A 2.4-12 Microns Spectrophotometric Study with ISO of Cygnus X-3 in Quiescence

Total Page:16

File Type:pdf, Size:1020Kb

A 2.4-12 Microns Spectrophotometric Study with ISO of Cygnus X-3 in Quiescence 1 Abstract. We present mid-infrared spectrophotometric results obtained with the ISO on the peculiar X-ray bi- nary Cygnus X-3 in quiescence, at orbital phases 0.83 to 1.04. The 2.4 - 12 µm continuum radiation observed with ISOPHOT-S can be explained by thermal free-free emis- sion in an expanding wind with, above 6.5 µm, a possi- ble additional black-body component with temperature T ∼ 250K and radius R ∼ 5000R⊙ at 10 kpc, likely due to thermal emission by circumstellar dust. The observed brightness and continuum spectrum closely match that of the Wolf-Rayet star WR 147, a WN8+B0.5 binary system, when rescaled at the same 10 kpc distance as Cygnus X- 3. A rough mass loss estimate assuming a WN wind gives −4 −1 ∼ 1.2 × 10 M⊙.yr . A line at ∼ 4.3 µm with a more than 4.3 σ detection level, and with a dereddened flux of 126 mJy, is interpreted as the expected He I 3p-3s line at 4.295 µm, a prominent line in the WR 147 spectrum. These results are consistent with a Wolf-Rayet-like com- panion to the compact object in Cyg X-3 of WN8 type, a later type than suggested by earlier works. Key words: binaries: close - stars: individual: Cyg X-3 - stars: Wolf-Rayet - stars: mass loss - infrared: stars arXiv:astro-ph/0207466v1 22 Jul 2002 A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: missing; you have not inserted them ASTROPHYSICS A 2.4 - 12 µm spectrophotometric study with ISO of CygnusX-3 in quiescence ⋆ Lydie Koch-Miramond1, P´eter Abrah´am´ 2,3, Ya¨el Fuchs1,4, Jean-Marc Bonnet-Bidaud1, and Arnaud Claret1 1 DAPNIA/Service d’Astrophysique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France 2 Konkoly Observatory, P.O. Box 67, 1525 Budapest, Hungary 3 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, D-69117 Heidelberg, Germany 4 Universit´eParis VII, France Received 5 June 2002; Accepted 28 June 2002 1. Introduction removed, and a 2 - 2.5 M⊙ Wolf-Rayet like star remains with P = 0.2 d. A system containing a black hole and an CygnusX-3 has been known as a binary system since its He core burning star is also favored by Ergma & van den discovery by Giacconi et al. (1967), but there is still debate Heuvel (1998). In addition, Cygnus X-3 undergoes giant about the masses of the two stars and the morphology of radio bursts and there is evidence of jet-like structures the system (for a review see Bonnet-Bidaud & Chardin moving away from Cygnus X-3 at 0.3 - 0.9 c (Mioduszewski 1988). The distance of the object is 8-12.5kpc with an ab- et al. 1998, 2001; Mart´i et al. 2001). sorption on the line of sight A ∼ 20 mag (van Kerkwijk V The main objective of the Infrared Space Observatory et al. 1996). The flux modulation at a period of 4.8 hours, (ISO) spectrophotometric measurements in the 2.4 - 12 µm first discovered in X-rays (Parsignault 1972), then at near range was to constrain further the nature of the com- infrared wavelengths (Becklin et al. 1973), and observed panion star to the compact object: the expected strong simultaneously at X-ray and near-IR wavelengths by Ma- He lines as well as the metallic lines in different ioniza- son et al. (1986), is believed to be the orbital period of the tion states are important clues, together with the spectral binary system. Following infrared spectroscopic measure- shape of the continuum in a wavelength range as large as ments (van Kerkwijk et al. 1992), where WR-like features possible. An additional motivation for the imaging pho- have been detected in I and K band spectra, the nature of tometry with ISOCAM was to provide spatial resolution the mass-donating star is suggested to be a Wolf-Rayet- to a possible extended emission feature as a remnant of like star, but an unambiguous classification, similar to the the expected high mass loss from the system. The pa- other WR stars, is still lacking. Mitra (1996) and Van- per is laid out as follows. In Section 2 observational as- beveren et al. (1998) pointed out that it is not possible pects are reviewed. Section 3 summarizes the results on to find a model that meets all the observed properties of the continuum and line emissions from Cygnus X-3 and Cygnus X-3 where the companion star is a normal Pop- four Wolf-Rayet stars of WN6, 7 and 8 types. Section 4 ulation I Wolf-Rayet star with a spherically symmetric reviews the constraints set by the present observations on stellar wind. In the evolution model originally proposed the wind and on the nature of the companion to the com- by van den Heuvel & de Loore (1973) a final period of pact object in Cygnux X-3. Finally, Section 5 summarizes the order of 4.8 h may result from a system with initial 0 0 0 the conclusions of this paper. masses M1 =15 M⊙, M2 = 1 M⊙, P = 5 d, the final sys- tem being a neutron star accreting at a limited rate of ∼ −7 −1 2. Observations and data reduction 10 M⊙.yr , from the wind of a core He burning star of about 3.8 M⊙. Vanbeveren et al. (1998) proposed that We observed Cygnus X-3 with the Infrared Space Ob- the progenitor of Cygnus X-3 is a 50 M⊙ +10 M⊙ system servatory (ISO, see Kessler et al. 1996) on April7, 1996 0 with P = 6 d; after spiral-in of the black hole into the en- corresponding to JD 2450180.8033 to 2450180.8519. The velope of the companion, the hydrogen reach layers are subsequent observing modes were: ISOCAM imaging µ Send offprint requests to: Lydie Koch-Miramond (e-mail: photometry at 11.5 m (LW10 filter, bandwith 8 to [email protected]) 15 µm), ISOPHOT-S spectrophotometry in the range ⋆ Based on observations with ISO, an ESA project with in- 2.4 - 12 µm, for 4096s, covering the orbital phases 0.83 to struments funded by ESA Member States (especially the PI 1.04 (according to the parabolic ephemeris of Kitamoto countries: France, Germany, the Netherlands and the United et al. 1992); ISOPHOT multi-filter photometry at central Kingdom) and with the participation of ISAS and NASA. wavelengths 3.6, 10, 25 and 60 µm. Observing modes and Lydie Koch-Miramond et al.: Spectrophotometry of Cygnus X-3 in quiescence 3 Table 1. The ISO observing modes, ISO identifications, wavelength ranges and observing times on April7, 1996, used on CygnusX-3 Instrument TDTNUM Wavelength Aperture Total observing range (µm) arcsec time (s) TU (start) ISOCAM-LW10 14200701 8-15 1.5 1134 6:57:09 ISOPHOT-SS 2.4-4.9 24x24 14200803 4096 7:16:47 ISOPHOT-SL 5.9-11.7 24x24 ISOPHOT-P 3.6 2.9-4.1 10 ISOPHOT-P 10 9-10.9 23 14200802 1100 8:27:33 ISOPHOT-P 25 20-29 52 ISOPHOT-P 60 48-73 99 observation times are summarized in Table 1. Preliminary In order to verify our data reduction scheme (which results were presented in Koch-Miramond et al. (2001). is not completely standard due to the application of the FFT algorithm) and to estimate the level of calibration uncertainties, we reduced HD184400, an ISOPHOT stan- dard star observed in a similar way as CygnusX-3. The 2.1. ISOPHOT-S data reduction