Interferometric Radio Observations of the Interactive Winds of Massive Stars

Total Page:16

File Type:pdf, Size:1020Kb

Interferometric Radio Observations of the Interactive Winds of Massive Stars Interferometric Radio Observations of the Interactive Winds of Massive Stars by DIANE PATRICIA BROOKES A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Astrophysics and Space Research Group School of Physics and Astronomy The University of Birmingham February 2016 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Massive stars have very strong stellar winds which interact with their environment. This work has involved the study of these interactive winds at radio and other wavelengths. Radio obser- vations have been made of the massive runaway star BD+43◦ 3654 and its bow shock which is interacting with the inter-stellar medium. These observations, together with archive data at other wavelengths, have revealed stratified dust and turbulent gas in this interaction zone. Further radio studies have been undertaken of the interaction zones of the colliding winds of massive binary systems. Observations of the colliding wind binary WR 147 at 5GHz have revealed a curved collision zone, suggestive of simple interactive models. Measurements of the flux from the Wolf-Rayet component of this massive binary system has allowed a mass-loss rate to be derived and though the companion O-star is not detected, an upper flux limit has allowed upper limits on the mass-loss rate and limits on the terminal velocity to be inferred. Also revealed is a curious ’bridge’ feature previously observed in WR 147 which occurs between the two binary components. One mechanism is suggested to explain this anomalous feature, the ionising flux of one binary component, the O-star, may be ionising the wind of the other, the WR component. Modelling of the ionisation structure of the stellar winds has been undertaken to verify that this may be occurring. Radio observations of massive stars made at low-frequency have produced detections of WR 147 and the brighter colliding wind binary, WR 146. These detections have allowed modelling of the non-thermal emission in order to deduce where the non-thermal absorption turn-over occurs in these systems. The resultant modelling has illustrated that these colliding wind regions are complex, with multiple absorption regions best describing their nature. To Nye Acknowledgements I would like to thank my supervisor, Dr. Ian Stevens, for his guidance and support. I would also like to thank the University of Birmingham for their part-time research bursary. I am grateful for the staff at the GMRT and the e-MERLIN team at the University of Manchester who made these radio observations possible and I also thank them for their assistance with radio data reduction. I would like to thank my collaborators for their inciteful and enormously helpful comments and particularly Prof. C.H. Ishwara-Chandra for his assistance with the BD+43◦ 3654 data reduction together with Dr. Danielle Fenech and Dr. Sean Dougherty for sharing with me their knowledge of MERLIN/e-MERLIN data reduction and the WR 147 system. I am very grateful for the IT help and assistance from David Stops, who was always willing to assist with the vagaries of computer systems and software. I would like to thank Nye for all the love and encouragement he has given me during my research. And to Andrea for believing in my ability from the beginning. Thank you. Preface The work that is presented in this thesis has been undertaken by the author between 2010 and 2016 at the University of Birmingham under the supervision of Dr. Ian R. Stevens. The research which is presented in the main chapters of this thesis is the work of the author, however, the work has involved collaboration with a number of co-authors which are noted below. These chapters have been prepared as stand alone research papers for publication in peer reviewed journals; they are, therefore, identical to the published papers with minor alterations for clarity and will, by their individual nature, also contain some duplication of material. Chapter 3 New Observations of the Wolf-Rayet Colliding Wind Binary System WR 147 at 5 GHz with e-MERLIN - This chapter was written by the author in collaboration with Dr. Danielle Fenech, Dr. Sean Dougherty, Dr. Ian R. Stevens, Dr. Peredur Williams, Dr. Ronny Blomme, Dr. Julian M. Pittard, Prof. Raman Prinja and Dr. Debra Wallace. The paper is to be submitted to Monthly Notices of the Royal Astronomical Society (MNRAS). Chapter 4 Low-Frequency GMRT Observations of Massive Stars I: The Wolf-Rayet Colliding