution PMUs ........................................................................................ 6 1.2 What’s new? Synchrophasor technology ....................................................................... 7 1.3 Why bother? High-value uses for distribution monitoring ...........................................
    [Show full text]
  • Mandatory Disclosure Part-2
    COLLEGE OF ENGINEERING AND TECHNOLOGY, BAMBHORI POST BOX NO. 94, JALGAON – 425001. (M.S.) NBA Accredited Website : www.sscoetjalgaon.ac.in Email : [email protected] Mandatory Disclosure Part-II November 2009 NORTH MAHARASHTRA UNIVERSITY, JALGAON STRUCTURE OF TEACHING AND EVALUATION S.E .(CIVIL ENGINEERING) First term Sr. Subject Teaching Scheme Examination Scheme No. Hours/week Paper Lectures Tutorial Practical Duration Paper TW PR OR Hours 1 Strength of Material 4 1 -- 3 100 25 -- -- 2 Surveying-I 4 -- 2 3 100 25 50 -- 3 Building Construction and 4 -- 4 3 100 25 -- 25 Materials 4 Concrete Technology 4 -- 2 3 100 25 -- 25 5 Engineering Mathematics- 4 1 -- 3 100 25 -- -- III 6 Computer Graphics -- -- 2 25 Total 20 2 10 -- 500 150 50 50 Grand Total 32 750 SECOND TERM Sr. Subject Teaching Scheme Hours/week Examination Scheme No. Paper Lectures Tutorial Practical Duration Paper TW PR OR Hours 1 Theory of Structures-I 4 1 -- 3 100 25 -- -- 2 Surveying-II 4 -- 2 3 100 25 50 -- 3 Building Design and 4 -- 4 4 100 50 -- 25 Drawing 4 Fluid Mechanics-I 4 1 2 3 100 25 -- 25 5 Engineering Geology 4 -- 2 3 100 25 -- -- 20 2 10 -- 500 15 50 50 0 Total Grand 32 750 Total NORTH MAHARASHTRA UNIVERSITY, JALGAON. SYLLABUS OF SECOND YEAR (CIVIL) TERM-IST (w.e.f. 2006-07) STRENGTH OF MATERIALS ---------------------------------------------------------------------------------------------------------------- Teaching Scheme: Examination Scheme: Lectures: 4 Hours/Week Theory Paper: 100 Marks(3 Hrs) Tutorials: 1 Hour/Week Term Work: 25 Marks ---------------------------------------------------------------------------------------------------------------- UNIT-I: ( 11 Hrs., 20 marks) Normal stress & strain, Hooke’s law.
    [Show full text]
  • Vuspec Power Dist 2016
    Notice of New Standard Products Title: IEEE Power, Distribution & Regulating Transformers Collection: VuSpec™ Summary (Abstract): IEEE Power, Distribution and Regulatory Transformer Collection: VuSpec™ contains the latest standards, guides, and recommended practices of the Institute of Electrical and Electronics Engineers, Inc. (IEEE) Transformers Committee. It also contains IEEE C57 series of standards. This collection represents the most complete resource available for professional engineers looking for best practices and techniques covering testing, repair, installation, operation, and maintenance of transformers, reactors, and associated components that are used within the electric utility and industrial power systems. These standards provide provides a crucial service to society's need for continuing development and maintenance of a reliable, safe, and efficient power system infrastructure. Table of Contents: Includes 104 active IEEE standards for Power Distribution & Regulating Transformers family. • IEEE Std 4-2012, IEEE Standard for High-Voltage Testing Techniques • IEEE Std 259™-1999 (R2010), IEEE Standard Test Procedure for Evaluation of Systems of Insulation for Dry-Type Specialty and General - Purpose Transformers • IEEE Std 638™-2013, IEEE Standard for Qualification of Class 1E Transformers for Nuclear Power Generating Stations • IEEE Std 1276™-1997 (R2006), IEEE Guide for the Application of High-Temperature Insulation Materials in Liquid- Immersed Power Transformers • IEEE Std 1277™-2010, IEEE Standard General Requirements
    [Show full text]
  • Classification of Transformers Family
    TECHNOLOGY BASICS ABSTRACT Transformers are used in the electrical Classification of networks everywhere: in power plants, substations, industrial plants, buil- dings, data centres, railway vehicles, Transformers Family ships, wind turbines, in the electronic devices, the underground, and even 1. Introduction undersea. The focus of this article is on transformers applied in the trans- ransformers basically perform a of transformers in the most systematic way mission of energy, usually called pow- very simple function: they increase rather than elaborating on each type. er transformers. Due to very versatile Tor decrease voltage and current for requirements and restrictions in the the electric energy transmission. It is pre- The most important international orga- numerous applications, ranging from cisely stated what a transformer is in the nisations with focus on such transfor- a subsea transformer to a wind turbine International Electrotechnical Vocabula- mers are IEC1 through E14, its technical transformer, a small distribution trans- ry, Chapter 421: Power transformers and committee for the world standards; IEEE2 former to a large phase shifter trans- reactors [1]: through the Transformers Committee former, it is very difficult to organise a mainly for the American standards and structured overview of the transformer “A static piece of apparatus with two or CIGRE3 through the Study Committee types. Also, different companies sup- mo re windings which, by electromag- A2 Transformers which mainly produ- ply different markets and each have netic ind uction, transforms a system ces technical brochures and guidelines their own classification of the trans- of alterna ting voltage and current into on many subjects. Main standards for formers, which makes the transformer another system of voltage and current the transformers in question are the IEC family even more difficult to organise.