results were very consistent with the model prediction of A low resolution mid-infrared spectrum of Cygnus X-3 was the star, and we estimate that the systematic uncertainty obtained with the ISOPHOT-S sub-instrument. The spec- of our calibration is less than 10%. trum covered the 2.4 - 4.9 and 5.9 - 11.7 µm wavelength ranges simultaneously with a spectral resolution of about 2.2. ISOPHOT spectral energy distribution 0.04 and 0.1 µm, respectively. The observation was per- formed in the triangular chopped mode with two back- The observed spectral energy distribution is shown on ground positions located at ±120′′, and with a dwelling Fig. 1. The observed (not dereddened) continuum flux in time of 128 s per chopper position. The field of view is the range 2.4-7 µm is 20 ±10mJy in good agreement with 24”x24”. The whole measurement consisted of 8 OFF1– that observed by Ogley et al. (2001) with ISOCAM on the ON–OFF2–ON cycles and lasted 4096s. same day (the dereddened fluxes are shown on Fig. 2) ; the ± The ISOPHOT-S data were reduced in three steps. We observed flux decreases to about 10 8mJy around 9 µm. first used the Phot Interactive Analysis (PIA1, Gabriel An unresolved line is observed at about 4.3 µm peaking ± et al. 1997) software (Version 8.2) to filter out cosmic at 57 10 mJy. The linewidth is 0.04 µm, consistent with ∼ glitches in the raw data and to determine signals by per- the instrumental response and corresponding to 2500 −1 forming linear fits to the integration ramps. After a second km.s . Note that the measured line flux might be under- deglitching step, performed on the signals, a dark cur- estimated because the ISOPHOT-S pixels are separated rent value appropriate to the satellite orbital position of by small gaps, and a narrow line might falls into a gap. the individual signal was subtracted.
Recommended publications
  • Rotating Wolf-Rayet Stars in a Post RSG/LBV Phase an Evolutionary Channel Towards Long-Duration Grbs?
    A&A 547, A83 (2012) Astronomy DOI: 10.1051/0004-6361/201118664 & c ESO 2012 Astrophysics Rotating Wolf-Rayet stars in a post RSG/LBV phase An evolutionary channel towards long-duration GRBs? G. Gräfener1,J.S.Vink1, T. J. Harries2, and N. Langer3 1 Armagh Observatory, College Hill, Armagh BT61 9DG, UK 2 School of Physics and Astronomy, University of Exeter, Stocker Rd, Exeter EX4 4QL, UK 3 Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany Received 16 December 2011 / Accepted 3 October 2012 ABSTRACT Context. Wolf-Rayet (WR) stars with fast rotating cores are thought to be the direct progenitors of long-duration gamma-ray bursts (LGRBs). A well accepted evolutionary channel towards LGRBs is chemically-homogeneous evolution at low metallicities, which completely avoids a red supergiant (RSG), or luminous blue variable (LBV) phase. On the other hand, strong absorption features with velocities of several hundred km s−1 have been found in some LGRB afterglow spectra (GRB 020813 and GRB 021004), which have been attributed to dense circumstellar (CS) material that has been ejected in a previous RSG or LBV phase, and is interacting with a fast WR-type stellar wind. Aims. Here we investigate the properties of Galactic WR stars and their environment to identify similar evolutionary channels that may lead to the formation of LGRBs. Methods. We compile available information on the spectropolarimetric properties of 29 WR stars, the presence of CS ejecta for 172 WR stars, and the CS velocities in the environment of 34 WR stars in the Galaxy.