Wind Binary System - WR 147 - This chapter was written by the author in collaboration with Dr. Ian R. Stevens and Dr. Julian M. Pittard. The paper is to be submitted to Monthly Notices of the Royal Astronomical Society (MNRAS). Chapter 5 Low-Frequency GMRT Observations of Massive Stars II: The Wolf-Rayet Colliding Wind Binary System - WR 146 - This chapter was written by the author in collaboration with Dr. Ian R. Stevens. The paper is to be submitted to Monthly Notices of the Royal Astronomical Society (MNRAS). Chapter 6 Anatomy of a Bow Shock: Multi–Wavelength Observations of the Bow Shock Around The O4 Supergiant star BD+43◦ 3654 - This chapter was written by the author in collabo- ration with Dr. Ian R. Stevens, Dr. Paula Benaglia, Prof. C. H. Ishwara–Chandra and Dr. Josep Mart´ı. The paper is to be submitted to Monthly Notices of the Royal Astronomical Society (MNRAS). Chapter 7 E-BOSS: an Extensive stellar BOw Shock Survey I - This chapter is a summary of work as a co-author in collaboration with Dr. Cintia Peri, Dr. Paula Benaglia, Dr. Ian R. Stevens and N. L. Isequilla. This paper was published on 10 February 2012 in Astronomy & Astrophysics, volume 538, page A108. Contents 1 Massive Stars - Drivers of Galactic Evolution 1 1.1 MassiveStars,MassiveEffects. ....... 1 1.1.1 Whatisamassivestar? ........................... 1 1.1.2 Thestructureofmassivestars . .... 5 1.2 Massive Star Formation in Stellar Clusters . ........... 8 1.2.1 Starbirth.................................... 8 1.2.2 MassiveStarsinStellarclusters. ....... 10 1.3 TheWindsofMassiveStars. 12 1.3.1 Radiativelydrivenstellarwinds. ....... 12 1.3.2 Mass-lossfrommassivestars . 13 1.3.3 A comparison of different methods of mass-loss determination. 18 1.4 Multi-Wavelength Properties of Massive Stars . ............ 21 1.4.1 Radioemission ................................. 21 1.4.2 Infra-redemission ............................. 28 1.4.3 Optical and Hα emission ........................... 29 1.4.4 Ultravioletemission . 29 1.4.5 High energy emission - X-rays and Gamma-rays . ...... 30 1.5 ShocksinStellarWinds ............................ 32 1.5.1 Windblownbubbles .............................. 32 1.5.2 Theanatomyofshocks ............................ 32 1.5.3 The Solar bow shock: in-situ measurements of a bow shock ........ 36 1.5.4 Runawaystarsandstellarbowshocks . ..... 37 1.5.5 Massive binary systems and colliding wind shocked regions ........ 39 1.6 Conclusion ...................................... 42 vi Contents vii 2 An Introduction to Radio Interferometry 43 2.1 Summary ........................................ 43 2.2 AnIntroductiontoRadioAstronomy. ....... 43 2.2.1 Thetransparencyofthesky. 43 2.2.2 Abriefhistoryofradiotelescopes. ....... 44 2.3 WhatisanInterferometer? . ..... 44 2.3.1 Interferometerdesign. 44 2.3.2 Whatisacorrelator? ............................ 46 2.3.3 Baselinesandu-vcoverage . 47 2.3.4 Telescopesensitivity . 49 2.4 CurrentRadioInterferometers . ....... 52 2.4.1 TheGiantMetrewaveRadioTelescope . ..... 53 2.4.2 The Multi-Element Radio Linked Interferometer Network,e-MERLIN . 55 2.5 RadioDataReduction .............................. 57 2.5.1 AHistoryofAIPS ............................... 57 2.5.2 Thesequenceofdatareduction . 58 2.6 Conclusion ...................................... 60 3 Observations Of WR 147 At 5 GHz With e-MERLIN 61 3.1 Introduction.................................... 61 3.2 e-MERLIN Observations and Data Reduction . ........ 64 3.3 Results......................................... 66 3.3.1 Newe-MERLINdata ............................. 66 3.3.2 Stellarfluxesandmass-lossrates . ...... 66 3.3.3 System orientation and location of the wind collision region ........ 72 3.3.4 ArchiveMERLINdata............................. 77 3.3.5 Thebridge ................................... 77 3.4 Conclusion ...................................... 81 4 Low-Frequency GMRT Observations Of WR 147 82 4.1 Introduction.................................... 83 Contents viii 4.2 TheWR147System.................................. 84 4.2.1 ThecomponentsofWR147. 84 4.2.2 Colliding wind binary considerations . ........ 86 4.2.3 Previousradioobservations . ..... 86 4.3 GMRTObservations ................................ 88 4.3.1 Observations .................................. 88 4.3.2 GMRTresults ................................. 90 4.4 WR147SpectralEnergyDistribution . ....... 90 4.4.1 TotalradioSEDandNTemission . 93 4.5 SpectralFitting................................. 93 4.5.1 Introduction - fitting the radio spectrum . ........ 93 4.5.2 Aonecomponentmodel...........................