    [Show full text]
  • Mutual Inductance and Transformer Theory Questions: 1 Through 15 Lab Exercise: Transformer Voltage/Current Ratios (Question 61)
    ELTR 115 (AC 2), section 1 Recommended schedule Day 1 Topics: Mutual inductance and transformer theory Questions: 1 through 15 Lab Exercise: Transformer voltage/current ratios (question 61) Day 2 Topics: Transformer step ratio Questions: 16 through 30 Lab Exercise: Auto-transformers (question 62) Day 3 Topics: Maximum power transfer theorem and impedance matching with transformers Questions: 31 through 45 Lab Exercise: Auto-transformers (question 63) Day 4 Topics: Transformer applications, power ratings, and core effects Questions: 46 through 60 Lab Exercise: Differential voltage measurement using the oscilloscope (question 64) Day 5 Exam 1: includes Transformer voltage ratio performance assessment Lab Exercise: work on project Project: Initial project design checked by instructor and components selected (sensitive audio detector circuit recommended) Practice and challenge problems Questions: 66 through the end of the worksheet Impending deadlines Project due at end of ELTR115, Section 3 Question 65: Sample project grading criteria 1 ELTR 115 (AC 2), section 1 Project ideas AC power supply: (Strongly Recommended!) This is basically one-half of an AC/DC power supply circuit, consisting of a line power plug, on/off switch, fuse, indicator lamp, and a step-down transformer. The reason this project idea is strongly recommended is that it may serve as the basis for the recommended power supply project in the next course (ELTR120 – Semiconductors 1). If you build the AC section now, you will not have to re-build an enclosure or any of the line-power circuitry later! Note that the first lab (step-down transformer circuit) may serve as a prototype for this project with just a few additional components.
    [Show full text]
  • Transformer Parameter Monitoring Using Gsm Module
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072 TRANSFORMER PARAMETER MONITORING USING GSM MODULE Rashmi Ashok Panherkar 1, Prajakta Vaidya 2 ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - This paper present transformer parameter logic by feeler and which is position in pointer to monitoring using GSM module. The main advantages of this microcontroller. The indication is monitor as of scheme is using through GSM module. The devious of commencement to finish GSM Module.[3] transformer is over and done with by way of high temperature detector.GSM & Microcontroller used in wireless revelation. The bringing mutually is appliance to intellect the casing The reading and result of transformer like voltage, current, is tone of transformer and commencement in sequence to not allowed by using microcontroller & send sms through GSM monitor.[1]Sheltered headset which is also a microcontroller module. unit. It create organization flank via locate rate and position value, but some wrong step occur next convey interested in KeyWords: Wireless control System, GSM Module, existing person it is give you an idea about on LCD.[4] Microcontroller, Temperature Sensor. Technological assistance broken connected to decision the an collection of scheme to organize situations of 1.INTRODUCTION transformer by means of form of information communiqué construction as a result of the line of assail of pointed on A transformer is a piece of equipment used either for rising communiqué services, reserve inspection & critique in print or lowers the voltage of an a.c. supply with equivalent joined to processor and to end support embellish are bring reduces or enlarge in current.