    [Show full text]
  • X-Ray Emission from Wolf-Rayet Stars
    X-ray Emission from Wolf-Rayet Stars Steve Skinner1, Svet Zhekov2, Manuel Güdel3 Werner Schmutz4, Kimberly Sokal1 1CASA, Univ. of Colorado (USA) [email protected] 2Space Research Inst. (Bulgaria) and JILA/Univ. of Colorado (USA) 3ETH Zurich (Switzerland) 3PMOD (Switzerland) Abstract We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. Observations of several WC-type (carbon-rich) WR stars without known companions have yielded only non-detections, implying they are either very feeble X-ray emitters or perhaps even X-ray quiet. In contrast, several apparently single WN2-6 stars have been detected, but data are sparse for later WN7-9 stars. Putatively single WN stars such as WR 134 have X-ray luminosities and spectra that are strikingly similar to some known WN + OB binaries such as WR 147, suggesting a similar emission mechanism. 1 X-rays from WR Stars: Overview 3 Single Nitrogen-rich WN Stars 4 Wolf-Rayet Binaries WR stars are the evolutionary descendants of massive O • Sensitive X-ray observations have now been obtained • High-resolution X-ray grating spectra have been ob- stars and are losing mass at very high rates. They are in ad- of several putatively single WN2-6 stars with XMM tained for a few binaries such as γ2 Vel (WC8 + vanced nuclear burning stages, approaching the end of their and Chandra. All but one were detected (Fig. 1). O7.5; Fig. 3) and WR 140 (WC7 + O4-5). CCD lives as supernovae. Strong X-rays have been detected from CCD spectra exist (Fig.
    [Show full text]
  • ŞAR Shao SPECIAL ISSUE 2013 CİLD 8 № 2 AZERBAIJANI ASTRONOMICAL JOURNAL
    ISSN: 2078-4163 XÜSUSİ BURAXILIŞ ŞAR ShAO SPECIAL ISSUE 2013 CİLD 8 № 2 AZERBAIJANI ASTRONOMICAL JOURNAL ISSN: 2078-4163 Azәrbaycan Milli Elmlәr Akademiyası AZӘRBAYCAN ASTRONOMİYA JURNALI Cild 8 – № 2 – 2013 | XÜSUSİ BURAXILIŞ ŞAR - ShAO - ШАО - 60 Azerbaijan National Academy of Sciences Национальная Академия Наук Азербайджана AZERBAIJANI АСТРОНОМИЧЕСКИЙ ASTRONOMICAL ЖУРНАЛ JOURNAL АЗЕРБАЙДЖАНА Volume 8 – No 2 – 2013 Том 8 – № 2 – 2013 SPECIAL ISSUE СПЕЦИАЛЬНЫЙ ВЫПУСК Azәrbaycan Milli Elmlәr Akademiyasının “AZӘRBAYCAN ASTRONOMIYA JURNALI” Azәrbaycan Milli Elmlәr Akademiyası (AMEA) Rәyasәt Heyәtinin 28 aprel 2006-cı il tarixli 50-saylı Sәrәncamı ilә tәsis edilmişdir. Baş Redaktor: Ә.S. Quliyev Baş Redaktorun Müavini: E.S. Babayev Mәsul Katib: P.N. Şustarev REDAKSIYA HEYӘTİ: Cәlilov N.S. AMEA N.Tusi adına Şamaxı Astrofizika Rәsәdxanası Hüseynov R.Ә. Baki Dövlәt Universiteti İsmayılov N.Z. AMEA N.Tusi adına Şamaxı Astrofizika Rәsәdxanası Qasımov F. Q. AMEA Fizika İnsitutu Quluzadә C.M. Baki Dövlәt Universiteti Texniki redaktor: A.B. Әsgәrov İnternet sәhifәsi: http://www.shao.az/AAJ Ünvan: Azәrbaycan, Bakı, AZ-1001, İstiqlaliyyәt küç. 10, AMEA Rәyasәt Heyәti Jurnal AMEA N.Tusi adına Şamaxı Astrofizika Rәsәdxanasında (www.shao.az) nәşr olunur. Мәktublar üçün: ŞAR, Azәrbaycan, Bakı, AZ-1000, Mәrkәzi Poçtamt, a/q №153 e-mail: [email protected] tel.: (+99412) 439 82 48 faкs: (+99412) 497 52 68 2013 Azәrbaycan Milli Elmlәr Akademiyası. 2013 AMEA N.Tusi adına Şamaxı Astrofizika Rәsәdxanası. Bütün hüquqlar qorunmuşdur. Bakı – 2013 ____________________________________________________________________________________________________________ “Астрономический Журнал Азербайджана” Национальной Azerbaijani Astronomical Journal of the Azerbaijan National Академии Наук Азербайджана (НАНА). Academy of Sciences (ANAS) is founded in 28 Aprel 2006. Основан 28 апреля 2006 г. Web- адрес: http://www.shao.az/AAJ Online version: http://www.shao.az/AAJ Главный редактор: А.С.Гулиев Editor-in-Chief: A.S.