Recommended publications
  • X-Ray Emission from Wolf-Rayet Stars
    X-ray Emission from Wolf-Rayet Stars Steve Skinner1, Svet Zhekov2, Manuel Güdel3 Werner Schmutz4, Kimberly Sokal1 1CASA, Univ. of Colorado (USA) [email protected] 2Space Research Inst. (Bulgaria) and JILA/Univ. of Colorado (USA) 3ETH Zurich (Switzerland) 3PMOD (Switzerland) Abstract We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. Observations of several WC-type (carbon-rich) WR stars without known companions have yielded only non-detections, implying they are either very feeble X-ray emitters or perhaps even X-ray quiet. In contrast, several apparently single WN2-6 stars have been detected, but data are sparse for later WN7-9 stars. Putatively single WN stars such as WR 134 have X-ray luminosities and spectra that are strikingly similar to some known WN + OB binaries such as WR 147, suggesting a similar emission mechanism. 1 X-rays from WR Stars: Overview 3 Single Nitrogen-rich WN Stars 4 Wolf-Rayet Binaries WR stars are the evolutionary descendants of massive O • Sensitive X-ray observations have now been obtained • High-resolution X-ray grating spectra have been ob- stars and are losing mass at very high rates. They are in ad- of several putatively single WN2-6 stars with XMM tained for a few binaries such as γ2 Vel (WC8 + vanced nuclear burning stages, approaching the end of their and Chandra. All but one were detected (Fig. 1). O7.5; Fig. 3) and WR 140 (WC7 + O4-5). CCD lives as supernovae. Strong X-rays have been detected from CCD spectra exist (Fig.
    [Show full text]
  • A 2.4-12 Microns Spectrophotometric Study with ISO of Cygnus X-3 in Quiescence
    1 Abstract. We present mid-infrared spectrophotometric results obtained with the ISO on the peculiar X-ray bi- nary Cygnus X-3 in quiescence, at orbital phases 0.83 to 1.04. The 2.4 - 12 µm continuum radiation observed with ISOPHOT-S can be explained by thermal free-free emis- sion in an expanding wind with, above 6.5 µm, a possi- ble additional black-body component with temperature T ∼ 250K and radius R ∼ 5000R⊙ at 10 kpc, likely due to thermal emission by circumstellar dust. The observed brightness and continuum spectrum closely match that of the Wolf-Rayet star WR 147, a WN8+B0.5 binary system, when rescaled at the same 10 kpc distance as Cygnus X- 3. A rough mass loss estimate assuming a WN wind gives −4 −1 ∼ 1.2 × 10 M⊙.yr . A line at ∼ 4.3 µm with a more than 4.3 σ detection level, and with a dereddened flux of 126 mJy, is interpreted as the expected He I 3p-3s line at 4.295 µm, a prominent line in the WR 147 spectrum. These results are consistent with a Wolf-Rayet-like com- panion to the compact object in Cyg X-3 of WN8 type, a later type than suggested by earlier works. Key words: binaries: close - stars: individual: Cyg X-3 - stars: Wolf-Rayet - stars: mass loss - infrared: stars arXiv:astro-ph/0207466v1 22 Jul 2002 A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: missing; you have not inserted them ASTROPHYSICS A 2.4 - 12 µm spectrophotometric study with ISO of CygnusX-3 in quiescence ⋆ Lydie Koch-Miramond1, P´eter Abrah´am´ 2,3, Ya¨el Fuchs1,4, Jean-Marc Bonnet-Bidaud1, and Arnaud Claret1 1 DAPNIA/Service d’Astrophysique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France 2 Konkoly Observatory, P.O.