    [Show full text]
  • Diploma in Electrical and Electronics Engineering PAGE 1
    ` DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING COURSES OFFERED CODE COURSE CREDITS YEAR/SEMESTER 15O A) FOUNDATION COURSES : (49 CREDITS) (COMMON FOR ALL PROGRAMMES) 0101 Communicative English – I 5 I/ODD 0102 Engineering Mathematics-I 8 I/ODD 0103 Engineering Physics – I 5 I/ODD 0104 Engineering Chemistry – I 5 I/ODD 0105 Engineering Physics- I Practical 1 I/ODD 0106 Engineering Chemistry – I Practical 1 I/ODD 0107 Communicative English – II 4 I/EVEN 0108 Engineering Mathematics-II 5 I/EVEN 0109 Applied Mathematics 5 I/EVEN 0110 Engineering Physics – II 4 I/EVEN 0111 Engineering Chemistry – II 4 I/EVEN 0112 Engineering Physics – II Practical 1 I/EVEN 0113 Engineering Chemistry – II Practical 1 I/EVEN B) CORE TECHNOLOGY COURSES : ( 43 CREDITS) 0201A Workshop Practical 1 I/ODD 0202 Engineering Graphics-I 3 I/ODD 0203 Engineering Graphics-II 3 I/EVEN 0204 Computer Applications Practical – I 1 I/ODD 0205 Computer Applications Practical – II 1 I/EVEN 3201 Electrical Circuit Theory 6 II/ODD 3202 Electrical Machines - I 5 II/ODD 3203 Electronic Devices and Circuits 5 II/ODD 3204 Electrical Circuits and Machines Practical 3 II/ODD 3205 Electronic Devices and Circuits Practical 3 II/ODD 3206 Electrical Workshop Practical 2 II/ODD 3207 Life and Employability Skills Practical 2 II/ODD 3208 Digital Electronics 5 II/EVEN 3209 Integrated CircuitsPractical 3 II/EVEN Diploma in Electrical and Electronics Engineering PAGE 1 ` C) APPLIED TECHNOLOGY COURSES: (58 CREDITS) 3301 Electrical Machines – II 5 II/EVEN 3302 Measurements and Instruments 4 II/EVEN
    [Show full text]
  • Distribution Transformers
    Shoemaker_CH15.qxd 13/07/06 11:43AM Page 15.1 CHAPTER 15 DISTRIBUTION TRANSFORMERS The purpose of a distribution transformer is to reduce the primary voltage of the electric distribution system to the utilization voltage serving the customer. A distribution trans- former is a static device constructed with two or more windings used to transfer alternating- current electric power by electromagnetic induction from one circuit to another at the same frequency but with different values of voltage and current. Figure 15.1 shows distribution transformers in stock at an electric utility company ser- vice building. The distribution transformers available for use for various applications, as shown, include pole-type (Figs. 15.2 and 15.3), pad-mounted (Fig. 15.4), vault or network type (Fig. 15.5), and submersible (Fig. 15.6). The distribution transformer in Fig. 15.2 is self-protected. It is equipped with a lightning arrester, a weak-link or protective-link expulsion-type fuse (installed under oil in the trans- former tank), a secondary circuit breaker, and a warning light. The transformer primary bushing conductor is connected to one phase of the three-phase primary circuit through a partial-range current-limiting fuse. The transformer tank is grounded and connected to the FIGURE 15.1 Electric utility distribution storage yard. Forklift trucks are used to load transformers on line trucks. Storage area is covered with concrete to pro- vide accessibility and protect transformers. 15.1 Shoemaker_CH15.qxd 13/07/06 11:43AM Page 15.2 15.2 CHAPTER 15 FIGURE 15.2 Typical pole-type dis- tribution transformer installation with the transformer bolted directly to the pole.
    [Show full text]
  • Coupling for Power Line Communication: a Survey Luis Guilherme Da S
    JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 32, NO. 1, 2017. 8 Coupling for Power Line Communication: A Survey Luis Guilherme da S. Costa, Antonio Carlos M. de Queiroz, Bamidele Adebisi, Vinicius L. R. da Costa, and Moises V. Ribeiro Abstract—The advent of power line communication (PLC) electric power cables. These power cables could be alternating for smart grids, vehicular communications, internet of things current (AC) or direct current (DC) power lines and the signals and data network access has recently gained ample interest in of PLC transceivers are subsequently coupled to them via a industry and academia. Due to the characteristics of electric power grids and regulatory constraints, the effectiveness of coupling circuit. In the case of power lines used to transmit coupling between the power line and PLC transceivers has AC power, the coupling circuit has also to filter out the AC become a very important issue. Coupling devices used to inject or mains signal. On the other hand, the coupling circuit simply extract data communication signals into or from power lines are has to block the DC mains voltage of the DC electric power very important components of a PLC system. There is, however, grids. an obvious gap in the literature for a detailed review of existing PLC couplers. In this paper, we present a comprehensive review During the late 1970s and early 1980s, new investigations of couplers, which are required for narrowband and broadband to characterize electric power grids as a medium for data PLC transceivers. Prevailing issues that protract the design of communication showed a higher potential in the range of couplers and consequently subtended the inventions of different frequencies between 5 kHz and 500 kHz [2].