    [Show full text]
  • The Results of the 2013 Pro-Am Wolf-Rayet Campaign E
    Wolf-Rayet Stars W.-R. Hamann, A. Sander, H. Todt, eds. Potsdam: Univ.-Verlag, 2015 URL: http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84268 The Results of the 2013 Pro-Am Wolf-Rayet Campaign E. J. Aldoretta1, N. St-Louis1, N. D. Richardson1, A. F. J. Moffat1, T. Eversberg2, G. M. Hill3 and the World-Wide WR Pro-Am Campaign Team4;5 1Universite´ de Montr´eal, Canada 2Schn¨orringenTelescope Science Institute, Germany 3W. M. Keck Observatory, United States 4VdS Section Spectroscopy, Germany 5Astronomical Ring for Access to Spectroscopy (ARAS), France Professional and amateur astronomers around the world contributed to a 4-month long cam- paign in 2013, mainly in spectroscopy but also in photometry, interferometry and polarimetry, to observe the first 3 Wolf-Rayet stars discovered: WR 134 (WN6b), WR 135 (WC8) and WR 137 (WC7pd+O9). Each of these stars are interesting in their own way, showing a variety of stellar wind structures. The spectroscopic data from this campaign were reduced and analyzed for WR 134 in order to better understand its behavior and long-term periodicity in the context of CIRs in the wind. We will be presenting the results of these spectroscopic data, which include the confirmation of the CIR variability and a time-coherency of 40 days (half-life of 20 days). ∼ ∼ 1 Motivation and Campaign the spectral lines (Morel et al. 1999), WR 135 is known to show large clumpy structures in its wind Overview (Lepine et al. 1996) and WR 137 is a long-period WR+O binary system with possible CIRs (Lef`evre Co-rotating interaction regions (CIRs) form in the et al.
    [Show full text]
  • Spectropolarimetry As a Probe of Stellar Winds
    Spectropolarimetry as a Probe of Stellar Winds Timothy James Harries Thesis submitted for the degree of Doctor of Philosophy in the Faculty of Science of the University of London. UCL Department of Physics & Astronomy U n iv e r s it y • C o l l e g e • L o n d o n February 1995 ProQuest Number: 10045605 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10045605 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract The use of spectropolarimetry as a diagnostic probe of stellar-wind structure is inves­ tigated by using high-quality observations and state-of-the-art analytical and numerical models. The winds of late-type giant stars are studied through the highly polarized 6830Â and 7088Â Raman-scattered emission hnes that are observed in many symbiotic systems. A spectropolarimetric survey of 28 symbiotic stars is presented. A Monte-Carlo code is developed in order to aid interpretation of the hnes and the parameter sensitivity of the Raman hne polarization spectrum is investigated.