    [Show full text]
  • "MHD Simulations of Colliding Stellar Winds in Binary Systems"
    University of Innsbruck Institute for Astro- and Particle Physics MHD simulations of colliding stellar winds in binary systems Master’s Thesis in Astrophysics Anna Ogorzałek Submitted to the Faculty of Mathematics, Computer Science and Physics in Partial Fulfillment of the Requirements for the Degree of Magister / Magistra der Naturwissenschaften Supervisor: Dr Ralf Kissmann Innsbruck, August 2014 ii Abstract: Massive binary systems are sources of non-thermal radiation and possibly even γ- rays. This high energy emission originates in the region between the two stars, where their pow- erful winds collide. This region possess extreme physical conditions that have been the subject of multiple studies including hydrodynamical and particle acceleration simulations. There is little known about the magnetic field at the collision region. It is an important factor, since it produces the non-thermal synchrotron emission, as well as influences the particle acceleration. In this work we use 3D magnetohydrodynamical simulations in order to study the magnetic field properties in the collision region, in particular its strength and the geometry (the angle between the field lines and the shock normal). We prescribe a dipolar magnetic field for both stars and perform a param- eter study of its strength and geometry. We conclude that for the studied range of dipol strengths (∼ 100G) no influence on the collision region is found, as it retains its shape and shocks compres- sion ratios. The magnetospheres do not cross the contact discontinuity, and the respective sides of the collision region depend only on the stellar fields. However, this means that prescribing a single field strength over the whole collision region might not be sensible.
    [Show full text]
  • The Hill Book 2009-2010 Table of Contents
    The Hill Book Stonehill College 2009-2010 Stonehill College 2009-2010 Founders The Congregation of Holy Cross, a Catholic community of Priests and Brothers, as an independent, Church-related institution. Accreditation New England Association of Schools and Colleges which accredits schools and colleges in the six New England states. Membership in the Association indicates that the institution has been carefully evaluated and found to meet standards agreed upon by the qualified educators. Stonehill College supports the efforts of secondary school officials and governing bodies to have their schools achieve regional accredited status to provide reliable assurance of the quality of the educational preparation of its applicants for admission. American Chemical Society (ACS) Association of University Programs in Health Administration; Full Certification Membership • Association to Advance Collegiate Schools of Business (AACSB International) • Association of American Colleges and Universities (AACU) • Association of Catholic Colleges and Universities (ACCU) • The Council of Independent Colleges (CIC) • National Association of Independent Colleges and Universities (NAICU) • Southeastern Association for Cooperation of Higher Education in Massachusetts (SACHEM) • Southern New England Consortium on Race and Ethnicity (SNECORE) Letter from the President Dear Stonehill Students, In welcoming you to Stonehill College, I hope that your time with us will be one of active participation in the academic and social opportunities present in our community. You may have noticed the simple yet powerful message on the banners displayed at the entrance to our beautiful campus – Stonehill College: Many Minds. One Purpose. The Stonehill community is blessed with so many minds – the faculty, administrators, staff, alumni and your fellow students who play such a large part in your Stonehill education.
    [Show full text]
  • Prospects for Detecting Colliding Winds of Massive Stars with GLAST-LAT
    Massive Stars in Interacting Binaries ASP Conference Series, Vol. 367, 2007 N. St-Louis & A.F.J. Moffat Prospects for Detecting Colliding Winds of Massive Stars with GLAST-LAT A. Reimer & O. Reimer Institut f¨ur Theoretische Physik IV, Ruhr-Universit¨at Bochum, D-44780 Bochum, Germany Abstract. Colliding winds of massive binaries have been proposed as poten- tial sites of non-thermal high-energy photon production. They may account for counterparts of yet unidentified EGRET sources and will presumably be detected with the next generation satellite, pair-conversion telescope, GLAST-LAT, which will be launched in the near future. Here we investigate the properties of high- energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process, anisotropy and Klein-Nishina effects will likely yield visible spectral and variability signatures in the gamma-ray domain for highly sensitive instruments like GLAST-LAT. In addition to adiabatic and radiative losses we also include particle propagation in our modelling for the first time. The calculations are applied to WR 140 and WR 147. We predict that both systems will be visible for GLAST-LAT, and perhaps also for modern imaging atmospheric Cherenkov telescopes at some orbital phases, but hardly for INTEGRAL above 1 MeV. The motivation to consider colliding-wind binary (CWB) systems of massive stars as potential γ-ray emitters is mainly supported by two observational facts. Firstly, non-thermal radio emission has been observed from several massive star systems that has been interpreted as synchrotron radiation (Abbott et al.