    [Show full text]
  • EEE-R13-Min.Pdf
    ACADEMIC REGULATIONS B.Tech. Regular Four Year Degree Programme (For the batches admitted from the academic year 2013-14) and B.Tech. Lateral Entry Scheme (For the batches admitted from the academic year 2014-15) The following rules and regulations will be applicable for the batches of 4 year B.Tech degree admitted from the academic year 2013-14 onwards. 1. ADMISSION: 1.1. Admission into first year of Four Year B.Tech. Degree programme of study in Engineering: As per the existing stipulations of A.P State Council of Higher Education (APSCHE), Government of Andhra Pradesh, admissions are made into the first year of four year B.Tech Degree programme as per the following pattern. a) Category-A seats will be filled by the Convener, EAMCET. b) Category-B seats will be filled by the Management as per the norms stipulated by Govt. of Andhra Pradesh. 1.2. Admission into the Second Year of Four year B.Tech. Degree programme (lateral entry): As per the existing stipulations of A.P State Council of Higher Education (APSCHE), Government of Andhra Pradesh. 2. PROGRAMMES OF STUDY OFFERED BY AITS LEADING TO THE AWARD OF B.Tech DEGREE: Following are the four year undergraduate Degree Programmes of study offered in various disciplines at Annamacharya Institute of Technology and Sciences, Rajampet (Autonomous) leading to the award of B.Tech (Bachelor of Technology) Degree: 1. B.Tech (Computer Science & Engineering) 2. B.Tech (Electrical & Electronics Engineering) 3. B.Tech (Electronics & Communication Engineering) 4. B.Tech (Information Technology) 5. B.Tech (Mechanical Engineering) 6. B.Tech (Civil Engineering) And any other programme as approved by the concerned authorities from time to time.
    [Show full text]
  • B-Tech-EL-2017-18.Pdf
    DEPARTMENT OF ELECTRICAL ENGIEERING INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING INDUS UNIVERSITY B-TECH ELECTRICAL ENGINEERING, SEMESTER –I TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017 TEACHING EXAMINATION SCHEME SCHEME THEORY PRACT SR CODE SUBJECTS NO CIE L T P HOURS TOTAL CREDITS MID IE ESE CIE ESE SH0101 Differential Calculus & Matrix 1 04 02 00 05 06 30 10 60 00 00 100 Algebra 2 SH0001 Engineering Physics 03 00 02 04 05 30 10 60 40 60 200 3 EL0001 Electrical Workshop 00 00 02 01 02 00 00 00 40 60 100 EL0002 Elements of Electrical 4 03 00 02 04 05 30 10 60 40 60 200 Engineering 5 ME0001 Engineering Graphics 01 06 00 04 07 30 10 60 00 00 100 6 EC0001 Basic Electronics 02 00 02 03 04 30 10 60 40 60 200 7 MT0001 Materials Science 03 00 00 03 03 30 10 60 00 00 100 8 SH0102 Technical English 01 02 00 02 03 30 10 60 00 00 100 TOTAL 17 10 08 26 35 210 70 420 160 240 1100 Approved Vide Agenda Item No. 03 of Minutes of Meeting of Academic Council held on 11 July 17 DEPARTMENT OF ELECTRICAL ENGIEERING INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING INDUS UNIVERSITY B-TECH ELECTRICAL ENGINEERING, SEMESTER –II TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017 TEACHING EXAMINATION SCHEME SCHEME THEORY PRACT SR CODE SUBJECTS NO CIE L T P HOURS TOTAL CREDITS MID IE ESE CIE ESE SH0201 Integral Calculus and 1 04 02 00 05 06 30 10 60 00 00 100 Linear Algebra 2 SH0002 Engineering Chemistry 03 00 02 04 05 30 10 60 40 60 200 3 ME0004 Mechanical Workshop 00 00 02 01 02 00 00 00 40 60 100 ME0002 Elements of Mechanical 4 Engineering 03 00 02 04 05 30 10 60 40 60 200 5 CE0001 Computer Programming 03 00 02 04 05 30 10 60 40 60 200 6 CV0002 Engineering Mechanics 03 02 00 04 05 30 10 60 00 00 100 7 CV0001 Environmental Science 01 00 02 02 03 30 10 60 40 60 200 Business Communication 8 SH0202 01 02 00 02 03 30 10 60 00 00 100 and Presentation Skill TOTAL 18 06 10 26 34 210 70 420 200 300 1200 Approved Vide Agenda Item No.
    [Show full text]
  • THE ULTIMATE Tesla Coil Design and CONSTRUCTION GUIDE the ULTIMATE Tesla Coil Design and CONSTRUCTION GUIDE
    THE ULTIMATE Tesla Coil Design AND CONSTRUCTION GUIDE THE ULTIMATE Tesla Coil Design AND CONSTRUCTION GUIDE Mitch Tilbury New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-159589-9 The material in this eBook also appears in the print version of this title: 0-07-149737-4. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent.
    [Show full text]