    [Show full text]
  • CURRICULUM VITAE: Dr Richard Ignace
    CURRICULUM VITAE: Dr Richard Ignace Address: Department of Physics & Astronomy Office of Undergraduate Research College of Arts & Sciences Honors College EAST TENNESSEE STATE UNIVERSITY EAST TENNESSEE STATE UNIVERSITY Johnson City, TN 37614 Johnson City, TN 37614 Email: [email protected] [email protected] Web: faculty.etsu.edu/ignace www.etsu.edu/honors/ug research Phone/Fax: (423) 439-6904 / (423) 439-6905 (423) 439-6073 / (423) 439-6080 EDUCATION Ph.D. in Astronomy, University of Wisconsin 1996 M.S. in Physics, University of Wisconsin 1994 M.S. in Astronomy, University of Wisconsin 1993 B.S. in Astronomy, Indiana University 1991 POSITIONS HELD Aug 2016–present, Consultant, Tri-Alpha Energy Jan 2015–present, Director of Undergraduate Research Activities, East Tennessee State University Aug 2013–present, Full Professor: East Tennessee State University Aug 2007–Jul 2013, Associate Professor: East Tennessee State University Aug 2003–Jul 2007, Assistant Professor: East Tennessee State University Sep 2002–Jul 2003, Assistant Scientist: University of Wisconsin Aug 1999–Aug 2002, Visiting Assistant Professor: University of Iowa Nov 1996–Aug 1999, Postdoctoral Research Assistant: University of Glasgow SELECTED PROFESSIONAL ACTIVITIES Involved with service to discipline, institution, and community As Director of Undergraduate Research & Creative Activities, I administrate grant programs and activ- ities that support undergraduate scholarship, plus advocate for undergraduate research. Successful with publishing scholarly articles and competing for grant funding; author of the astron- omy textbook “Astro4U: An Introduction to the Science of the Cosmos,” of the popular astronomy book “Understanding the Universe,” and co-editor of the conference proceedings “The Nature and Evolution of Disks around Hot Stars” Principal organizer for STELLAR POLARIMETRY: FROM BIRTH TO DEATH, Jun 2011; and THE NATURE AND EVOLUTION OF DISKS AROUND HOT STARS, Jul 2004.
    [Show full text]
  • "MHD Simulations of Colliding Stellar Winds in Binary Systems"
    University of Innsbruck Institute for Astro- and Particle Physics MHD simulations of colliding stellar winds in binary systems Master’s Thesis in Astrophysics Anna Ogorzałek Submitted to the Faculty of Mathematics, Computer Science and Physics in Partial Fulfillment of the Requirements for the Degree of Magister / Magistra der Naturwissenschaften Supervisor: Dr Ralf Kissmann Innsbruck, August 2014 ii Abstract: Massive binary systems are sources of non-thermal radiation and possibly even γ- rays. This high energy emission originates in the region between the two stars, where their pow- erful winds collide. This region possess extreme physical conditions that have been the subject of multiple studies including hydrodynamical and particle acceleration simulations. There is little known about the magnetic field at the collision region. It is an important factor, since it produces the non-thermal synchrotron emission, as well as influences the particle acceleration. In this work we use 3D magnetohydrodynamical simulations in order to study the magnetic field properties in the collision region, in particular its strength and the geometry (the angle between the field lines and the shock normal). We prescribe a dipolar magnetic field for both stars and perform a param- eter study of its strength and geometry. We conclude that for the studied range of dipol strengths (∼ 100G) no influence on the collision region is found, as it retains its shape and shocks compres- sion ratios. The magnetospheres do not cross the contact discontinuity, and the respective sides of the collision region depend only on the stellar fields. However, this means that prescribing a single field strength over the whole collision region might not be sensible.
    [Show full text]
  • Absence of Hot Gas Within the Wolft-Rayet Bubble Around WR16
    Astronomy & Astrophysics manuscript no. ms c ESO 2018 April 30, 2018 Absence of hot gas within the Wolf-Rayet bubble around WR 16 J.A. Toal´aand M.A. Guerrero Instituto de Astrof´ısica de Andaluc´ıa, IAA-CSIC, Glorieta de la Astronom´ıa s/n, 18008 Granada, Spain; [email protected] Preprint online version: April 30, 2018 ABSTRACT We present the analysis of XMM-Newton archival observations towards the Wolf-Rayet (WR) bubble around WR 16. Despite the closed bubble morphology of this WR nebula, the XMM-Newton observations show no evidence of diffuse emission in its interior as in the similar WR bubbles NGC 6888 and S 308. We use the present observations to estimate a 3-σ upper limit to the X-ray luminosity in the 0.3–1.5 keV energy band equal to 7.4×1032 erg s−1 for the diffuse emission from the WR nebula, assuming a distance of 2.37 kpc. The WR nebula around WR 16 is the fourth observed by the current generation of X-ray satellites and the second not detected. We also examine FUSE spectra to search for nebular O vi absorption lines in the stellar continuum of WR 16. The present far-UV data and the lack of measurements of the dynamics of the optical WR bubble do not allow us to confirm the existence of a conductive layer of gas at T∼3×105 K between the cold nebular gas and the hot gas in its interior. The present observations result in an upper limit of −3 ne <0.6 cm on the electron density of the X-ray emitting material within the nebula.