    [Show full text]
  • Cygnus X-3 and the Problem of the Missing Wolf-Rayet X-Ray Binaries
    A&A 443, 231–241 (2005) Astronomy DOI: 10.1051/0004-6361:20052824 & c ESO 2005 Astrophysics Cygnus X-3 and the problem of the missing Wolf-Rayet X-ray binaries D. Lommen1,2, L. Yungelson1,3,4,E.vandenHeuvel1, G. Nelemans5, and S. Portegies Zwart1,6 1 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, and Center for High Energy Astrophysics, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands e-mail: [email protected] 2 Sterrewacht Leiden, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 3 Institute of Astronomy of the Russian Academy of Sciences, 48 Pyatniskaya Str., 119017 Moscow, Russia 4 Isaac Newton Institute, Moscow Branch, 12 Universitetskii Pr., Moscow, Russia 5 Astronomy Department, IMAPP, Radboud Universiteit Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands 6 Informatics Institute, University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands Received 6 February 2005 / Accepted 7 July 2005 ABSTRACT 38 −1 Cygnus X-3 is a strong X-ray source (LX ≈ 10 erg s ) which is thought to consist of a compact object accreting matter from a helium star. We analytically find that the estimated ranges of mass-loss rate and orbital-period derivative for Cyg X-3 are consistent with two models: i) the system is detached and the mass loss from the system comes from the stellar wind of a massive helium star, of which only a fraction that allows for the observed X-ray luminosity is accreted, or ii) the system is semidetached and a Roche-lobe-overflowing low- or moderate-mass helium donor transfers mass to the compact object, followed by ejection of its excess over the Eddington rate from the system.
    [Show full text]
  • So What Is Speckle Interferometry Good For, Anyway?
    So What is Speckle Interferometry Good For, Anyway? Bill Hartkopf Brian Mason U.S. Naval Observatory 8/16/2005 U.S. Naval Observatory 1 So What is Speckle… An older (but not the oldest!), much simpler form of interferometry than you’ve been hearing about this week! This talk will include: • brief overview of speckle history and theory • types of science well-suited to speckle U.S. Naval Observatory a bit of background… • Earliest interferometry of binaries – Schwartzschild (1895) • Speckle technique proposed by Labeyrie (1969), first applied 1970 (binaries and stellar diameters) • 1970’s: photographic speckle programs by French, British, Soviets, Germans, U.S. (esp. McAlister et al.) • 1980’s: CCDs and other visible/IR detectors Æ better sensitivity Æ McCarthy, Leinert, Ghez, Karovska, etc. • 1990’s: Isobe, Scardia, Horch, USNO • 2000’s: Docobo; even within grasp of serious amateurs! U.S. Naval Observatory Handwaving speckle theory • Theoretically, resolution set by wavelength and aperture • Actually limited by atmosphere to size of turbulent cells (r0 ~10 – 20cm). Cells move due to wind, change size 2 • Telescope of aperture D sees (D/ r0 ) cells • Interference of light through cells with same tilt and group delay Æ “speckle” pattern (moving cells Æ “twinkling”) U.S. Naval Observatory Speckle pattern formation U.S. Naval Observatory More handwaving… • Isoplanicity = stars close enough (few arcseconds) for light from both to pass through same coherence cells • Short exposures needed to “freeze” atmosphere • Each isolated set of speckle pairs is diffraction-limited image - take multiple exposures and add images If I(α,β) = image intensity distribution O(α,β) = object intensity distribution |p(α,β)|2 = point spread function I(α,β) = O(α,β) * |p(α,β)|2 U.S.