    [Show full text]
  • Interstellarum 89 | August/September 2013 Fokussiert
    interstellarum 89 | August/September 2013 fokussiert Titelbild: IC 410 im Schmalbandfilter-Komposit, umgesetzt als Falschfarbenaufnahme nach der Hubble-Palette. Aufgenommen mit einem 300/1140-Newton und Korrektor, Moravian Instruments G2 8300 CCD-Kamera, 10×8min (Hα), 11×8min ([OIII]), 11×8min ([SII]). Lesen Sie dazu mehr ab Seite 42. Thomas Jäger INTERAKTIV Werden Sie Follower des neuen interstellarum Twitter-Dienstes! . Die gesamte Redaktion informiert t g Sie täglich über Neuigkeiten aus der (Amateur-)Astronomie. www.twitter.com/interstellarum ist untersa g BUCHTIPP reitun Liebe Leserinnen, liebe Leser, b ein Sternatlas der neuen Generation – das ist der neue »interstellarum Deep-Sky- interstellarum Erscheint Deep-Sky-Atlas Atlas«, der am 1. September erscheinen wird. Über zehn Jahre habe ich an diesem neuen am 1.9. Ronald Stoyan, Konzept gearbeitet: ein Kartenwerk, das Deep-Sky-Objekte nicht einfach als Symbole Stephan Schurig darstellt, sondern diese so gestaltet, dass helle Objekte auf einen Blick von schwachen zu unterscheiden sind; ein Kartenwerk, das so einfach und logisch aufgebaut ist, dass auch unter schwierigen Bedingungen die Orientierung leicht fällt; ein Kartenwerk, das mit vielen kleinen Details von visuellen Objektumrissen bis zur Filterempfehlung auf die Bedürfnisse des praktischen Deep-Sky-Beobachters eingeht. Ich möchte Sie herzlich einladen, sich unter www.deepskyatlas.de über unser größtes Projekt in der Geschichte des Oculum-Verlags zu informieren, und den Atlas auf der Astromesse in Villingen- Schwenningen am 14. September selbst in Augenschein zu nehmen (Seite 2). Die Astromesse AME wird auch der Höhepunkt in unserem großen Astrofotowett- bewerb »Astrofotograf des Jahres 2013« sein. Nachdem die Jury aus den Astrofotografen Bernhard Hubl, Johannes Schedler, Ranga Yogeshwar sowie Egon Döberl von unserem nur zu privaten Zwecken.
    [Show full text]
  • The Hill Book 2009-2010 Table of Contents
    The Hill Book Stonehill College 2009-2010 Stonehill College 2009-2010 Founders The Congregation of Holy Cross, a Catholic community of Priests and Brothers, as an independent, Church-related institution. Accreditation New England Association of Schools and Colleges which accredits schools and colleges in the six New England states. Membership in the Association indicates that the institution has been carefully evaluated and found to meet standards agreed upon by the qualified educators. Stonehill College supports the efforts of secondary school officials and governing bodies to have their schools achieve regional accredited status to provide reliable assurance of the quality of the educational preparation of its applicants for admission. American Chemical Society (ACS) Association of University Programs in Health Administration; Full Certification Membership • Association to Advance Collegiate Schools of Business (AACSB International) • Association of American Colleges and Universities (AACU) • Association of Catholic Colleges and Universities (ACCU) • The Council of Independent Colleges (CIC) • National Association of Independent Colleges and Universities (NAICU) • Southeastern Association for Cooperation of Higher Education in Massachusetts (SACHEM) • Southern New England Consortium on Race and Ethnicity (SNECORE) Letter from the President Dear Stonehill Students, In welcoming you to Stonehill College, I hope that your time with us will be one of active participation in the academic and social opportunities present in our community. You may have noticed the simple yet powerful message on the banners displayed at the entrance to our beautiful campus – Stonehill College: Many Minds. One Purpose. The Stonehill community is blessed with so many minds – the faculty, administrators, staff, alumni and your fellow students who play such a large part in your Stonehill education.