    [Show full text]
  • A Very High Energy Γ-Ray Survey Toward the Cygnus Region of the Galaxy
    THE UNIVERSITY OF ALABAMA' University Libraries A Very High Energy -Ray Survey toward the Cygnus Region of the Galaxy γ M. Santander – University of Alabama et al. Deposited 06/17/2019 Citation of published version: Abeysekara, A.U., et al. (2018): A Very High Energy -Ray Survey toward the Cygnus Region of the Galaxy. The Astrophysical Journal, 861(1). γ DOI: https://doi.org/10.3847/1538-4357/aac4a2 © 2018. The American Astronomical Society. All rights reserved. The Astrophysical Journal, 861:134 (33pp), 2018 July 10 https://doi.org/10.3847/1538-4357/aac4a2 © 2018. The American Astronomical Society. All rights reserved. ® CrossMark A Very High Energy γ-Ray Survey toward the Cygnus Region of the Galaxy A. U. Abeysekara1, A. Archer2, T. Aune3,4$ , W. Benbow5$ , R. Bird3$ , R. Brose6,7, M. Buchovecky3, V. Bugaev2, W. Cui8,9 , M. K. Daniel5, A. Falcone10, Q. Feng11$ , J. P. Finley8$ , H. Fleischhack7, A. Flinders1, L. Fortson12, A. Furniss13 , E. V. Gotthelf14$ , J. Grube15, D. Hanna11$ , O. Hervet16, J. Holder17, K. Huang3,18, G. Hughes5, T. B. Humensky19, M. Hütten7, C. A. Johnson16$ , P. Kaaret20$ , P. Kar1, N. Kelley-Hoskins7, M. Kertzman21, D. Kieda1 , M. Krause7 , S. Kumar17, M. J. Lang22$ , T. T. Y. Lin11, G. Maier7$ , S. McArthur8, P. Moriarty22, R. Mukherjee23 ,S.O’Brien24, R. A. Ong3, A. N. Otte25$ , D. Pandel26$ , N. Park27$ , A. Petrashyk19, M. Pohl6,7$ , A. Popkow3,28 , E. Pueschel7 , J. Quinn24, K. Ragan11, P. T. Reynolds29, G. T. Richards25$ , E. Roache5, J. Rousselle3, C. Rulten12, I. Sadeh7, M. Santander23, G. H. Sembroski8, K. Shahinyan12$ , J.
    [Show full text]
  • The Hill Book 2007-2008 Table of Contents
    Letter from the President Dear Stonehill Students, In welcoming you to Stonehill College, I hope that your time with us will be one of active participation in the academic and social opportunities present in our community. You may have noticed the simple yet powerful message on the banners displayed at the entrance to our beautiful campus – Stonehill College: Many Minds. One Purpose. The Stonehill community is blessed with so many minds – the faculty, administrators, staff, alumni and your fellow students who play such a large part in your Stonehill education. Yet all of us are aligned around one purpose, which is articulated in our mission statement: Stonehill College educates the whole person so that each Stonehill graduate thinks, acts, and leads with courage toward creating a more just and compassionate world. The academic and interpersonal choices that you make during your time here will help you achieve the aims of our shared educational purpose. To help you plot your course through Stonehill, we present “The Hill Book” as a guide to living and learning at Stonehill. It combines the academic catalogue – which helps you select your course of study – with the student handbook – which provides guidelines, regulations and policies for each member of our community. I trust that your experience at Stonehill will be a time of growth and discovery. Your professors and others will invite you to enter the academic enterprise. In addition, persons and ideas will challenge – for the better – the way you think and what you believe. Learning will occur not only in the classroom but also in the residence halls, on athletic fields and in service.
    [Show full text]
  • ISO Science Legacy: a Compact Review of ISO Major Achievements
    ISO SCIENCE LEGACY A Compact Review of ISO Major Achievements Cover figures: Background ISOCAM image of the Rho Ophiuchi Cloud, Abergel et al. Astronomy and Astrophysics 315, L329 Left inserts, from top to bottom: 170 μm ISOPHOT map of the Small Magellanic Cloud (40 pixel size, 1 resolution) from Wilke et al., A&A 401, 873–893 (2003). 2–200 micron composite spectrum of the Circinus galaxy obtained with the SWS and LWS spectrometers showing a plethora of atomic, ionic and molecular spectral, along with various solid-state features from dust grains of different sizes in Verma et al. this volume. Water vapour spectral lines detected in the atmospheres of all four giant planets and Titan, in Cernicharo and Crovisier, this volume. Cristalline silicates detected by ISO in different environments, in stars (young and old) and in comet Hale-Bopp in Molster and Kemper, this volume. Pure rotational hydrogen lines observed towards the molecular hydrogen emission peak of the Rho Ophiuchi filament in Habart, this volume. ISO SCIENCE LEGACY A Compact Review of ISO Major Achievements Edited by CATHERINE CESARSKY European Southern Observatory, Garching, Munich, Germany and ALBERTO SALAMA European Space Agency, Madrid, Spain Reprinted from Space Science Reviews, Volume 119, Nos. 1–4, 2005 A.C.I.P. Catalogue record for this book is available from the Library of Congress ISBN: 1-4020-3843-7 Published by Springer P.O. Box 990, 3300 AZ Dordrecht, The Netherlands Sold and distributed in North, Central and South America by Springer, 101 Philip Drive, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Springer, P.O.