    [Show full text]
  • Pennsylvania Science Olympiad Southeast Regional Tournament 2013 Astronomy C Division Exam March 4, 2013
    PENNSYLVANIA SCIENCE OLYMPIAD SOUTHEAST REGIONAL TOURNAMENT 2013 ASTRONOMY C DIVISION EXAM MARCH 4, 2013 SCHOOL:________________________________________ TEAM NUMBER:_________________ INSTRUCTIONS: 1. Turn in all exam materials at the end of this event. Missing exam materials will result in immediate disqualification of the team in question. There is an exam packet as well as a blank answer sheet. 2. You may separate the exam pages. You may write in the exam. 3. Only the answers provided on the answer page will be considered. Do not write outside the designated spaces for each answer. 4. Include school name and school code number at the bottom of the answer sheet. Indicate the names of the participants legibly at the bottom of the answer sheet. Be prepared to display your wristband to the supervisor when asked. 5. Each question is worth one point. Tiebreaker questions are indicated with a (T#) in which the number indicates the order of consultation in the event of a tie. Tiebreaker questions count toward the overall raw score, and are only used as tiebreakers when there is a tie. In such cases, (T1) will be examined first, then (T2), and so on until the tie is broken. There are 12 tiebreakers. 6. When the time is up, the time is up. Continuing to write after the time is up risks immediate disqualification. 7. In the BONUS box on the answer sheet, name the gentleman depicted on the cover for a bonus point. 8. As per the 2013 Division C Rules Manual, each team is permitted to bring “either two laptop computers OR two 3-ring binders of any size, or one binder and one laptop” and programmable calculators.
    [Show full text]
  • A Consistent Spectral Model of WR 136 and Its Associated Bubble NGC 6888 J
    Wolf-Rayet Stars W.-R. Hamann, A. Sander, H. Todt, eds. Potsdam: Univ.-Verlag, 2015 URL: http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84268 A consistent spectral model of WR 136 and its associated bubble NGC 6888 J. Reyes-P´erez1, C. Morisset1, M. Pen~a1 & A. Mesa-Delgado2 1Instituto de Astronom´ıa,Universidad Nacional Aut´onomade M´exico, M´exico 2Instituto de Astrof´ısica, Facultad de F´ısica, Pontificia Universidad Cat´olica de Chile We analyse whether a stellar atmosphere model computed with the code CMFGEN provides an optimal description of the stellar observations of WR 136 and simultaneously reproduces the nebular observations of NGC 6888, such as the ionization degree, which is modelled with the pyCloudy code. All the observational material available (far and near UV and optical spectra) were used to constrain such models. We found that the stellar temperature T , at τ = 20, can be in a range between 70 000 and 110 000 K, but when using the nebula as an additional∗ restriction, we found that the stellar models with T 70 000 K represent the best solution for both, the star and the nebula. ∗ ∼ 1 Introduction hydrostatic radius of the star R (at optical depth τ equal to 20) and the chemical composition.∗ NGC 6888 is an emission nebula associated with the As the modelled spectral features do not respond Wolf-Rayet star WR 136 with spectral type WN6(h), linearly to the input parameters, we calculated a and both have been already studied in several wave- grid of models in order to find the more appropri- length ranges from X-rays to radio emission, but all ated models which reproduce most of the observed the previous works focus only on the modelling of the spectral signatures.
    [Show full text]