    [Show full text]
  • The Fermi LAT View of the Colliding Wind Binaries
    A Mon. Not. R. Astron. Soc. 000, 000–000 (2015) Printed 22 March 2021 (MN L TEX style file v2.2) The Fermi LAT view of the colliding wind binaries. M. S. Pshirkov1,2,3⋆ 1Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky prospekt 13, 119992, Moscow, Russia 2Pushchino Radio Astronomy Observatory, 142290 Pushchino, Russia 3Institute for Nuclear Research of the Russian Academy of Sciences, 117312, Moscow, Russia ABSTRACT Colliding wind binaries (CWBs) have been considered as a possible high energy γ- ray sources for some time, however no system other than η Car has been detected. In the paper a sample of seven CWBs (WR 11, WR 70, WR 137, WR 140, WR 146, WR 147) which, by means of theoretic modelling, were deemed most promising candidates, was analyzed using almost 7 years of the Fermi-LAT data. WR 11 (γ2 Vel) was detected at 6.1σ confidence level with a photon flux in 0.1-100 GeV range (1.8 ± 0.6) × 10−9 ph cm−2 s−1 and an energy flux (2.7 ± 0.5) × 10−12 erg cm−2 s−1. At the adopted distance d = 340 pc this corresponds to a luminosity L = (3.7 ± 0.7) × 1031 erg s−1. This luminosity amounts to ∼ 6 × 10−6 fraction of the total wind kinetic power and ∼ 1.6 × 10−4 fraction of the power injected into the wind-wind interaction region of this system. Upper limits were set on the high energy flux from the WR 70 and WR 140 systems. Key words: gamma-rays:stars - stars:binaries - stars: Wolf-Rayet - stars:winds,outflows - stars:individual:WR11, WR70, WR125, WR137, WR140, WR146, WR147 1 INTRODUCTION already been discovered, in some cases interferometric obser- vations reveal spatially extended region of the synchrotron Hot massive stars of early types have very strong stellar emission (Dougherty et al.
    [Show full text]
  • An Atlas of 2.4 to 4.1 Μm ISO/SWS Spectra of Early-Type Stars
    A&A 384, 473–490 (2002) Astronomy DOI: 10.1051/0004-6361:20020032 & c ESO 2002 Astrophysics An atlas of 2.4 to 4.1 µm ISO/SWS spectra of early-type stars?,?? A. Lenorzer1, B. Vandenbussche2,P.Morris3,A.deKoter1,T.R.Geballe4,L.B.F.M.Waters1,2, S. Hony1, and L. Kaper1 1 Sterrenkundig Instituut “Anton Pannekoek”, Kruislaan 403, 1098 SJ Amsterdam 2 Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200B, 3001 Heverlee 3 SIRTF Science Center / IPAC, California Institute of Technology, M/S 100-22, 1200 E. California Blvd., Pasadena, CA 91125, USA 4 Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720, USA Received 10 October 2001 / Accepted 7 January 2002 Abstract. We present an atlas of spectra of O- and B-type stars, obtained with the Short Wavelength Spectrometer (SWS) during the Post-Helium program of the Infrared Space Observatory (ISO). This program is aimed at extending the Morgan & Keenan classification scheme into the near-infrared. Later type stars will be discussed in a separate publication. The observations consist of 57 SWS Post-Helium spectra from 2.4 to 4.1 µm, supplemented with 10 spectra acquired during the nominal mission with a similar observational setting. For B-type stars, this sample provides ample spectral coverage in terms of subtype and luminosity class. For O-type stars, the ISO sample is coarse and therefore is complemented with 8 UKIRT L0-band observations. In terms of the presence of diagnostic lines, the L0-band is likely the most promising of the near-infrared atmospheric windows for the study of the physical properties of B stars.
    [Show full text]